2015省实南山班模拟卷含答案
四川省绵阳南山实验高中2015届高三物理上学期一诊模拟考试试题(含解析)新人教版

四川省绵阳南山实验高中2015届高三上学期一诊模拟考试物理试题〔解析版〕【试卷综析】本试卷是高三模拟试卷,包含了高中物理必修一、必修二、内容。
主要包含了匀变速运动规律、受力分析、牛顿第二定律、动能定理、机械能守恒等,知识覆盖面广,知识点全面以根底知识和根本技能为载体,以能力测试为主导,是份非常好的试卷。
选择题(在每一小题的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
全部选对得6分,选不全的得3分,有错选的得0分)【题文】1、在物理学开展史上,伽利略、牛顿等许许多多科学家为物理学的开展做出了巨大贡献。
以下选项中符合伽利略和牛顿的观点的是( )A.人在沿直线加速前进的车厢内,竖直向上跳起后,将落在起跳点的后方B.两匹马拉车比一匹马拉车跑得快,这说明:物体受力越大如此速度就越大C.两物体从同一高度做自由落体运动,较轻的物体下落较慢D.一个运动的物体,如果不再受力了,它总会逐渐停下,这说明:静止状态才是物体不受力时的“自然状态〞【知识点】物理学史.P0【答案解析】A解析: A、人在沿直线加速前进的车厢内,竖直向上跳起后,人保持起跳时车子的速度,水平速度将车子的速度,所以将落在起跳点的后方.符合伽利略、牛顿的惯性理论.故A正确.B、力越大,物体运动的速度越大,不是伽利略、牛顿的观点.故B错误.C、伽利略、牛顿认为重物与轻物下落一样快,所以此选项不符合他们的观点.故C错误.D、此选项说明力是维持物体运动的原因,是亚里士多德的观点,不是伽利略、牛顿的观点.故D错误.应当选A【思路点拨】人在沿直线加速前进的车厢内,竖直向上跳起后,将落在起跳点的后方,符合伽利略、牛顿的惯性理论.两匹马拉车比一匹马拉车跑得快,这说明:物体受的力越大速度就越大,不符合伽利略、牛顿的观点.伽利略、牛顿认为重物与轻物下落一样快、力不是维持物体运动的原因.根据伽利略、牛顿的观点判断选项的正误.此题要对亚里士多德的观点和伽利略、牛顿的观点关于力和运动关系的观点有了解.可以根据牛顿的三大定律进展分析.【题文】2.“儿童蹦极〞中,拴在腰间左右两侧的是悬点等高、完全一样的两根橡皮绳。
四川省绵阳南山实验高中2015届高三一诊模拟考试试题数学理Word含答案

数学阶段性测试题一、选择题(本大题共10小题,每小题5分。
1. 集合 M 2,0,1,2, N x 2x1 1 ,则 N M=()A. {-2,1,2 }B. {0,2}C. {-2 , 2}D. [-2 , 2]2. 已知 a=(2,1), b x,3 ,且 a//b ,则 x 的值为()A.2B.1C.3D.63. 在各项均为正数的等比数列 a n 中,3a 1,-a 3,2a 2成等差数列,则■a11—岂()2a 8 a10A. 1或3B.3C.1 或 27D.27 4.卜列 J 说法错误的是( ) A. 若p : xR,:x 2x 1 0,贝U p: x R, x 2 x 1 0;B.sin1 ” 2是“30: ”的充分不必要条件;C. 命题“若 a 0,则 ab 0”的否命题是:“若a 0,则ab 0D.若 p: x R,cosx 1,q : x R,x 2 x 10,则“ p q ”为假命题.5. 为了得到函数y cos(2x )的图象,只需将函数y sin 2x 的图象()3A.向左平移—个单位B •向右平移—个单位12 12 C.向左平移5个单位D•向右平移5个单位666. 设x R ,若函数f(x)为单调递增函数,且对任意实数x ,都有f f (x) e x e 1 ( e 是自然对数的底数),则f (ln 2)的值等于()A. 1 B . e 1 C.3 D . e 32x 3y 57.若实数x, y 满足约束条件2x y 5 0 ,则函数z | x y 1|的最小值是()x 0A.0B.4C.8 D.7328.已知函数f xsin x ,0x 1log2014x , x1若a,b,c 互不相等,且f a f b f c ,则a b c 的取值范围是(). A.(1,2014) B.(1,2015)C.[2,2015]D.(2,2015)二、填空题(本大题共5小题,每小题5分,共25分.) 11.幕函数y (m 2 3m 3)x m 过点 112.计算 log 3 6 log 3 2 42 3叫4点,且在A,B 两点处的切线互相平行,则$的取值范围为亠X 1三、解答题(解答应写出文字说明,证明过程或演算步骤共 75分)16.(本小题满分12分)数m 的取值范围.17.(本小题满分12分) 设公差不为0的等差数列a n 的首项为1,且32,35,3!4构成等比数列.9.已知定义为R 的函数f x 满足f 4,且函数f x 在区间2,上单调递增.如果x 12 x 2,且x 1X 2 4,则f 捲f X 2的值( A.恒小于0 B.恒大于 C.可能为0 D.可正可负10.设函数f x的导函数为fx ,对任意x R 都有fA. 3f(ln2) 2f (l n3)B. 3f (l n2) 2f(l n3)C. 3f (ln2)2f (l n3) D.3f (l n 2)与2f (l n3)的大小不确定2,4,贝U m =的结果为13已知菱形ABCD 的边长为2, 若 A E A F BC 3BE , DC DF .14.已知x,y R , x 22y_ 215.已知ABAD 120,点 E,F 分别在边 BC, DC 上,1,则的值为j 则決口的最大值为 X 2』2咅 x 2是函数f x 3 x 图象上的两个不同已知函数f x 2cos x -sin x 3玉sx 「(I )求f x 的值域和最小正周期;(U )若对任意°,「使得mfx2 0恒成立,求实(I)求数列a n的通项公式;(U)若数列b n满足P直…%1 A,n a i a2 a n 218. (本小题满分12分)已知函数f(x) .3 sin( x )( 0,2 2)的图像关于直线x-对称,且图像上相邻两个最高点的距离为.(I)求和的值;(II)若电)4 ,( 6 3),求COS( 2)的值.19. (本小题满分12分)已知二次函数f(x) Ax2 Bx(A 0), f(1) 3,其图象关于x 1对称,数列a n的前n项和为S n,点n,S n n N*均在y f (x)图象上.(I)求数列a n的通项公式,并求S n的最小值;1 11 3 1 (n)数列b n , b n - , b n的前n项和为T n ,求证:-一T n --.S n 3 4n 4 n 3 20. (本小题满分13分)N*,求b n的前n项和T n1 a 设函数f (x) x2ax ln x ( a R).(I)当a 1时,求函数f (x)的极值;(U)当a R时,讨论函数f(x)的单调性;(川)若对任意a (2,3)及任意x i , X2 1,2,恒有ma ln2 f(xjf(X2)成立, 求实数m的取值范围.21. (本小题满分14分)已知 f (x) In x mx(m R).(I)若曲线y f (x)过点P(1, 1),求曲线在P点处的切线方程;(U)求f (x)在区间1,e上的最大值;(川)若函数f (x)有两个不同的零点X1,X2,求证X1X2 e2.绵阳南山中学.南山中学实验学校绵阳市“一诊”模拟考试试题理科数学参考答案一、 C DDBA CADAB 二、 填空题 11.2 12. -1 13 . 2 14. 3 2 15. (-1,0 )8三、 解答题 16.解:(1)f(x) = 2sin x +"3 cos x + -3 — 2 3cos2 x + -3n r — n2X +~3 < 1. /.— 2 — 3< 2sin 2x+p — 3< 2— 3, T = 今=冗,即卩f(x)的值域为[—2 — , 3, 2— ,3],最小正周期为n .. n r n n 2n,, n\/3⑵当 x € 0,舌时,2x + -3 € -3, -3,故 sin 2x +§ € 电,1 ,此时 f(x) + 3= 2sin 2x +nn € [ 3,2].由 m[f(x) + 3] + 2= 0知,帀0, /• f(x)m 的取值范围是一^3^,— 117. 解:(I )设等差数列a n 的公差为d,(d 0),则还%a 52,即(1 4d )2 (1 d ))1 13d )解得 d=0 (舍去)或 d=2, a n 1+2(n-1)=2n-12n=sin 2X +~32ncos 2X +~3 + 1 = sin2 n 厂 2 n 2x +3 — 3cos 2x +~3=2sin 2x + 3 —"』3. I — 1w sin+ 3= — m 即 3< — m 2,即m+ 3< 0,2+ 2> 0, m解得-2.331.即实数a 2, a 5, a 14构成等比数列,.3分(II 由已知 b ,云b n a1-(n2n(当n=1时,牛1 ;2时,b n a n (1(1一)=丄12n'b n a n丄,(n N * )2n由(I ), a n 2n-1 b n2n 1 2n 2n1 ~22n 1两式相减得 2 24 2n 2n 11 2n 12n 2n 2n 2n.1218.解 由题可知, 二 f(x) = . 3 2 n T = 一| 3|sin 2(x- )= .. 3 sin(2x--n ), ©二 12 6 周期 w = 2nn T n n n_为对称轴f (_-_)= f ( ) = 0,且-_ wg _33 412227t 12 -丄所以,3=2, 6n (^=-— 6(II )f (》=彳.3 sin( a - ” = —,即 sin( a -n ) = 14 6 4 3 n n n n -J 3 cos(a + —) = sin a = Sin[( a-—) + 6] = sin( a - —) 2-2 + j n 2 n . n n n 15 < a < .I 0< a - —< ,COS (a-—)=6 3 6 2 6 4 ■■- 3+15 审 所以,cos(a+——)= n 1 COS (a-—) ?— 6 2 3 / .3n_ - --COS(a + ---- )= 2 4 1?2』?