平面几何基础知识教程.
平面几何入门

平面几何入门平面几何是数学中的一个重要分支,它研究的是二维空间中平面图形的性质和关系,是几何学的基础。
在本文中,我们将带您入门平面几何的基本概念和理论,让您对这一学科有一个全面的了解。
一、点、线和面的概念平面几何的基本元素包括点、线和面。
点是平面上最基本的对象,不占据空间,用大写字母标记,如A、B、C等。
线由无数个点组成,它是一维的,没有宽度和厚度,用小写字母表示,如l、m、n等。
面是由无数个线构成的,它是二维的,拥有长度和宽度,用大写字母表示,如P、Q、R等。
二、基本图形的性质1. 点的性质:点没有大小和形状,可以在平面上移动。
2. 直线的性质:直线无限延伸,在平面上任意两点可以确定一条直线,直线上的点不限定数量。
3. 射线的性质:射线由一个端点和一个方向组成,在平面上只能延伸一个方向。
4. 线段的性质:线段由两个端点组成,有固定的长度,在平面上不能无限延伸。
5. 角的性质:角由两条射线的公共端点和位于这两条射线之间的部分组成,用大写字母表示,如∠ABC。
角的大小可以用度、弧度或直角来度量。
6. 三角形的性质:三角形是由三条线段组成的平面图形,它有三个顶点和三个边。
根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形和一般三角形。
7. 四边形的性质:四边形是由四条线段组成的平面图形,它有四个顶点和四条边。
根据边长和角度的不同,四边形可以分为正方形、长方形、菱形、平行四边形等。
8. 圆的性质:圆是由一个固定点到平面上任意点的距离相等的点的集合。
圆由圆心和半径确定,圆心用大写字母表示,如O,半径用小写字母表示,如r。
三、平面几何的定理与推理平面几何的定理是通过逻辑推理和证明得出的,它们是描述平面图形性质和关系的真实命题。
下面介绍几个常见的定理:1. 垂直平分线定理:如果一条线段的中点处于另一条线段上,并且这条线段与另一条线段垂直相交,那么这条线段就是另一条线段的垂直平分线。
2. 同位角定理:当两条直线被一条交叉直线切割时,同位角是对应于同一边的内角或外角,它们互补。
平面几何基础知识教案

平面几何基础知识教案教学目标:通过本课的学习,学生将能够掌握平面几何的基础知识,包括点、线、面的概念,直线与曲线的区分,以及常见的几何图形和其性质等内容。
教学内容:1. 点、线、面的概念1.1 点的定义- 点是最基本的几何要素- 点是在空间中没有长度、宽度和厚度的位置1.2 线的定义- 线是由无数个点连在一起形成的- 线是没有宽度、厚度的1.3 面的定义- 面是由无数个线相互连接形成的- 面是有宽度和厚度的2. 直线与曲线的区分2.1 直线的性质- 直线上的任意两点可以连成一条直线- 直线是直的,没有弯曲2.2 曲线的性质- 曲线有弯曲的形状- 曲线可以分为封闭曲线和开放曲线两种3. 常见的几何图形及其性质3.1 线段- 线段是由两个端点和连接两个端点的线段组成的- 线段的长度等于两个端点之间的距离3.2 角- 角是由两条射线共同起点组成的- 角可细分为锐角、直角、钝角等3.3 三角形- 三角形是由三条线段组成的- 三角形的性质包括内角和为180度、直角三角形、等腰三角形等3.4 矩形- 矩形是具有四个直角的四边形- 矩形的性质包括对角线相等、面积计算公式等3.5 圆- 圆是由一条固定的几何中心和与该中心的所有点距离相等的点组成的- 圆的性质包括半径、直径、弧长、扇形等教学过程:1. 导入新知- 引入平面几何的概念,提出学生对点、线、面的理解,并进行讨论。
2. 点、线、面的概念- 通过图片和实际物体的例子来介绍点、线、面的概念,并让学生进行观察和讨论。
3. 直线与曲线的区分- 通过实际物体的例子,让学生观察直线与曲线的不同,并进行对比分析。
4. 常见的几何图形及其性质- 通过展示图片和实物,介绍线段、角、三角形、矩形和圆的定义和性质,并进行示范和解释。
5. 练习与巩固- 让学生进行练习题,巩固所学知识。
6. 总结与拓展- 对本课的内容进行总结,并引导学生进行拓展思考,如应用几何知识解决实际问题等。