丄= 2 3n .3+、15 2, 8 19.解:(1) f (1)3,2AA 1,B 2,, f (x )x 22x..1分点 n, S h n 均在y=f(x) 图象上, S nn 2 2n ① ..2分S n 1(n1)22;n 1) (n 2[②①-②得S nS n 12n 1,即 a n =2n+1 (.4 分,又 a 1 s 1 a n =2n+1 (n N )⑵b n1n ( n 2)丄).7分1 T n 尹1 1)(14) 4(丄 n宀]1 =2[(1 )]丄)即证- n (n丄), -,所以右边成立 2 10分,1又T n 随n 的增大而增大,T n T 1 - 3 14n ,左边成立..11 分所以,原不等式成立 . ................ 20.解:(I)函数的定义域为(0,),当a .12分1时, f(x) x In x, f '(x) 1 1 —•令 f'(x) x x0,得x 1.,当 0 x 1 时,f '(x) 0 ;当x 1时, f'(x) f(x)在(0,1)单调递减,在(1,)单调递增, f (x)极小值 f(1) 无极大值; f'(x) (1 a)x a (1 a)x 2ax 1 [(1 a)x 1](x 1) x (1 a)(x1七(x 1)a 1 _____ x① a 1 时,(1 a )x 10,f (x )在(0,1)单减,(1,)单增;1②1 a 2时, ------------ a 1(川)由(U)知,当a (2,3)时,f(x)在[1,2]上单调递减,当x 1时,f (x)有a 3最大值,当 x 2 时,f (x)有最小值,|f(x ,) f (x 2)| f (1) f (2)ln2,2 2a 3 ma ln 2In 2 ,2 2而a 0经整理得m I—由2 a 3得11— 0, m 0.……13分 22a 4 2 2a21.解:(1)因为点P (1, -1 )在曲线上,所以f(1)=-1,得m=11-f /(x )— 1, f /(1)=0,故切线方程为y=-1.……3分 x1④当 m 1 即 m 1 时,x(1,e ),f/(x)f (x )在]1,e ]上的最大值f (x )max =I 1 mx/(x )- m=- 一①当 mO 时,x(1, e )x x1③当丄1即a 2时,f'(x) a 1(x 1)2 x0, f (x)在(0,)上是减函数;④当1 a 1 1 a 11, 即 a 2时,令 f'(x) x 10,得 0 x 丄 或x 1,令 f'(x)a 1 ................ 9分0,得x (1, e ),f /(x )>0, ②当1 e m ,即0 m1时 ef(X )max :=f(e)=1-me ;③当111 1e 时,即—一 1时,me m单减,1f (X )max =f (―)= ln m m 1x (1, e ), f /(x ) >0, f (x )单增,1 1x (1, e ),f (x )在(1,—)单增,在(-,e )0,f (x)单减,f (X )max = f(1)=-mf (x )单增,f (x )max =f(e)=1-me ;8分f (x 2) 0, In X r mx 0 ,1 , f (x )在(0,1)单增,在(1,单减,,)单增;a 1 a 1要证 x 1x 2 e 2,即证In x 1InX22 ,即证m j x 1 X 2)2,......... 10分 In x 1 In m x 1 x 2 X 2In 2,即证 X 1 In x 2 2即证X 1X 2X 1 X 2In x 1In x 2心1 X 2)x即证In 」X2X 1X21)…12分X 1 x 21X2x令亠=t,则tx1,即证In tt 1 (t )In tt1t 1,t 1,1 则 /(t )1 4 9(t1)290, 函数 (t)在 (1,)单增0, In x r In x 2m j x 1x 2) , In x r In x 2 m (X i X 2), t (t 1)2t (t 1)(t ) (1)=0, 原不等式成立.14分r1 — me,—fiwn — 1, 1(-<m<I)伽 A 1).....(3)不妨设x 1X20,: f(xjIn x 2 m>。
山东省实验中学2015级第二次模拟考试高三数学(理)试题(精编含解析)

山东省实验中学2015级第二次模拟考试高三数学试题(理科)2018.6第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,则下列结论中正确的是()A. B. C. D.【答案】C【解析】分析:由题意首先求得集合B,然后逐一考查所给选项是否正确即可.详解:求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项.2. 已知是实数,是纯虚数,则等于()A. B. C. D.【答案】D【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由题意可知:,为纯虚数,则:,据此可知.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.3. 下列关于命题的说法正确的是()A. 命题“若,则”的否命题是“若,则”B. 命题“若,则互为相反数”的逆命题是真命题C. 命题“”的否定是“”D. 命题“若,则”的逆否命题是真命题【答案】B【解析】分析:由题意逐一分析所给的命题的真假即可.详解:逐一分析所给命题的真假:A. 命题“若,则”的否命题是“若,则”,题中说法错误;B. 命题“若,则互为相反数”是真命题,则其逆命题是真命题,题中说法正确;C. 命题“”的否定是“”,题中说法错误;D. 命题“若,则”是假命题,则其逆否命题是假命题,题中说法错误;本题选择B选项.点睛:本题主要考查四种命题的关系,命题真假的判断等知识,意在考查学生的转化能力和计算求解能力.4. 据统计,连续熬夜小时诱发心脏病的概率为,连续熬夜小时诱发心脏病的概率为 . 现有一人已连续熬夜小时未诱发心脏病,则他还能继续连续熬夜小时不诱发心脏病的概率为()A. B. C. D.【答案】A【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果.详解:设事件A为48h发病,事件B为72h发病,由题意可知:,则,由条件概率公式可得:.本题选择A选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.5. 已知平面向量,满足,则()A. B. C. D.【答案】B【解析】分析:由题意首先求得,然后求解向量的模即可.详解:由题意可得:,且:,即,,,由平面向量模的计算公式可得:.本题选择B选项.点睛:本题主要考查平面向量数量积的运算法则,平面向量模的求解等知识,意在考查学生的转化能力和计算求解能力.6. 某几何体的三视图如右图所示,则该几何体的体积为()A. B. C. D.【答案】C【解析】试题分析:由三视图可知,该几何体为如下图所示的多面体,它是由三棱柱截去三棱锥后所剩的几何体,所以其体积,故选D.考点:三视图.7. 下图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“中国剩余定理”.已知正整数被除余,被除余,被除余,求的最小值.执行该程序框图,则输出的()A. B. C. D.【答案】C【解析】分析:根据正整数n被3除余2,被8除余5,被7除余4,求出n的最小值.详解:正整数n被3除余2,得n=3k+2,k∈N;被8除余5,得n=8l+5,l∈N;被7除余4,得n=7m+4,m∈N;求得n的最小值是53.故选:C点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 将的图像向左平移个单位,再向下平移个单位,得到函数的图像,则下列关于函数的说法错误的是()A.函数的最小正周期是B. 函数的一条对称轴是C. 函数的一个零点是D. 函数在区间上单调递减【答案】D【解析】分析:首先求得函数的解析式,然后考查函数的性质即可.详解:由题意可知:,图像向左平移个单位,再向下平移个单位的函数解析式为:.则函数的最小正周期为,A选项说法正确;当时,,函数的一条对称轴是,B选项说法正确;当时,,函数的一个零点是,C选项说法正确;若,则,函数在区间上不单调,D选项说法错误;本题选择D选项.点睛:本题主要考查辅助角公式的应用,三角函数的平移变换,三角函数的性质等知识,意在考查学生的转化能力和计算求解能力.9. 函数的图象可能是()A. B.C. D.【答案】A【解析】分析:由题意结合函数的性质排除错误的函数图象即可求得最终结果.详解:当时,,则选项BC错误;函数的解析式为:可由函数向右平移两个单位得到,而,据此可知是函数的极值点,则是函数的极值点,据此可排除D选项.本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10. 已知函数满足,且是偶函数,当时,,若在区间内,函数有 4 个零点,则实数的取值范围是()A. B. C. D.【答案】D【解析】分析:由题意确定函数的性质,然后将原问题转化为两个函数有4个交点的问题求解实数a的取值范围即可.详解:由题意可知函数是周期为的偶函数,结合当时,,绘制函数图象如图所示,函数有4个零点,则函数与函数的图象在区间内有4个交点,结合函数图象可得:当时:,求解对数不等式可得:,即实数的取值范围是.本题选择D选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.11. 已知双曲线的左右焦点分别为,为双曲线的离心率,是双曲线右支上的点,的内切圆的圆心为,过作直线的垂线,垂足为,则()A. B. C. D.【答案】A【解析】试题分析:根据题意,利用切线长定理,再利用双曲线的定义,把,转化为,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形中,利用中位线定理得出OB,从而解决问题.解:由题意知:(-c,0)、(c,0),内切圆与x轴的切点是点A,作图∵,及圆的切线长定理知,,设内切圆的圆心横坐标为x,则|(x+c)-(x-c)|=2a,∴x=a,在三角形中,由题意得,它是一个等腰三角形,PC=PF2,∴在三角形中,有:OB==(-PC)=(-)=×2a=a.故选A.考点:双曲线的定义、切线长定理点评:本题考查双曲线的定义、切线长定理.解答的关键是充分利用三角形内心的性质.属于基础题。