平面解析几何基础知识

§07. 直线和圆的方程知识要点 一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当90=α或12x x =时,直线l垂直于x轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x轴,y轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x .注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线.附:直线系:对于直线的斜截式方程bkx y +=,当bk ,均为确定的数值时,它表示一条确定的直线,如果bk ,变化时,对应的直线也会变化.①当b为定植,k变化时,它们表示过定点(0,b)的直线束.②当k为定值,b变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠)推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l .⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在.②121=⇔⊥k l l ,且2l 的斜率不存在或2=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件) 4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当90≠θ时21121tan k k k k +-=θ.⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是⎝⎛⎥⎦⎤2,0π,当90≠θ,则有21121tan k k k k +-=θ.5. 过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线PC By Ax l ,0:=++到l的距离为d,则有2200BA CBy Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。
平面几何基础

平面几何基础平面几何是几何学的重要分支之一,研究了在平面上的点、线、角以及图形的性质和关系。
它是我们理解和解决实际问题中经常用到的一种数学工具。
本文将介绍平面几何的基础知识,包括点、线、角和图形的特征与性质。
一、点的性质与关系1. 点的定义与表示:在平面几何中,点是最基本的概念,通常用大写字母表示,如"A"、"B"、"C"等。
点没有大小和形状,只有位置。
2. 点的相对位置:在平面上,点的相对位置可以用坐标来表示。
我们可以用直角坐标系或极坐标系来确定点的位置,其中直角坐标系由x 轴和y轴组成,而极坐标系由原点、极径和极角组成。
3. 点的连线:两个点之间可以用线段连接起来,形成一个直线。
直线是经过两个点的最短路径。
4. 点的投影:当点在平面上与另一个物体重叠时,它的投影就是它在平面上的垂直投影点。
投影是判断物体位置和大小的重要工具。
二、线的性质与关系1. 线的定义与表示:线是通过两个点或多个点上的连续点组成的。
可以用小写字母表示线,如"l"、"m"、"n"等。
2. 线的分类:根据线的位置和形状,我们可以将线分为水平线、垂直线、直线、曲线等。
3. 线的相对位置:在平面上,两条线可以相交、平行或重合。
相交的两条线称为交线,平行的两条线永不相交,重合的两条线完全重合。
4. 线的性质:两条平行线上的任意两个点到另一条平行线的距离是相等的。
两条垂直线的斜率乘积为-1。
这些性质在解决实际问题中起着重要的作用。
三、角的性质与关系1. 角的定义与表示:角是由两条线或线段的端点共同确定的,通常用大写字母表示,如"A"、"B"、"C"等,其中顶点位于两条边的交点处。
2. 角的度量:角可以用度数或弧度表示。
度数是常用的度量单位,360度是一个完整的角。
初中数学平面几何知识点

初中数学平面几何知识点平面几何是数学中的一个重要分支,主要研究平面内的点、线、面及其相互关系。
初中阶段的数学平面几何主要包括点、线、面的基本概念,以及相关的性质和定理。
下面将详细介绍一些与初中数学平面几何相关的知识点。
一、点、线、面的基本概念1.点:点是几何中最基本的概念,没有大小和形状,只有位置。
点用大写字母来表示,如A、B、C等。
2.直线:直线是由无数个点连成的,没有宽度和厚度,无法画出;在平面上只有一个方向。
直线用小写字母表示,如l、m、n等。
3.线段:线段是由两个点和两个端点之间的所有点组成的,具有长度。
线段通常用两个端点的大写字母表示,如AB、CD等。
4.射线:射线是由一个点和一个方向组成的,有一个起点但没有终点。
一般用起点和另一点的大写字母表示,如BA、BC等。
5.平面:平面是由无数条平行直线组成的,具有无限大的面积。
平面用大写字母表示,如α、β、γ等。
二、点、线的位置关系1.重合:如果两个点的位置完全相同,即可以说这两个点重合。
2.相交:两条线或线段(含射线)在一个点处有且只有一个公共点时,可以说这两条线相交。
3.平行:如果两条直线在平面上没有公共点,且在同一个平面上,那么这两条直线可以称为平行线。
4.垂直:如果两条线段或直线的交角为90度,可以说这两条线段或直线垂直。
5.线段的中点:位于线段中间的一个点,与线段两个端点的距离相等。
三、角的概念和性质1.角:角是由两条射线及其公共端点组成,从射线的起点到终点的转动叫做角。
角用大写字母表示,如∠ABC。
2.角的度量:角的度量单位是度(°),一个直角等于90°。
3.角的种类:根据角的度量可以分为钝角、直角、锐角以及平角。
4.角的分类:根据角的大小和位置关系可以分为对顶角、邻补角、对补角等。
四、三角形的基本性质和分类1.三角形:三角形是由三条线段组成的,以三个顶点和三条边表示。
2.三角形的分类:根据三角形的边长和角度大小可以分为等边三角形、等腰三角形和一般三角形。
平面几何的基础知识

平面几何的基础知识平面几何是几何学的一个重要分支,研究平面上的点、线、面及其相互关系。
它是数学中最基础的内容之一,广泛应用于建筑、设计、工程等领域。
本文将介绍平面几何的基础知识,包括点、线、角、三角形等概念及其性质。
一、点和线在平面几何中,点是最基本的要素。
点是没有大小和形状的,可以用来确定位置。
我们用大写字母表示一个点,比如点A、点B等。
线是由无数个点连成的,它是一条没有宽度的路径。
常见的线有直线和曲线。
直线是最简单的一类线,它是无限延伸的。
曲线则有各种不同的形状,比如圆、椭圆、抛物线、双曲线等。
直线和曲线都可以用小写字母表示,比如直线l、曲线c等。
二、角角是由两条线段或线相交所形成的部分。
我们用θ来表示一个角。
角可以用来描述两个线的相对位置和方向。
根据角的大小可以分为三类:锐角、直角和钝角。
锐角是小于90°的角,直角是90°的角,钝角是大于90°小于180°的角。
三、三角形三角形是由三条线段相连而成的封闭图形。
它是平面几何中最基本的多边形。
三角形的三个顶点和三条边分别用大写字母和小写字母表示。
根据三角形的边长和角的大小,可以分为多种类型。
比如,等边三角形的三条边相等,等腰三角形的两条边相等,直角三角形的一个角为90°等。
除了常见的点、线、角和三角形,平面几何还涉及其他重要的概念,比如四边形、多边形、圆、正方形等。
这些概念都有各自的定义和性质。
四、平面几何的性质平面几何有一些基本性质,可以用来解决各种问题。
下面介绍几个常用的性质。
1. 直线的性质:直线上的任意两点可以确定一条直线,直线上的所有点与这两点的连线重合。
2. 角的性质:两个互补角的和为90°,两个补角的和为180°,相邻角的和为180°。
3. 三角形的性质:三角形的内角和为180°,等边三角形的三个内角都为60°,等腰直角三角形的两个内角分别为45°和90°。
初中数学关于平面几何的基础与难点讲解
初中数学关于平面几何的基础与难点讲解在初中数学的学习中,平面几何是一个重要的组成部分。
它不仅能够培养我们的逻辑思维能力,还为后续学习更高级的数学知识打下坚实的基础。