山东省实验中学2015届高三下学期6月模拟考试数学(理)试题 Word版含答案

山东省实验中学2012级高三第二次模拟考试理学试题(理) 2015,6说明:试题分为第I 卷(选择题)和第I 卷(非选择题)两部分.试题答案请用2B 铅笔或0,5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效,考试时间120分钟.一、选择题(本题包括10小题,每小题5分,共50分,每小题只有一个选项符合题意)l-已知全集U=R ,集合 {}{}3|021,|log 0xA xB x x =<<=>,则A. {}|1x x > B . {}|0x x > C. {}|01x x << D. {}|0x x < 2.若 ,R αβ∈, 则90αβ+=是sin sin 1αβ+> 的A .充分而不必要条件 B.必要而不充分条件C .充耍条件D .既不充分也不必要条件 3.复数z 满足 (12)7i z i -=+,则复数 z ==( )A. 13i +B.13i -C.3i +D. 3i -4.执行下图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值的个数是A. 1B. 2C. 3D.45.下列四个命题:①样本方差反映的是所有样本数据与样本平均值的偏离程度; ②某只股票经历了l0个跌停(每次跌停,即下跌l0%)后需再经 过如个涨停(每次涨停,印上涨10%)就酉以回到原来的净值; ③某校高三一级部和二级部的人数分别是m 、n ,本次期末考试 两级部;学平均分分别是a 、b ,则这两个级部的数学平均分为na mb m n+ ④某中学采伯系统抽样方法,从该校高一年级全体800名学生中 抽50名学生做牙齿健康检查,现将800名学生从001到800进行编号,已知从497--512这16个数中取得的学生编号是503,则初始在第1小组00l ~016中随机抽到的学生编号是007. 其中真命题的个数是A.0个B.1个C.2个D.3个6.已知函数 ()sin()f x A x ωϕ=+ (其中A>0, 2πϕ<)的部分图象 如图所示,为了得到g(x)=sin 2x 的图象,则只需将f (x)的图象 A.向右平移6π个长度单位 B.向右平移 12π个长度单位C .向左平移6π个长度单位 D .向左平移 12π个长度单位7.已知数列 {}{}n n a b 满足 1111,2,n n a b a a n N *+==-==∈,则数列 {}n a b 的前10项和为 A.()101413- B. ()104413- C. ()91413- D. ()94413- 8.函数 2()(2)x f x x x e =-的图像大致是9.已知A 、B 是圆 22:1O x y +=上的两个点,P 是AB 线段上的动点,当∆AOB 的面积最大时,则 2AO AP AP ⋅-的最大值是 A. -1 B.0 C.18 D. 1210.已知a>0,b>0,c>0,且 2221,4ab a b c =++=,则ab+bc+ac 的最大值为A. 1+C. 3D. 4第Ⅱ卷(非选择题,共100分)二.填空题(本题包括5小题,每小题5分,共25分)11.已知 ()24f x x x =++-的最小值是n ,则二颈式 1()nx x-展开式中2x 项的系数为__________.12.若双曲线 22:2(0)C x y m m -=>与抛物线 216y x =的准线交于A ,B 两点,且AB =则m 的值是__________.13.若实数x,y 满足条件 20,0,3,x y x y x +-≥⎧⎪-≤⎨⎪≤⎩, 则z=3x-4y 的最大值是__________.14.一个球的内接圆锥的最大体积与这个球的体积之比为__________.15.用[x]表示不大于实数x 的最大整数, 方程 []2lg lg 20x x --=的实根个数是__________.三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤). 16.(本小题满分12分)已知函数 ()sin (0)f x x ωω=->在区间 0,3π⎡⎤⎢⎥⎣⎦上单调递减,在区间 2,33ππ⎡⎤⎢⎥⎣⎦上单调递增;如图,四边形OACB 中,a ,b ,c 为△ABC 的内角以B, C 的对边,且 满足 sin sin tan 4cos cos 3B c A BC ω+=-- .(I)证明:b+c =2a :(Ⅱ)若b=c ,设 AOB θ∠=.(0),22OB OB θπ<<==,求四边形OACB 面积的最大值.17. (本小题满分12分)如图, 在四棱锥P –ABCD 中,PA ⊥平面ABCD , ∠DAB 为直角, AB//CD ,AD=CD=2AB=2,E ,F 分别为PC ,CD 的中点. ( I)证明:AB ⊥平面BEF :(Ⅱ)设PA =h ,若二面角E-BD-C 大于45 ,求h 的取值范围.18.(本小题满分12分)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为l ,2,3,4,5:4个白球编号分别为1,2,3,4,从袋中任意取出3个球. (I)求取出的3个球编号都不相同的概率;(II)记X 为取出的3个球中编号的最大值,求X 的分布列与数学期望, 19. (本小题满分12分)数列{}n a 的前n 项和记为 11,2,n n n S a a S n +==+,等差数列 {}n b 的各项为正,其前n 项和为 n T ,且 39T =,又 112233,,a b a b a b +++成等比数列. (I)求 {}n a ,{}n b 的通项公式} ( II)求证:当n ≥2时, 2221211145nb b b ++⋅⋅⋅+< 20. (本小题满分13分)如图,椭圆 22122:1(0)x y C a b a b +=>>的离心率为x 轴被曲线 22:C y x b =-截得的线段长等于1C 的短轴长, 2C 与y 轴的交点为M ,过坐标原点O 的直线 l 与2C 相交于点A 、B ,直线MA,MB 分别与 1C 相交于点D 、E.(I)求1C 、 2C 的方程; (Ⅱ)求证:MA ⊥MB :(Ⅲ)记∆MAB , ∆MDE 的面积分别为 12,S S ,若 12S S λ=,求 λ的最小值. 21.(本小题满分l4分)已知函数 1()(1)ln ,()f x ax a x a R x=+-+∈. (I)当a=0时,求 ()f x 的极值; (Ⅱ)当a<0时,求 ()f x 的单调区间;(Ⅲ)方程 ()0f x =的根的个数能否达到3,若能请求出此时a 的范围,若不能,请说明理由,第二次模拟试题答案(理科数学)一、 选择: DDBDC AABCA二、 填空 11. 15;12. 20;13. -1;14. 8:27;15. 3 三、解答题16解:(Ⅰ)由题意知:243ππω=,解得:32ω=, ……………………2分CB CB B A A cos cos 2sin sin sin sin tan --+==∴ A C A B A A C A B sin cos -sin cos -sin 2cos sin cos sin =+∴ A A C A C A B A B sin 2sin cos cos sin sin cos cos sin =+++∴ A C A B A sin 2)(sin )(sin =+++∴……………………………………4分a cb A B C 2sin 2sin sin =+⇒∴=+∴…………………………………………………6分(Ⅱ)因为2b c a b c +==,,所以a b c ==,所以ABC △为等边三角形 …………8分21sin 2OACB OAB ABC S S S OA OB AB θ∆∆=+=⋅+ ……………9分P435cos 3-sin +=θθ2sin (-)3πθ=+, ……………………10分 (0)θπ∈,,2--333πππθ∴∈(,),当且仅当-32ππθ=,即56πθ=时取最大值,OACB S的最大值为24+………………12分 17.解:(Ⅰ)证:由已知DF ∥AB 且∠DAB 为直角,故ABFD 是矩形,从而AB ⊥BF . ……(1分)又PA ⊥底面ABCD , ∴平面PAD ⊥平面ABCD , ……(2分) ∵AB ⊥AD ,故AB ⊥平面PAD ,∴AB ⊥PD , ……(3分) 在ΔPCD 内,E 、F 分别是PC 、CD 的中点,EF //PD ,……(4分) ∴ AB ⊥EF . ……(5分)由此得⊥AB 平面BEF .