接下来,咱们就一起来深入了解一下初中数学平面几何的基础和难点。
一、平面几何的基础1、点、线、面、体点是最基本的几何元素,没有大小和形状。
线是由无数个点组成的,有直线和曲线之分。
面则是由线围成的,比如三角形、四边形等。
体是由面围成的,像长方体、正方体等。
理解这些基本概念是学习平面几何的第一步。
2、线段与角线段有两个端点,可以测量其长度。
角是由两条有公共端点的射线组成的图形,角的大小与边的长短无关,只与两条边张开的程度有关。
3、平行线在同一平面内,不相交的两条直线叫做平行线。
平行线的性质和判定定理是解决相关问题的重要依据。
4、三角形三角形是平面几何中最基本的图形之一。
它有三条边和三个角,三角形的内角和为 180 度。
三角形按角可以分为锐角三角形、直角三角形和钝角三角形;按边可以分为等边三角形、等腰三角形和不等边三角形。
5、四边形常见的四边形有平行四边形、矩形、菱形、正方形和梯形。
它们各自有着独特的性质和判定方法。
二、平面几何的难点1、证明题证明题是平面几何中的一个难点,需要我们熟练运用各种定理和性质,通过严密的逻辑推理来证明结论的正确性。
例如,证明三角形全等、相似,或者证明平行四边形的性质等。
这要求我们对定理和性质有深入的理解,并且能够灵活运用。
2、辅助线的添加在解决一些复杂的平面几何问题时,往往需要添加辅助线来帮助我们解题。
但是辅助线的添加没有固定的方法,需要我们根据题目条件和图形特点进行分析和尝试。
这需要我们有较强的观察力和创新思维能力。
3、图形的变换图形的平移、旋转和轴对称等变换也是平面几何中的难点之一。
在这些变换中,图形的形状和大小不变,但是位置发生了变化。
我们需要通过分析变换前后图形的关系来解决问题。
4、综合运用很多平面几何问题需要综合运用多个知识点来解决,这就要求我们能够将所学的知识融会贯通,形成一个完整的知识体系。
平面几何基础知识教程
平面几何基础知识教程嘿,朋友!咱们今天来聊聊平面几何这神奇的世界。
你知道吗,平面几何就像是一座神秘的城堡,里面藏着无数的宝藏和秘密。
那啥是平面几何呢?简单说,就是在一个平平的面上研究图形的学问。
先来说说点,这可是平面几何的小原子。
一个点,小得不能再小,可它却是构成各种图形的基础。
你想想,无数个点连起来,是不是就能变成线啦?线呢,又分直线和线段。
直线那可是勇往直前,没有尽头的。
就像咱们追求梦想的道路,永无止境。
线段呢,有头有尾,规规矩矩的。
还有角,角就像两个小伙伴在那里比力气,张开的大小决定了角的大小。
锐角就像个胆小的孩子,不敢张太大嘴;直角呢,规规矩矩,像个听话的学生;钝角呢,大大咧咧,张得可开了。
三角形可是平面几何里的大明星!它稳定得很,就像咱们家的房子,有它在就觉得安心。
等边三角形,三边都一样长,多公平呀;等腰三角形,就像两个好朋友,有两条边一样长,关系特别好;直角三角形,有个直角在那,像是个勇敢的战士,准备冲锋陷阵。
四边形也不甘示弱,平行四边形,对边平行且相等,就像两排整齐的士兵在行进;矩形呢,四个角都是直角,规规矩矩的;菱形,四边相等,像个漂亮的风筝在天上飞;正方形,那更是完美,结合了矩形和菱形的优点,简直是四边形里的全能冠军。
圆,那可是个温柔的家伙,它的曲线优美得让人陶醉。
圆心就像它的心脏,半径决定了它的大小,直径则是它的大跨度。
学习平面几何,就像一场冒险。
咱们要仔细观察,用心思考。
比如说,看到一个三角形,你就得想想它的内角和是不是 180 度呀?看到一个圆,就得琢磨琢磨它的周长和面积怎么算。
这平面几何的世界,充满了惊喜和挑战。
只要咱们用心去探索,就一定能发现其中的乐趣和奥秘。
你说是不是?别觉得它难,只要多练习,多思考,你也能成为平面几何的高手!所以呀,别犹豫,别害怕,勇敢地走进平面几何的世界,去寻找属于你的宝藏吧!。
平面几何的基本性质与公式解析与归纳
平面几何的基本性质与公式解析与归纳平面几何是研究二维空间中图形的形状、大小和相互关系的数学分支,它有许多基本性质和公式,能够帮助我们解决各种几何问题。
本文将对平面几何的基本性质和公式进行解析和归纳,以帮助读者更好地理解和应用这些知识。
一、点、线、面的性质1. 点:点是平面几何中最基本的概念,没有大小和形状,只有位置。
在平面上任意取两个不同的点可以确定一条直线。
2. 线:线是由无数个点连成的路径,没有宽度和厚度。
直线是最简单的线,它无限延伸,没有起点和终点。
线段是有确定起点和终点的线。
3. 面:面是由无数个点组成的平坦区域,有长度和宽度。
平面是最简单的面,它无限延伸。
二、角的性质与公式1. 角的概念:角是由两条射线共享一个起点所形成的图形。
角可以用字母表示,比如∠ABC表示以点B为顶点,以线段BA和线段BC为腿的角。
2. 角的大小:角的大小可以用度数或弧度来表示。
一周的角度为360度或2π弧度。
直角角度为90度或π/2弧度。
根据角度的大小,角可以分为锐角、直角、钝角和平角。
3. 角的和与差:两个角的和等于这两个角各自对应的两个边所成的角之和。
即∠ABC+∠CBD=∠ABD。
同理,两个角的差等于这两个角各自对应的两个边所成的角之差。
三、三角形的性质与公式1. 三角形的定义与分类:三角形是由三条线段组成的图形。
根据边的长度和角的大小,三角形可以分为等边三角形、等腰三角形、直角三角形和一般三角形。
2. 三角形的周长:三角形的周长等于三条边的长度之和,即P=AB+BC+CA。
3. 三角形的面积:三角形的面积可以根据两个边的长度和夹角的大小来计算。
常用的计算公式有海伦公式和正弦定理。
四、四边形的性质与公式1. 四边形的定义与分类:四边形是由四条线段组成的图形。
根据边的长度和角的大小,四边形可以分为正方形、长方形、菱形、平行四边形、梯形等多种类型。
2. 平行四边形的性质:平行四边形的对边平行且相等,对角线相交于对角线的中点。
平面几何基础知识
平面几何基础知识在数学的世界里,几何学是研究空间及其内部图形的一门学科。
平面几何则更专注于二维空间中的图形和形状。
平面几何基础知识对于理解和解决各种数学问题至关重要。
本文将介绍一些关键概念和定理,帮助读者建立起扎实的平面几何基础知识。
1. 点、直线和线段在平面几何中,点是最基本的概念。
它是几何图形中最小的单位,没有大小和方向。
直线是由无数个点组成,没有宽度和端点。
而线段则是直线的一部分,有起点和终点。
2. 角角是由两条射线共享一个公共的端点而形成的图形。
角可以通过度数或弧度来度量。
常见的角包括直角(90度)和钝角(大于90度)。
3. 三角形三角形是由三条线段组成的图形。
根据边长和角度,三角形可以分为不同的类型,包括等边三角形、等腰三角形和直角三角形等。
三角形的内角和为180度,这一性质被称为三角形的内角和定理。
4. 平行和垂直平行是指两条直线在平面上永不相交,垂直是指两条直线相交且互相成直角。
平行线有许多重要性质,如平行线的传递性和平行线和转折线之间的角度关系等。
5. 圆圆是由一个固定点到平面上任意一点的距离相等的点的集合。
圆由中心和半径来确定。
圆的重要性质包括圆心角和弧长之间的关系,以及切线和弦之间的角度关系。
6. 多边形多边形是由多条线段组成,形成一个封闭的图形。
根据边的数目,多边形可以分为三角形、四边形、五边形等。
多边形的内角和可以通过公式(n-2) × 180度计算,其中n为多边形的边数。
7. 相似和全等当两个图形的形状相似时,它们的对应角度相等,对应边长成比例。
全等指两个图形的形状和大小完全相同。
8. 比例比例是用来表示两个量之间的关系。
在几何中,比例经常用来计算线段的长度或图形的边长比。
比例的一些性质包括比例的可逆性和比例的传递性。
总结:平面几何基础知识是理解和应用数学问题的关键。