……(6分) (Ⅱ)以A 为原点,以AB ,AD ,AP 为x 轴,y 轴,z 轴正向建立空间直角坐标系,则)21,0(),0,2,1(hBE BD =-=……(8分)设平面CDB 的法向量为)1,0,0(1=n ,平面EDB 的法向量为),,(2z y x n =,则 ⎪⎩⎪⎨⎧=⋅=⋅0022BE n n⎪⎩⎪⎨⎧=+=+-0202hzy y x 可取⎪⎭⎫ ⎝⎛-=h n 2,1,22 ……(10分) 设二面角E -BD -C 的大小为θ,则|||||,cos |cos 212121n n n n n n ⋅=><=θ224522<+h h , 化简得542>h ,所以552>h …(12分)18解:(I )设“取出的3个球编号都不相同”为事件A ,则“取出的3个球中恰有两个球编号相同”为事件A ,则31)(391714==C C C A P 所以32)(1)(=-=P A P ………………(4分)(II ) X 的取值为2,3,4,5211)2(3912222212=+==C C C C C X P ,214)3(3914222412=+==C C C C C X P 73)3(3916222612=+==C C C C C X P ,31)5(3928===C C X P…………………(8分)的数学期望213574213212=⨯+⨯+⨯+⨯=EX ………..12分 19解:(Ⅰ)由n S a n n +=+1,得)1(1-+=-n S a n n )2(≥n ,两式相减得1111+=+-=--+n n n n n a S S a a ,所以121+=+n n a a ---------------------------------2分所以)1(211+=++n n a a )2(≥n -------------------------------------3分 又,32=a 所以n n n a a 2)1(2122=+=+-,从而12-=n n a )2(≥n ----------------5分而21=a ,不符合上式,所以⎩⎨⎧≥-==2,121,2n n a n n -------------------------------------6分因为}{n b 为等差数列,且前三项的和93=T ,所以32=b ,--------7分可设db d b +=-=3,331,由于7,3,2321===a a a ,于是d b a b a d b a -=+=+-=+10,6,5332211,因为332211,,b a b a b a +++成等比数列, 所以36)10)(5(=+-d d ,2=d 或7-=d (舍)所以12)1(21)1(1-=-+=-+=n n d n b b n -----------------------------------9分 (Ⅱ)因为⎪⎭⎫⎝⎛--=-=--<-=k k k k k k b k11141)22(211)12(1)12(11222所以,当2≥n 时22221)12(13111111-++=+++n b b b n⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+<n n 1113121211411 ⎥⎦⎤⎢⎣⎡-+=n 1141145411=+< -----------------------------------------------------------12分20.解(1)222c a b a == (1分) 又2b =,得1b =22221:1,:12x C y x C y ∴=-+= (3分)(2)设直线1122:,(,),(,)AB y kx A x y B x y =则22101y kxx kx y x =⎧⇒--=⎨=-⎩ (4分) 211221212(,1)(,1)(1)()1MA MB x y x y k x x k x x ⋅=+⋅+=++++=0M A M B ∴⊥ (6分) (3)设直线1212:1;:1,1MA y k x MB y k x k k =-=-=-1121122110,(,1)111x k y k x x A k k y y k y x ==-⎧⎧=⎧⎪∴-⎨⎨⎨=-=-=-⎪⎩⎩⎩解得或,同理可得222(,1)B k k -11212S MA MB k == (8分) 1212111222221112141120421,(,)11212211212k x y k x k x k k D x y k k k y y k ⎧==-⎧⎪+=⎧-⎪⎪∴⎨⎨⎨=-++-+=⎩⎪⎪=⎩⎪+⎩解得或 同理可得2222222421(,)1212k k E k k -++212S MD ME ∴== (11分)2122211212152()(12)(12)9161616k S k k k S λ++++===≥所以λ的最小值为169,此时k =1或-1. (13分)21解:(Ⅰ))(x f 其定义域为),0(+∞. ……………1分当0=a 时,x x x f 1ln )(+= ,22111)(xx x x x f -=-='. 令0)(='x f ,解得1=x ,当10<<x 时,0)(<'x f ;当1>x 时,0)(>'x f .所以)(x f 的单调递减区间是)1,0(,单调递增区间是),1(+∞;所以1=x 时, )(x f 有极小值为1)1(=f ,无极大值 ……………3分(Ⅱ) 222211(1)1(1)(1)()(0)a ax a x ax x f x a x x x x x ----+-'=--==> ………4分令0)(='x f ,得1=x 或ax 1-= 当01<<-a 时,a11-<,令0)(<'x f ,得10<<x 或a x 1->,令0)(>'x f ,得ax 11-<<;当1-=a 时,0)1()(22≤--='x x x f . 当1-<a 时,110<-<a ,令0)(<'x f ,得ax 10-<<或1>x , 令0)(>'x f ,得11<<-x a;综上所述:当01<<-a 时,)(x f 的单调递减区间是)1,0(,),1(+∞-a, 单调递增区间是)1,1(a-;当1-=a 时,)(x f 的单调递减区间是),0(+∞;当1-<a 时,)(x f 的单调递减区间是)1,0(a-,),1(+∞,单调递增区间是)1,1(a - (10)分(Ⅲ)0≥a 时)0()1)(1()(2>-+='x x x ax x f)0(0)(>='∴x x f 仅有1解,方程0)(=x f 至多有两个不同的解.(注:也可用01)1()(min >+==a f x f 说明.)由(Ⅱ)知01-<<a 时,极小值 01)1(>+=a f , 方程0)(=x f 至多在区间),1(+∞-a 上有1个解.-1a =时)(x f 单调, 方程0)(=x f 至多有1个解.;1-<a 时, 01)1()1(<+=<-a f a f ,方程0)(=x f 仅在区间)1,0(a -内有1个解;故方程0)(=x f 的根的个数不能达到3. …………………14分。
四川省绵阳南山实验高中2015届高三数学一诊模拟考试题_理

四川省绵阳南山实验高中2015届高三一诊模拟考试数学(文、理)试题第I 卷(共50分)一、选择题(本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.集合{}2,0,1,2M -=,{}211N x x =->,则N M ⋂=( )A.{-2,1,2}B.{0,2}C.{-2,2}D.[-2,2]2.已知a =(2,1), (),3b x =,且 b a//,则x 的值为( )A.2B.1C.3D.6 3.在各项均为正数的等比数列{}n a 中,13213,,22a a a 成等差数列,则1113810a aa a +=+( ) A.1-或3B.3C.1或27D.274.下列说法错误的是 ( )A .若2:,10p x R x x ∃∈-+=,则 2:,10p x R x x ⌝∀∈-+≠;B .“1sin 2θ=”是“30θ=”的充分不必要条件;C .命题“若0a =,则0ab =”的否命题是:“若0a ≠,则0ab ≠”;D .若1cos ,:=∈∃x R x p ,01,:2>+-∈∀x x R x q ,则“q p ⌝∧”为假命题.8.已知函数⎩⎨⎧>≤≤=1,log 10,sin )(2014x x x x x f π若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是( ).A.(1,2014)B.(1,2015)C.[2,2015]D.(2,2015)9.已知定义为R 的函数()f x 满足()()4f x f x -=-+,且函数()f x 在区间()2,+∞上单调递增.如果122x x <<,且124x x +<,则()()12f x f x +的值( )A. 恒小于0B.恒大于0C .可能为0D .可正可负10.设函数()f x 的导函数为()'fx ,对任意x R ∈都有()()'f x f x >成立,则( )A. 3(ln 2)2(ln3)f f> B. 3(ln 2)2(ln3)f f <C. 3(ln 2)2(ln3)f f =D. 3(ln 2)f 与2(ln 3)f 的大小不确定第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.)11.幂函数2(33)my m m x =-+错误!未找到引用源。
山东省实验中学2015级高三第二次模拟考试__数学试题(文)及答案

山东省实验中学2015级高三第二次模拟考试数学试题(文)2015.6说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷 (共50分)1.复数z 满足i z i +=-7)21(,则复数=z (A)i 31+(B)i 31-(C) i +3(D) i -32.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则 (A){}1x x >(B){}0x x >(C){}01x x << (D){}0x x <3.命题“存在R x ∈,使a ax x 42-+≤0为假命题”是命题“016≤≤-a ”的(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 ( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3x y -+±=(C)22(2)(2)4x y -+±= (D) 22(2)(4x y -+±= 5.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为 (A)41 (B) 45 (C) 85 (D)836.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) (A)①② (B)②③ (C)③④ (D)①④7.函数f (x )=(x 2-2x )e x 的图像大致是(A) (B) (C) (D)8.已知数列错误!未找到引用源。
山东省实验中学2015届高三6月模拟考试数学(文)试卷