点、直线、线段、角、三角形、圆、多边形、平行和垂直、相似和全等以及比例等概念和定理,构成了平面几何的基础框架。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何基础知识教程(圆)一、几个重要定义外心:三角形三边中垂线恰好交于一点,此点称为外心内心:三角形三内角平分线恰好交于一点,此点称为内心垂心:三角形三边上的高所在直线恰好交于一点,此点称为垂心凸四边形:四边形的所有对角线都在四边形ABCD内部的四边形称为凸四边形折四边形:有一双对边相交的四边形叫做折四边形(如下图)(折四边形)二、圆内重要定理:1.四点共圆定义:若四边形ABCD的四点同时共于一圆上,则称A,B,C,D四点共圆基本性质:若凸四边形ABCD是圆内接四边形,则其对角互补证明:略判定方法:1.定义法:若存在一点O使OA=OB=OC=OD,则A,B,C,D四点共圆2.定理1:若凸四边形ABCD的对角互补,则此凸四边形ABCD有一外接圆证明:略特别地,当凸四边形ABCD中有一双对角都是90度时,此四边形有一外接圆3.视角定理:若折四边形ABCD中,∠=∠ADB ACB,则A,B,C,D四点共圆证明:如上图,连CD ,AB ,设AC 与BD 交于点P因为∠=∠ADB ACB ,所以180=∠=∠∠=∠∠+∠=∠+∠+∠=∠+∠+∠=ΔCPB ∽ΔDPA所以有再注意到因此Δ∽Δ因此由此(ΔABD 的内角和)因此A ,B,C,D四点共圆PC PB PD PACPD BPACPD BPAPCD PBABCD BAD BCA PCD BAD BDA PBA BAD特别地,当∠=∠ADB ACB =90时,四边形ABCD 有一外接圆2.圆幂定理:圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。
相交弦定理:P 是圆内任一点,过P 作圆的两弦AB ,CD ,则PA PB PC PD •=•证明:∠=∠∠=∠=•=•连,,则(等弧对等圆周角)而(对顶角相等)因此ΔAPC ∽ΔDPB即,因此AC BD CAB CDB APC DPB PA PC PA PB PC PD PD PB(切)割线定理:P 是圆外任意一点,过P 任作圆的两割(切)线PAB ,PCD ,则PA PB PC PD •=•证明方法与相交弦定理完全一样,可仿前。
特别地,当C ,D 两点重合成为一点C’时,割线PCD 变成为切线PC’而由割线定理,2'PA PB PC PD PC •=•=,此时割线定理成为切割线定理而当B ,A 两点亦重合为一点A’时,由切割线定理22''PC PA PB PA =•=因此有PC’=PA’,此时切割线定理成为切线长定理现考虑割线与切线同时存在的情况,即切割线定理的情况:如图,PCD是圆的割线,PE是圆的切线设圆心为O,连PO,OE,则由切割线定理有:2•=而注意到黄色Δ是RTΔ,由勾股定理有:PC PD PE222=-,结合切割线定理,我们得到PE PO OE222•==-,这个结果表明,如果圆心O与P是确定的,那么PC PD PE PO OEPC与PD之积也是唯一确定的。
以上是P在圆外的讨论现在再重新考虑P在圆内的情形,如下图,PCD是圆内的现,PAB是以P为中点的弦则由相交弦定理有2(因为P是弦A B中点)=PCPA PB PA PD•=•连OP,OA,由垂径定理,ΔOPA是RTΔ由勾股定理有222=-,结合相交弦定理,便得到PA OA OP222PA PB PA PD OA OP •=•=-(因为P 是弦A B 中点)=PC这个结果同样表明,当O 与P 是固定的时候PC 与PD 之积是定值以上是P 在圆内的讨论当P 在圆上时,过P 任作一弦交圆于A (即弦AP ),此时220PO OA -=也是定值综上,我们可以把相交弦定理,切割线定理,割线定理,切线长定理统一起来,得到圆幂定理。
圆幂定理:P 是圆O 所在平面上任意一点(可以在圆内,圆上,圆外),过点P 任作一直线交圆O 于A ,B 两点(A ,B 两点可以重合,也可以之一和P 重合),圆O 半径为r则我们有:22||PA PB PO r •=-由上面我们可以看到,当P 点在圆内的时候,220PO r -<,此时圆幂定理为相交弦定理当P 在圆上的时候,220PO r -=当P 在圆外的时候,220PO r ->此时圆幂定理为切割线定理,割线定理,或切线长定理以下有很重要的概念和定理:根轴先来定义幂的概念:从一点A 作一圆周上的任一割线,从A 起到和圆周相交为止的两线段之积,称为点对于这圆周的幂对于已知两圆有等幂的点的轨迹,是一条垂直于连心线的直线。
根轴的定义:两圆等幂点的轨迹是一条直线,这条直线称为两圆的根轴性质1 若两圆相交,其根轴就是公共弦所在直线由于两圆交点对于两圆的幂都是0,所以它们位于根轴上,而根轴是直线,所以根轴是两交点的连线性质2 若两圆相切,其根轴就是过两圆切点的公切线(即性质1的极限情况)性质3 若三圆两两不同心,则其两两的根轴交于一点,或互相平行所交的这点称为根心证明:若三圆心共线,则两两圆的根轴均垂直于连心线,因此此时两两的根轴互相平行若三圆心不共线,则必成一三角形,因此两两的根轴必垂直于两两的连心线。
如图,设CD与EF交于点O,连AO交圆分O2圆O3于B’,B’’,则•=•=•=•其中前两式是点O对圆O2的幂,后二式是OA OB OE OF OC OD OA OB'''点O对圆O3的幂,中间是圆O对圆O1的幂进行转化由此B’与B’’重合,事实上它们就是点B(圆O2与圆O3的非A的交点),由此两两的根轴共点圆幂定理是对于圆适用的定理,今使用圆幂定理对圆内接四边形判定方法的补充:圆内接四边形判定方法4.相交弦定理逆定理:如果四边形ABCD 的对角线AC ,BD 交于点P ,且满足 PA PC PB PD •=•,则四边形ABCD 有一外接圆5.切割线定理逆定理:如果凸四边形ABCD 一双对边AB 与DC 交于点P 且满足PA PC PB PD •=•,则四边形ABCD 有一外接圆这样我们就补充了两种判定方法例(射影定理):RTΔABC 中,BC 是斜边,AD 是斜边上的高则222(1)(2)(3)AD BD CDAB BD BCAC CD BC =•=•=•证明:(1)2'180''AD BAC BA C A B C A AD DA AD BD CD≅∠+∠=•==•如图,延长至A ',使A D =D A ',连A 'B,A 'C则ΔA BC ΔA 'BC ,因此因此,,,四点共圆由相交弦定理有:(2)(3)2(2)(3)⊥=•同理,现证(3)作RT ΔADB 的外接圆,则RT ΔADB 的外接圆圆心为E其中E 是AB 的中点则EA AC ,因此AC 是圆ABD 的切线由切割线定理有CA CD CB例2:垂心ΔABC 中,三边所在的高的所在的直线交于一点证明:9018018018090⊥∠=∠=∠=-∠-∠=-∠-∠=-∠-∠=∠∠=设与CF交于H ,连AH 延长交BC 于D即证AD BC因为,因此,,E,C四点共圆同理A ,F,H,E四点共圆所以因此,,,四点共圆由此BE BEC BFC B F BHD AHF BHF AEF EHC B A CH D E C HDC3.Miquel 定理之前1,2的重要定理都是讨论关于点共圆的情况。
那么反过来,圆共点的情况从最简单的开始了解,在本文之后讨论圆共点问题中,甚至其他类型的问题,Miquel定理都给予莫大的便利,我们将要不止一次地用到它。
先看一个事实:如图,ΔABC中,AD,BE,CF分别是三边上的高,则分别以AEF,BDF,CDE作圆这三个圆共于一点,而且可以通过观察,这个点就是垂心刚好是AD,BE,CF的交点在介绍Miquel定理之后,我们将会给这题与垂心一个阐释Miquel定理:ΔABC中,X,Y,Z分别是直线AB,BC,AC上的点,则,,共于一点AXZ BXY CYZ O这样的点O称为X,Y,Z对于ΔABC的Miquel点180180180∠=-∠==-∠=∠∠+∠=如图,设与交于,连OX ,,即问题转化为证,,,四点共圆因为,,O,Z与B,X,Y,O 为两组四点圆则即因此,,,四点共圆AXZ BXY O OY OZO Z Y C A X AZO AXO BXO BYO OYC OZC OYC O Z Y C事实上这个证明隐含着对一般证圆共点的方法在发掘Miquel 定理的证明方法时可以得到一种更一般的证题方法注意这个证明只在X ,Y ,Z 在AB ,BC ,AC 边上时可以当在直线AB ,BC ,AC 上时需要改一下,这里略去了。
现在回到之前关于垂心的问题。