山东省实验中学2012级高三第二次模拟考试数学试题(文)2015.6 第Ⅰ卷 (共50分)1.复数z 满足i z i +=-7)21(,则复数=z (A)i 31+(B)i 31-(C) i +3(D) i -32.已知全集U R =,集合{}{}()3021,log 0,x U A x B x x A C B =<<=>⋂=则 (A){}1x x >(B){}0x x >(C){}01x x << (D){}0x x <3.命题“存在R x ∈,使a ax x 42-+≤0为假命题”是命题“016≤≤-a ”的(A)充要条件 (B)必要不充分条件 (C)充分不必要条件(D)既不充分也不必要条件4.若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为 ( )(A) 22(2)(2)3x y -+±= (B) 22(2)(3x y -+±=(C)22(2)(2)4x y -+±= (D) 22(2)(4x y -+±= 5.在△ABC 中,角C B A ,,的对边分别为,,a b c ,若22241c b a +=,则cBa cos 的值为 (A)41 (B) 45 (C) 85 (D)836.已知βα,是两个不同的平面,n m ,是两条不同的直线,给出下列命题: ①若βαβα⊥⊂⊥,则m m ,; ②若βαββαα//,////,,则,n m n m ⊂⊂;③如果ααα与是异面直线,那么、n n m n m ,,⊄⊂相交; ④若.////,//,βαβαβαn n n n m n m 且,则,且⊄⊄=⋂ 其中正确的命题是 ( ) (A)①②(B)②③(C)③④(D)①④7.函数f (x )=(x 2-2x )e x 的图像大致是(A) (B) (C) (D)8.已知数列{}{},n n a b 满足*11111,2,n n n nb a b a a n N b ++==-==∈,则数列{}n a b 的前10项和为 (A)()101413- (B)()104413- (C)()91413- (D)()94413-9.过椭圆)0(12222>>=+b a b y a x 的左顶点A 且斜率为k 的直线交椭圆于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若0<k <31, 则椭圆的离心率的取值范围是 (A)⎪⎭⎫ ⎝⎛31,0 (B)⎪⎭⎫ ⎝⎛1,31 (C)⎪⎭⎫ ⎝⎛32,0(D)⎪⎭⎫ ⎝⎛1,3210. 定义在实数集R 上的函数)(x f ,对定义域内任意x 满足0)3()2(=--+x f x f ,且在区间]4,1(-上xx x f 2)(2-=,则函数)(x f 在区间]2015,0(上的零点个数为 (A) 403 (B)806 (C) 1209 (D)1208第Ⅱ卷(非选择题,共100分)二.填空题(本题包括5小题,每小题5分,共25分) 11.某校400名学生的体重(单位:kg )进行统计,得到如图所示的频率分布直方图,则学生体重在60kg 以上的人数为 .12.阅读如图所示程序框图,为使输出的数据为31,则判断框中应填的是13.已知()f x 是定义域为R 的偶函数,当0x ≥时,2()4f x x x =-.那么不等式(2)5f x +<的解集是____________ 14.实数,x y 满足⎩⎨⎧≤-≥+023y x y x ,若(2)y k x ≥+恒成立,则实数k 的最大值是 .15.定义空间两个向量的一种运算sin ,⊗=⋅<>a b a b a b ,则关于空间向量上述运算的以下结论中,①⊗=⊗a b b a ,②()()λλ⊗=⊗a b a b ,③()()()+⊗=⊗+⊗a b c a c b c , ④若1122(,),(,)x y x y ==a b ,则1221x y x y ⊗=-a b . 恒成立的是 (写上所有正确的序号).三.解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤).16.(本小题满分12分)函数)20,0,0,R )(sin()(πϕωϕω<<>>∈+=A x x A x f 的部分图象如图所示:(Ⅰ)求f (x )的解析式;(Ⅱ)设2)12()(⎥⎦⎤⎢⎣⎡-=πx f x g ,求函数)(x g 在⎥⎦⎤⎢⎣⎡-∈3,6ππx 上的最大值,并确定此时x 的值.17.(本小题满分12分)在一次射击考试中,编号分别为4321,,,A A A A 的四名男生的成绩依次为6,8,8,9环,编号分别为321,,B B B 的三名女生的成绩依次为7,6,10环,从这七名学生中随机选出二人.(Ⅰ)用学生的编号列出所有的可能结果; (Ⅱ)求这2人射击的环数之和小于15的概率.18.(本小题满分12分)如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =45°,PD ⊥平面ABCD ,PD =AD =1,点E 为AB 上一点,且k ABAE=,点F 为PD 中点. (Ⅰ)若21=k ,求证:直线AF //平面PEC ; (Ⅱ)是否存在一个常数k ,使得平面PED ⊥平面P AB . 若存在,求出k 的值;若不存在,说明理由.19.(本小题满分12分)已知函数,157)(++=x x x f 数列{}n a 满足: .002211≠=+-++n n n n n a a a a a 且数列{}n b 中,)0(1f b =且).1(-=n n a f b(Ⅰ)求证:数列⎭⎬⎫⎩⎨⎧n a 1是等差数列; (Ⅱ)求数列{}n b 的前n 项和n T .20.(本小题满分13分)已知函数x axxx f ln 1)(+-=. (Ⅰ)当1=a 时,求函数)(x f 的最小值;(Ⅱ)若函数)(x f 在),1[+∞上为增函数,求实数a 的取值范围;(Ⅲ)试比较)N (1*1∈⎪⎭⎫⎝⎛++n n n n 与e (e 为自然对数的底数)的大小.21(本小题满分14分)已知椭圆)0(1:22221>>=+b a by a x C 的一个顶点为)1,0(B ,过焦点且垂直于长轴的弦长为2,直线l 交椭圆1C 于N M ,两点.(Ⅰ) 求椭圆1C 的方程;(Ⅱ)若BMN ∆的重心恰好为椭圆的右焦点F ,求直线l 的方程;(Ⅲ)直线l 与椭圆)1R,(:22222>∈=+λλλby a x C 交于Q P ,两点(如图),求证||||NQ PM =.山东省实验中学2012级高三第二次模拟考试数学试题(文)参考答案选择题: 1-5 BDCDC 6-10DBADC 填空题:11.100 12.5<n 13.(-7,3)14.3215. ①④ 16.解:(1)由图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.……………………………3分又f ⎝⎛⎭⎫-π6=2sin ⎣⎡⎦⎤32×⎝⎛⎭⎫-π6+φ=2sin ⎝⎛⎭⎫-π4+φ=0,∴sin ⎝⎛⎭⎫φ-π4=0, ∵0<φ<π2,-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,………………………………………5分∴f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫32x +π4.……………………………6分 (2)由(1)可得f ⎝⎛⎭⎫x -π12=2sin ⎣⎡⎦⎤32⎝⎛⎭⎫x -π12+π4 =2sin ⎝⎛⎭⎫32x +π8,2)12()(⎥⎦⎤⎢⎣⎡-=πx f x g =4×1-cos ⎝⎛⎭⎫3x +π42 =2-2cos ⎝⎛⎭⎫3x +π4,…………………………9分 ∵x ∈⎣⎡⎦⎤-π6,π3,∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,g (x )max =4.……………12分17.(1){}{}{}{}{}{}{}{}{}{}{}3222124232312111413121,,,,,,,,,,,,,,,,,,,,,B A B A B A A A A A B A B A B A A A A A A A {}{}{}{}{}{}{}{}{}{}32312134241433231343,,,,,,,,,,,,,,,,,,,B B B B B B B A B A B A B A B A B A A A …5分(2)以上21个结果对应的射击环数之和依次为14,14,15,13,12,16,16,17,15,14,18,17,15,14,18,16,15,19,13,17,16. ……………………………………………………………………8分 其中环数之和小于15的结果为{}{}{}{}{}{}{}21232221113121,,,,,,,,,,,,,B B B A B A B A B A A A A A 共7个 ……………………10分所以这2人射击的环数之和小于15的概率为31217= …………………………………12分18.(Ⅰ)证明:作FM ∥CD 交PC 于M . …………………2分 ∵点F 为PD 中点,∴CD FM 21=. ∵21=k ,∴FM AB AE ==21,…………4分 ∴AEMF 为平行四边形,∴AF ∥EM . ∵AF PEC EM PEC ⊄⊂平面,平面, ∴直线AF//平面PEC . ………………………………………6分 (Ⅱ)存在常数22=k ,使得平面PED ⊥P AB . ………………………………7分 ∵k ABAE=,1AB =,22=k,∴AE =. ………………………8分 又∵∠DAB =45°,∴AB ⊥DE .又∵PD ⊥平面ABCD ,∴PD ⊥AB . ……………………10分 又∵PD DE D ⋂=,∴AB ⊥平面PDE .∵PAB AB 平面⊂,∴平面PED ⊥平面P AB . …………………………………12分 19.(1)证明 由2a n +1-2a n +a n +1a n =0得1a n +1-1a n =12,………………………4分所以数列⎩⎨⎧⎭⎬⎫1a n 是以21为公差的等差数列.………………………5分(2)b 1=f (0)=5,所以7(a 1-1)+5a 1-1+1=5,7a 1-2=5a 1,所以a 1=1,……………………6分1a n =1+(n -1)12,所以a n =2n +1.……………7分 b n =7a n -2a n =7-(n +1)=6-n .………………………8分当n ≤6时,T n =n2(5+6-n )=n (11-n )2;当n ≥7时,T n =15+n -62(1+n -6)=n 2-11n +602.所以,T n=⎩⎨⎧n (11-n )2,n ≤6,n 2-11n +602,n ≥7.………………………12分20解:(Ⅰ)函数)(x f 的定义域为),(∞+0,当1=a 时, x x x x f ln 1)(+-=,22'111)(xx x x x f -=+-=.……………………1分 在)1,0(上,0)('<x f ,)(x f 单调递减;在),1(+∞上,0)('>x f ,)(x f 单调递增. ……………………3分 函数0)1()(min ==f x f .……………………4分 (Ⅱ)22'111)(ax ax x ax x f -=+-=,函数)(x f 在),1[+∞上为增函数 等价于0)('≥x f 在),1[+∞上恒成立,……………………5分当0<a 时,0)('≥x f , )(x f 在),1[+∞上单调递增,满足题设条件.当0>a 时,因为02>ax ,令1)(-=ax x g ,等价于0)(≥x g 在),1[+∞上恒成立,1)(-=ax x g 在),1[+∞上为增函数,所以01)1()(≥-=≥a g x g ,综上所述:所求实数a 的取值范围是0<a 或1≥a .……………………8分(Ⅲ)因为0,011>>⎪⎭⎫⎝⎛++e n n n ,比较11+⎪⎭⎫ ⎝⎛+n n n 与e 的大小,等价于比较11ln +⎪⎭⎫⎝⎛+n n n 与e ln 的大小,……………………9分 即比较⎪⎭⎫⎝⎛++n n n 1ln )1(与1的大小,即比较⎪⎭⎫⎝⎛+n n 1ln 与11+n 的大小. ……………………10分由(1)得在),0(+∞上,当1≠x 时, 0)1(ln 1)(=>+-=f x x x x f ,即xx x 1ln ->,------11分 令n n x 1+=,则0>x ,且1≠x ,得>⎪⎭⎫⎝⎛+n n 1ln 11+n ,……………………12分由此得11+⎪⎭⎫⎝⎛+n n n e >(*N ∈n ). ……………………13分21解:(I) 22,12==a b b ,解得2=a .……………………………………2分所求椭圆1C 的方程为1222=+y x .……………………………………3分(II)设),,(),,(2211y x N y x M )1,0(),0,1(B F ,根据题意031,132121=++=+y y x x , 即1,32121-=+=+y y x x .……………………………………4分由122121=+y x ,①, 122222=+y x ,②① - ②得0)(2)(21212121=--+++x x y y y y x x . ,23)(221212121=++=--=y y x x x x y y k MN ……………………………………6分设MN 的中点为(),00y x ),则212,232210210=+==+=y y y x x x , 直线l的方程为)23(2321-=-x y ,即0746=--y x .……………………………………8分法二:设)23(21:-=-x k y l .由⎪⎩⎪⎨⎧-=-=+)23(211222x k y y x , 消去y 得0369)412()42(222=--+-++k k x k k x k , 设),,(),,(2211y x N y x M则222142412kkk x x +--=+……………………………………4分 )1,0(),0,1(B F ,根据题意031,132121=++=+y y x x ,即1,32121-=+=+y y x x .3424122221=+--=+k kk x x ,解得23=k .……………………………………6分 设MN 的中点为(),00y x ),则212,232210210=+==+=y y y x x x , 直线l 的方程为)23(2321-=-x y ,即0746=--y x .……………………………………8分(III )当直线l 斜率不存在时,MN ,PQ 的中点同为直线l 与x 轴的交点, 易知||||NQ PM =.……………………………………9分 当直线l 斜率存在时,设l :)1(-=x k y .⎪⎩⎪⎨⎧-==+)1(1222x k y y x ,消去y 得,0224)21(2222=-+-+k x k x k , 2221214kk x x +=+. 设),,(),,(2211y x N y x M MN 的中点),(00y x G ,222102122kk x x x +=+=,20021)1(k k x k y +-=-=.……………………………………11分⎪⎩⎪⎨⎧-==+)1(222x k y y x λ,消去y 得,0224)21(2222=-+-+λk x k x k ,2221214k k x x +=+ 设),,(),,(4433y x Q y x P PQ 的中点),('0'0'y x G ,2243'02122k k x x x +=+=,2''021)1(k k x k y +-=-=.……………………………………13分所以MN 的中点G 与PQ 的中点'G 重合,由此得||||NQ PM =.…………………14分。
【名师解析】四川省绵阳南山实验高中2015届高三一诊模拟考试数学(文)试题(解析版)

四川省绵阳南山实验高中2015届高三一诊模拟考试数学(文)试题(解析版) 【试卷综析】试卷注重对基础知识和基本方法全面考查的同时,又突出了对数学思想、数学核心能力的综合考查, 试卷以考查考生对“双基”的掌握情况为原则,重视基础,紧扣教材,回归课本,整套试卷中有不少题目可以在教材上找到原型.对中学数学教学和复习回归课本,重视对基础知识的掌握起到好的导向作用.第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.【题文】1.已知全集R U =,集合{}{})2sin(,)13ln(+==-==x y y B x y x A ,则A .⎪⎭⎫ ⎝⎛∞+,31B .⎥⎦⎤ ⎝⎛310,C .⎥⎦⎤⎢⎣⎡-311, D .φ【知识点】交、并、补集的混合运算.A1【答案解析】C 解析:由A 中y=ln (3x ﹣1),得到3x ﹣1>0,即x >, ∴A=(,+∞),∵全集U=R ,∴∁U A=(﹣∞,], 由B 中y=sin (x+2),得到﹣1≤y ≤1,∴B=[﹣1,1], 则(∁U A )∩B=[﹣1,].故选:C .【思路点拨】求出A 中x 的范围确定出A ,求出B 中y 的范围确定出B ,根据全集U=R 求出A 的补集,找出A 补集与B 的交集即可.【题文】2.若角α的终边在直线x y 2-=上,且0sin >α,则αcos 和αtan 的值分别为 A .2,55- B .21,55-- C .2,552-- D .2,55-- 【知识点】同角三角函数间的基本关系.C2【答案解析】D 解析:∵角α的终边在直线y=﹣2x 上,且sin α>0, ∴α为第二象限角,则tan α=﹣2,cos α=﹣=﹣.故选:D .【思路点拨】由角α的终边在直线y=﹣2x 上,且sinα>0,得到α为第二象限角,利用同角三角函数间的基本关系求出cosα和tana 的值即可.【题文】3.设b a ,为平面向量,则”“b a b a ⋅=⋅是”“b a //的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】必要条件、充分条件与充要条件的判断;向量的模;平行向量与共线向量.A2F2【答案解析】C 解析:∵•=,若a,b为零向量,显然成立;若⇒cosθ=±1则与的夹角为零角或平角,即,故充分性成立.而,则与的夹角为为零角或平角,有.因此是的充分必要条件.故选C.【思路点拨】利用向量的数量积公式得到•=,根据此公式再看与之间能否互相推出,利用充要条件的有关定义得到结论.【题文】4.已知等差数列{}n a,且410712a a a+=-,则数列{}n a的前13项之和为A.24 B.39 C.52D.104【知识点】等差数列的性质;等差数列的前n项和.D2 D4【答案解析】C 解析:在等差数列{a n}中,由a4+a10=12﹣a7,得3a7=12,a7=4.∴S13=13a7=13×4=52.故选:C.【思路点拨】直接利用等差数列的性质结合已知求得a7=3,然后由S13=13a7得答案.【题文】5.已知O是坐标原点,点()11,-A,若点()yxM,为平面区域⎪⎩⎪⎨⎧≤≤≥+212yxyx上的一个动点,则⋅的取值范围是A.[]01,- B.[]20, C.[]10, D.[]21,-【知识点】简单线性规划的应用;平面向量数量积的运算.E5 F3【答案解析】B 解析:满足约束条件⎪⎩⎪⎨⎧≤≤≥+212yxyx的平面区域如下图所示:将平面区域的三个顶点坐标分别代入平面向量数量积公式 当x=1,y=1时,•=﹣1×1+1×1=0 当x=1,y=2时,•=﹣1×1+1×2=1 当x=0,y=2时,•=﹣1×0+1×2=2故OM OA ⋅和取值范围为[0,2] 故选B .【思路点拨】先画出满足约束条件⎪⎩⎪⎨⎧≤≤≥+212y x y x 的平面区域,求出平面区域的角点后,逐一代入⋅分析比较后,即可得到•的取值范围.【题文】6.在ABC ∆中,M 是BC 的中点,1=AM ,点P 在AM 上且满足2=,则()=+⋅A .94 B .34 C .34- D .94- 【知识点】平面向量数量积的运算.F3 【答案解析】A 解析:如图因为M 是BC 的中点,根据向量加法的几何意义,=2,又,所以==.故选:A .【思路点拨】根据向量加法的几何意义,得出=2,从而所以=.【题文】7.已知函数()πϕωϕω<>>+=,0,0)sin()(A x A x f 的图象与直线()A b b y <<=0的三个相邻交点的横坐标分别是842、、,则)(x f 的单调递增区间为 A.[]()Z k k k ∈+34,4 B.[]()Z k k k ∈+36,6 C.