为什么D ,E ,F 关于ΔABC 的Miquel 点就是ΔABC 的垂心证明:如图,,,是Δ的三条高,垂心为H ,则,,,,,,,,,共三组四点共圆由此可见,,共于一点而H 就是垂心AD BE CF ABC A E F HB D F HC D E HAEF BDF CDE H有了Miquel 定理,我们可以对垂心有一个新的看法90∠=∠=是与的根轴对,同理而因此BDF 与CDE的连心线平行于BC (中位线定理)因此HD 垂直于BC HE ,HF同理因此垂心可以被认为是这三圆的根轴的交点(根轴性质3)HD BDF CDE HE HF ADB ADC用同样的方法可以对内心,外心以同样的解释:由此可见,共点圆与三角形的特殊点有很大的关系,上述3种只是最简单的最容易发现的提起外心就会联想到外接圆,这里不得不提一个常用定理:正弦定理 正弦定理:ΔABC 中,外接圆半径R ,则2sin sinsin BC AC ABR A B C=== 证明:作直径AOD ,连BD902sin sin ∠=∠=∠===∠则,因此在Δ中ABD ADB ACB Rt ABD AB ABAD RADB C其余同理想到三角函数里面的函数名,那么自然会想到余弦定理 余弦定理:2222222222cos 2cos 2cos =+-=+-=+-Δ中AB=c,AC=b,BC=a ABC a b c bc A b a c ac B c b a ab C证明:222222222222222222cos cos cos (cos )(cos )cos 2cos cos 2cos =•==-=--=---=---+=-=+-作边上的高AD 因此即c 即其余同理BC CD AC C b C BD BC CD a b C AB BD AC CD a b C b b C c a b C ab C b b C c a b ab C 接着便就是著名的费马点,它也与共点圆有关系费马点,即ΔABC 内一点,使其到三顶点距离之和最小的点当ΔABC 任一内角都<120时,费马点存在于内部,当Δ有一内角>=120时费马点与此角顶点重合设ΔABC中任一内角均<120,则费马点F可以通过如下方法作出来:分别以AB,AC,BC向外作正Δ,连接对着的顶点,则得事实上,点F是这3个正Δ的外接圆所共的点而FA+FB+FC其实就是顶点到对着的正Δ顶点的连线的长而且之后将会有一种方法计算FA+FB+FC的长度而这将会在之后进行讨论4.Simson定理Simson定理是常用而且著名的定理,多用于证明点共线,其逆定理也成立Simson 定理:P 是ΔABC 外接圆上一点,过点P 作PD 垂直BC ,PE 垂直于AB ,同理PF则D ,E ,F 是共线的三点直线DEF 称为点P 关于ΔABC 的Simson 线引理(完全四边形的Miquel 定理):四条直线两两交于A ,B ,C ,D ,E ,F 六点 则ABF BCE CDF DAE ,,,共点先从Δ对,,三点运用密克定理,则,,共点Δ对,,三点运用密克定理,则,,共点因此,,,共点ABF E C D BCE CDF DAE DAE B C F ABF BCE CDF ABF BCE CDF DAE其中所共的点叫做完全四边形的Miquel 点 证明:这里运用Miquel 定理作为证明Miquel Miquel ∠=∠设垂直,垂直,延长交于则问题等价于证明垂直连四边形是完全四边形所以由完全四边形的定理(引理),,,共点注意到所以,,D,E四点共圆所以与交于点和B因此完全四边形FACDBE的点非P 则B 而A ,E,B是同一直线上三点因此A ,E,F,B不可能共圆因此P 是完全四PD BC PE AB DE CA F PF AC PFAFCDBE ABC BDE AEF CDF PEB PDB P B ABC BDE P Miquel ∠边形FACDBE的点由此P ,E,F,A四点共圆则PFA=90今逆定理证略从这个证明我们看到Miquel 定理的威力不仅在于圆共点,而且对于共点圆也同样适用在有了Simson 定理之后,我们可以运用Simson 定理来给予完全四边形的Miquel定理一个新的证明(即前面的引理)证明:设与非的一个交点为M ,过M 作MP 垂直BE ,MQ垂直EC ,其余同理。