[]()Z k k k ∈+54,4D.[]()Z k k k ∈+56,6【知识点】正弦函数的单调性.C3【答案解析】B 解析:与直线y=b (0<b <A )的三个相邻交点的横坐标分别是2,4,8知函数的周期为T==2(﹣),得ω=,再由五点法作图可得 •+φ=,求得φ=﹣,∴函数f (x )=Asin (x ﹣). 令2k π﹣≤x ﹣≤2k π+,k ∈z ,求得x ∈[6k ,6k+3](k ∈Z ),故选:B .【思路点拨】由题意可得,第一个交点与第三个交点的差是一个周期;第一个交点与第二个交点的中点的横坐标对应的函数值是最大值.从这两个方面考虑可求得参数ω、φ的值,进而利用三角函数的单调性求区间.【题文】8.已知函数()y f x =是定义在实数集R 上的奇函数,且当(,0)x ∈-∞时()()xf x f x '<-成立(其中()()f x f x '是的导函数),若a =,(1)b f =,2211(log )(log )44c f =则,,a b c 的大小关系是A .c a b >>B .c b a >>C .a b c >>D .a c b >>【知识点】函数的单调性与导数的关系;函数奇偶性的性质.B11B4 【答案解析】A 解析:∵函数y=f (x )是定义在实数集R 上的奇函数,∴当x ∈(﹣∞,0)时,xf ′(x )<f (﹣x )等价为xf ′(x )+f (x )<0, 构造函数g (x )=xf (x ), 则g ′(x )=xf ′(x )+f (x )<0, ∴当x ∈(﹣∞,0)时,函数g (x )单调递减, 且函数g (x )是偶函数, ∴当x ∈(0,+∞)时,函数g (x )单调递增, 则a=f ()=g (),b=f (1)=个(1),c=(log 2)f (log 2)=g (log 2)=g (﹣2)=g (2),∵1<2, ∴g (1)<g ()<g (2), 即b <a <c , 故选:A .【思路点拨】根据条件构造函数,利用函数的奇偶性和单调性之间的关系,即可得到结论. 【题文】9.设定义在R 上的偶函数)(x f 满足)1()1(+=-x f x f ,且当[]1,0∈x 时,3)(x x f =,若方程)0(02cos)(<=--a a x x f π无解,则实数a 的取值范围是A .()2,-∞-B .(]2,-∞-C .(]1,-∞-D .()1,-∞-【知识点】抽象函数及其应用.B10 【答案解析】D 解析:由f (x )﹣cos x ﹣a=0得f (x )﹣cos x=a ,设g (x )=f (x )﹣cosx ,∵定义在R 上的偶函数f (x ), ∴g (x )也是偶函数, 当x ∈[0,1]时,f (x )=x 3, ∴g (x )=x 3﹣cosx ,则此时函数g (x )单调递增,则g (0)≤g (x )≤g (1),即﹣1≤g (x )≤1, ∵偶函数f (x )满足f (1﹣x )=f (x+1), ∴f (1﹣x )=f (x+1)=f (x ﹣1), 即f (x )满足f (x+2)=f (x ), 即函数的周期是2,则函数g (x )在R 上的值域为[﹣1,1],若方程f(x)﹣cos x﹣a=0(a<0)无解,即g(x)=f(x)﹣cos x=a无解,则a<﹣1,故选:D【思路点拨】根据函数的奇偶性和单调性之间的关系,推出函数的周期性,求出函数的最值即可得到结论.【题文】10. 已知正方形ABCD的边长为1,P、Q分别为边AB,DA上的点,若45PCQ︒∠=,则APQ∆面积的最大值是A.2 B.3- C.18D.14【知识点】三角形的面积公式.C8【答案解析】B 解析:如图所示,C(1,1).设P(a,0),Q(0,b),0<a,b<1.则k PC=,k PQ=1﹣b.∵∠PCQ=45°,∴tan45°===1,化为2+ab=2a+2b,∴2+ab,化为,解得(舍去),或,当且仅当a=b=2﹣时取等号.∴.∴△APQ面积=ab≤3﹣2,其最大值是3.故选:B .【思路点拨】C (1,1).设P (a ,0),Q (0,b ),0<a ,b <1.可得k PC =,k PQ =1﹣b .利用到角公式、一元二次不等式的解法、三角形的面积计算公式即可得出. 第 Ⅱ 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.【题文】11.化简求值:431lglg 254+-=________. 【知识点】有理数指数幂的化简求值;有理数指数幂的运算性质.B8【答案解析】0 解析:原式=:()+lg =+lg =2﹣2=0.故答案为:0【思路点拨】根据指数幂的运算法则进行化简即可.【题文】12.已知函数f (x )的图象是两条线段(如图,不含端点),则f (f (13))=_______.【知识点】函数奇偶性的性质;函数的值.B4【答案解析】13解析:由图象可得函数f (x )=.∴=,=.∴f (f ())==.故答案为:.【思路点拨】由图象可得函数f (x )=.即可得出.【题文】13.已知πααα≤≤=-0,51cos sin ,则=⎪⎭⎫⎝⎛+απ22sin ________. 【知识点】二倍角的余弦;运用诱导公式化简求值.C6 C2 【答案解析】725- 解析:∵sin α﹣cos α=,①0≤x ≤π ∴1﹣2sin αcos α=,∴2sin αcos α=,∴α∈(0,)∴1+2sin αcos α=,∴sin α+cos α=,② 由①②得sin α=,cos α=, ∴sin (+2α)=cos2α=2cos 2α﹣1==﹣,故答案为:﹣.【思路点拨】把所给的条件两边平方,写出正弦和余弦的积,判断出角在第一象限,求出两角和的结果,解方程组求出正弦和余弦值,进而用二倍角公式得到结果.【题文】14.已知实数0,0>>b a ,且1=ab ,那么ba b a ++22的最小值为________.【知识点】基本不等式.E5【答案解析】﹣1 解析:由于ab=1,则又由a <0,b <0,则,故,当且仅当﹣a=﹣b 即a=b=﹣1时,取“=”故答案为﹣1. 【思路点拨】将整理得到,利用基本不等式即可求得的最大值.【题文】15.设R x ∈,用[]x 表示不超过x 的最大整数,称函数[]x x f =)(为高斯函数,也叫取整函数.现有下列四个命题: ①高斯函数为定义域为R 的奇函数;②[][]”“y x ≥是”“y x ≥的必要不充分条件;③设xx g ⎪⎭⎫⎝⎛=21)(,则函数[])()(x g x f =的值域为{}1,0;④方程⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+2141x x 的解集是{}51<≤x x . 其中真命题的序号是________.(写出所有真命题的序号) 【知识点】命题的真假判断与应用.A2【答案解析】②③④ 解析:对于①,f (﹣1.1)=[﹣1.1]=﹣2,f (1.1)=[1.1]=1,显然f (﹣1.1)≠﹣f (1.1),故定义域为R 的高斯函数不是奇函数,①错误; 对于②,“[x ]”≥“[y ]”不能⇒“x ≥y ”,如[4.1]≥[4.5],但4.1<4.5,即充分性不成立;反之,“x ≥y ”⇒“[x ]”≥“[y ]”,即必要性成立,所以“[x ]”≥“[y ]”是“x ≥y ”的必要不充分条件,故②正确;对于③,设g (x )=()|x|,作出其图象如下:由图可知,函数f (x )=[g (x )]的值域为{0,1},故③正确; 对于④,[]=[]=[]=[]﹣1, 即[]+1=[],显然,>,即x >﹣1;(1)当0≤<1,即﹣1≤x <3时,[]=0,[]+1=1;要使[]+1=[],必须1≤<2,即1≤x <3,与﹣1≤x <3联立得:1≤x <3;(2)当1≤<2,即3≤x <7时,[]=1,[]+1=2;要使[]+1=[],必须2≤<3,即3≤x <5,与3≤x <7联立得:3≤x <5;(3)当2≤<3,即7≤x <11时,[]=2,[]+1=3;要使[]+1=[],必须3≤<4,即5≤x <7,与7≤x <11联立得:x ∈∅;综上所述,方程[]=[]的解集是{x|1≤x <5},故④正确.故答案为:②③④.【思路点拨】①,举例说明,高斯函数f (x )=[x ]中,f (﹣1.1)≠﹣f (1.1),可判断①错误; ②,利用充分必要条件的概念,举例如[4.1]≥[4.5],但4.1<4.5,说明“[x ]”≥“[y ]”是“x ≥y ”的必要不充分条件;③,作出g (x )=()|x|的图象,利用高斯函数f (x )=[x ]可判断函数f (x )=[g (x )]的值域为{0,1}; ④,方程[]=[]⇔[]+1=[],通过对0≤<1,1≤<2,2≤<3三种情况的讨论与相应的的取值范围的讨论可得原方程的解集是{x|1≤x <5},从而可判断④正确.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成一个“地球村”,几十亿兆民都迫到你肘边成了近邻。人类愈“进步”,这大千世界便愈加
缩小。
⑨野心勃勃的科学家认为,有一天我们甚至可能探访太阳以外的太阳。长空万古,渺渺星
辉,让一切都保持点距离和神秘,可望而不可即,不是更有情吗?留一点余地给神话吧,何必
赶得嫦娥仙女都走投无路,如此“逼神太甚”呢?
⑩对无处不达的电话与关山阻隔的书信,我宁愿选择后者。在英文里,叫朋友打个电话来,
题
答
要
学校_________________班级_________________姓名_________________考号_________________
不
一、文言文阅读。(17 分 ) 夏侯端,寿州寿春人,梁尚书左仆射详孙也。仕隋为大理司直。高祖微时与相友,大业中
讨贼河东,表端为副。密语高祖曰:“上①性沈忌,内恶诸李,今金才已诛,次且取公,宜蚤 为计。”帝感其言。义师兴,端在河东,吏捕送长安。帝入京师,释囚,引入卧内,擢秘书监。
⑦有人会说:“电话难道就一无好处吗?遇到急事,一通电话可以立刻解决。”这我当然
承认,可是我也要问,现代生活的节奏调得这么快,究竟有什么意义呢?你可以用电话去救人,
匪徒也可以用电话去害人,大家都快了,快,又有什么意义?
⑧在高速紧张的年代,一切都即生即灭,随荣随枯,爱情和友情,一切的区区与耿耿,都被机
器吞进又吐出,成了车载斗量的消耗品了。电话和电视的恢恢天网,使五洲七海千城万邑缩小
考号
密封线内不要答题
姓名
南山班模拟测试 数学卷
考 1. 本试卷共 4 页,共两道大题,10 道小题,满分 100 分,考试时间 100 分钟. 生 2. 在试卷和答题纸上认真填写学校名称、姓名和考号. 须 3. 在答题纸上,作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答. 知 4. 考试结束,请将本试卷和草稿纸一并交回.
1.对下列句子中加点的词语的解释,不正确的一项是( )(3 分)
A.次.谯州,会毫、汴二州刺史已降王世充 B.端持节.卧起
次:顺着 节:符节,古代用作凭证
二、现代文阅读。(23 分) 催魂铃
①电话之来,总是从颤颤的一串铃声开始,那精确而间歇的发作,那一叠连声的催促,凡 有耳神经的人,没有谁不悚然惊魂,一跃而起的。最吓人的,括,不正确的一项是( )(3 分) A.夏侯端是梁朝尚书夏侯详之孙,曾在隋朝为官。高祖未显贵时,和他是朋友。义军兴起,夏侯端 被官吏捉住送往长安。高祖攻入长安后,把他释放出来,委以要职。 B.在毫、汴二州刺史降王世充后,夏侯端部走投无路,其麾下二千人粮尽,不忍抛弃夏侯端离去。 夏侯端愿把头给他们换取富贵,被制止;又下令让部下离去,以保全他们的性命。 C.夏侯端坚持操守。王世充派人以官职相诱,夏侯端严辞拒绝,怀揣节毛,从小路逃出,历经千辛 万苦回到朝廷。 D.夏侯端为官清廉,任梓州刺史时,禀告皇帝,把他的俸禄、口粮拿出救济孤儿和穷人,不为子孙 留下财产。
⑤绝望之余,不禁悠然怀古,想没有电话的时代,这世界多么单纯,家庭生活又多么安静, 至少房门一关,外面的世界就闯不进来了,哪像现代人的家里,肘边永远伏着这么一枚不定时 的炸弹。那时候,要通消息,写信便是。比起电话来,书信的好处太多了。首先,写信阅信都 安安静静,不像电话那么吵人。其次,书信有耐性和长性,收到时不必即拆即读,以后也可以 随时展阅,从容观赏,不像电话那样即呼即应,一问一答,咄咄逼人。书信往还,中间有绿衣 人作为缓冲,可以慢慢考虑,转肘的空间宽得多了。书信之来,及门而止,然后便安详地躺在 信箱里等你去取;哪像电话来时,登堂入室,直捣你的心脏,真是迅铃不及掩耳。谁也抗拒不 了那催魂铃武断而坚持的命令,谁没有过从浴室里气急败坏地裸奔出来,一手提裤,一手去抢 听筒的经历呢?
四边形 PEBG 关于 AC 对称.设菱形 ABCD 被这两个四边形盖住部分的面积为 S1 ,未被盖住部分 的面积为 S2 , BP = x ⑴ 用含 x 的代数式分别表示 S1 , S2 ⑵ 若 S1 = S2 ,求 x 的值
第3页 共4页
第4页 共4页
2015 年南山班模拟考 语文试卷
考 1.全卷共两页,三大题。总分:80 分。 生 2.请考生在指定的位置上(密封线内)填写自己的相关信息。 须 3.请用黑色的签字笔或钢笔作答,不得使用涂改工具。 知 4.请考生务必将答案填写在答题纸上,在试卷作答的答案无效。
一、填空题(本大题共 8 小题,每小题 6 分,满分 48 分)
1.
45.13 −13.93 31.2
+
45.1×13.9
=
______
2.
如果关于
x
的不等式组
⎧7x
⎨ ⎩
6x
−m −n
≥ <
0 0
的整数解仅有
1,2,3,那么满足这个不等式组的整数对
(m, n) 共有______对
3. 如图,若矩形 APHM 、 BNHP 、 CQHN 的面积分别为 7、9、11,则 S△PDN = ______
兵迎端。时河南地悉入世充,公逸感端之节,亦固守。世充遣人以淮南郡公、尚书少吏部印绶
召端,解所服衣以赠。端曰:“吾,天子使,宁污贼官邪!非持首去不可见。”即焚书及衣,
因解节毛怀之,间道走宜阳。历崖峭榛莽。比到,其下仅有在者,皆体发癯焦,人不堪视。端
入谒,自谢无功,不及危困状。帝闵之,复拜秘书监。出为梓州刺史。散禄禀周孤穷,不为子
形 OEFG ,线段 GE 、FO 相交于点 H ,平行于 y 轴的直线 MN 分别交线段 GF 、GH 、GO
和 x 轴于点 M 、 P 、 N 、 D ,连结 MH ⑴ 若抛物线 l : y = ax2 + bx + c 经过 G 、 O 、 E 三点,则它的解析式为:___________ ⑵ 如果四边形 OHMN 为平行四边形,请直接写出点 D 的坐标:_______________ ⑶ 在⑴⑵的条件下,直线 MN 与抛物线 l 交于点 R ,动点 Q 在抛物线 l 上且在 R 、 E 两点之
点中选取一个点,这个点在抛物线 y = x2 − 2x − 3 上的概率为______
8. 如图是某几何体的三视图,根据图中数据,则该几何体的体积为_________
二、解答题(本大题共 2 小题,每小题 26 分,满分 52 分)
( ) 9. 如图,矩形 OABC 的顶点 A(2, 0) 、 C 0, 2 3 ,将矩形 OABC 绕点 O 逆时针旋转 30° 得矩
C.会李公逸守杞州,勒.兵迎端 D.端入谒,自谢无功,不及.危困状
勒:统率 及:言及
2.下列各组句子中,加点的词的意义和用法不相同的一组是( )(3 分)
A.今金才已诛,次且.取公,宜蚤为计
年且.九十
B.道塞,无所.归
鱼,我所.欲也
C.平生不知死地乃.在此
乃.不知有汉
D.李密之.降,关东地未有所属
何陋之.有
第 3 题图
第 6 题图
第 7 题图
4. 我们定义取整函数[ x] 表示不超过 x 的最大整数,如[3.2]=3 ,[−2.6]= − 3,现已知正整数 n
小于
2015,且
⎡n ⎢⎣ 3
⎤ ⎥⎦
+
⎡ ⎢⎣
n 6
⎤ ⎥⎦
=
n 2
,则这样的
n
有______个
5. 我们把横纵坐标都是整数的点叫做整点,现有一个以原点为圆心,5 为半径的圆,从圆内的整
间(不含点 R 、 E )运动,设 +PQH 的面积为 s ,当
3 6
<
s
≤
3 2
,确定点
Q
的横坐标的取
值范围
6. 如图, PA , PB 切 :O 于 A 、 B 两点,CD 切 :O 于点 E ,交 PA 、 PB 于 C 、 D .若 :O 的半径为 r , △PCD 的周长等于 3r ,则 tan ∠APB = ______
1
内
线
封
密
题
杯弓蛇影之际,忽然电话铃声大作,像恐怖电影里那样。旧小说的所谓“催魂铃”,想来也不 过如此了。王维的辋川别墅里,要是装了一架电话,他那些静绝清绝的五言绝句,只怕一句也 吟不出了。
②古人鱼雁 a 往返,今人铃声相迫。鱼来雁去,一个回合短则旬月,长则经年,那天地似 乎广阔许多。“晚来天欲雪,能饮一杯无?b”那时如果已有电话,一个电话刘十九就来了, 结果我们也就读不到这样的佳句了。
书信之来,及门而止,然后便安详地躺在信箱里等你去取;哪像电话来时,穿堂入室,直
捣你的心脏,真是迅铃不及掩耳。
3.联系全文,概括“催魂铃”的含义及作用。(6 分)
4.第⑦段中说:“现代生活的节奏调得这么快,究竟有什么意义呢?”这句话表达了作者怎样
的生活态度?请联系现实,谈谈你对现代生活的“快”的认识和感悟。(不少于 200 字)(8
分)
三、作文。(40 分)
请以“弯路”为题,写一篇不少于 400 字的文章。文体自选(诗歌除外)。
⑥电话动口,书信动手,其实写信更见君子之风。我觉得还是老派的书信既古典又浪漫: 古人“呼儿烹鲤鱼,中有尺素书”的优雅形象不用说了,就连现代通信所见的邮差、邮筒、邮 票、邮戳之类,也都有情有韵,动人心目。在高人雅士的手里,书信成了绝佳的作品,进则可 以辉照一代文坛,退则可以怡悦二三知已,所以中国人说它是“心声之献酬”,西洋人说它是 “最温柔的艺术”。但自电话普及以后,朋友之间要互酬心声,久已勤于动口而懒于动手,眼 看这种温柔的艺术已经日渐没落了。电话来得快,消失得也快,不像文字可以永垂后世,向一 代代的痴顽去求印证。我想情书的时代是一去不返了,即使近如徐志摩和郁达夫的多情,恐也 难再。
③而活在当下,催魂的铃声一响,没有人不条件反射地一跃而起,赶快去接,要是不接, 它就跟你没了没完,那高亢而密集的声浪,锲而不舍,就像一排排嚣张的惊叹号一样,滔滔向 你卷来。