高中数学指数函数测试题(含答案)
高中数学必修一第四章指数函数与对数函数必练题总结(带答案)

高中数学必修一第四章指数函数与对数函数必练题总结单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天B .1.8天 C .2.5天D .3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.4、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a.故选:A.6、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.7、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、已知函数f (x )=log 3(x 2−1),g (x )=x 2−2x +a ,∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2),则实数a 的可能取值是( )A .12B .1C .52D .3 答案:CD分析:将问题转化为当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min ,然后分别求出两函数的最小值,从而可求出a 的取值范围,进而可得答案∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2)等价于当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min .当x ∈[2,+∞)时,令t =x 2−1,则y =log 3t ,因为t =x 2−1在[2,+∞)上为增函数,y =log 3t 在定义域内为增函数,所以函数f (x )=log 3(x 2−1)在[2,+∞)上单调递增,所以f (x )min =f (2)=1. g (x )=x 2−2x +a 的图象开口向上且对称轴为x =1, ∴当x ∈[13,3]时,g (x )min =g (1)=a −1,∴1≤a −1,解得a ≥2. 故选:CD .10、已知x 1+log 3x1=0,x 2+log 2x2=0,则( )A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.11、已知函数f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),则()A.函数f(x)+g(x)的定义域为(−1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)−g(x)在区间(0,1)上是减函数答案:AB解析:求出函数f(x)+g(x)和f(x)−g(x)的解析式,再判断函数的定义域、奇偶性、借助复合函数的单调性与最值即可得出结论.解:∵f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),∴f(x)+g(x)=log a(x+1)+log a(1−x),由x+1>0且1−x>0得−1<x<1,故A对;由f(−x)+g(−x)=log a(−x+1)+log a(1+x)=f(x)+g(x)得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵−1<x<1,∴f(x)+g(x)=log a(1−x2),∵y=1−x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1−0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值;故 C错;∵f(x)−g(x)=log a(x+1)−log a(1−x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1−x)在(0,1)上单调递增,函数f(x)−g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1−x)在(0,1)上单调递减,函数f(x)−g(x)在(0,1)上单调递增;故D错;故选:AB.小提示:本题主要考查函数奇偶性与单调性的性质应用,考查逻辑推理能力,属于中档题.填空题12、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.13、心理学家有时用函数L(t)=A(1−e−kt)测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(ln0.9≈−0.105,ln0.1≈−2.303)______.答案:0.021分析:该生在5min内能够记忆20个单词,将A=200,L(5)=20带入即可得出结论. 由题意可知200(1−e−5k)=20,所以,e−5k=0.9,所以ln e−5k=ln0.9≈−0.105,解得k≈0.021.所以答案是:0.021.14、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题15、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log2(2x−1)(x>0),若关于x的方程g(x)=m+f(x)在[1,2]有解,求m的取值范围.答案:(1){x|x>0};(2)[log213,log235].分析:(1)由f(x)>1可得2x+1>2,从而可求出不等式的解集,(2)由g(x)=m+f(x),得m=g(x)−f(x)=log2(1−22x+1),再由x∈[1,2]可得log2(1−22x+1)的范围,从而可求出m的取值范围(1)原不等式可化为2x+1>2,即2x>1,∴x>0,所以原不等式的解集为{x|x>0}(2)由g(x)=m+f(x),∴m=g(x)−f(x)=log2(1−22x+1),当1≤x≤2时,25≤22x+1≤23,13≤1−22x+1≤35,m∈[log213,log235]。
高中数学《指数函数》针对练习及答案

第二章函数2.4.2 指数函数(针对练习)针对练习针对练习一指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a>0,b>0).(1)a222.计算或化简下列各式:(1)(a-2)·(-4a-1)÷(12a-4)(a>0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0. 3.计算:(1)1111242 114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+-++⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a ba b a b->>⎛⎫⎪⎝⎭4.计算:(1)10132114(2)924---⎛⎫⎛⎫-⨯-+-⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯5.(1)()2163278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .47.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x8.下列函数中为指数函数的是( ) A .23x y =⋅ B .3x y =-C .3x y -=D .1x y =9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠110.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A.1 B .2C D .3针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,5413.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞ C .(,2]-∞ D .[2,)+∞17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,120.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,222.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0 C .5 D .923.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( )A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,225.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e --=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .4037.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-第二章 函数2.4.2 指数函数(针对练习)针对练习针对练习一 指数与指数幂的运算1.用分数指数幂的形式表示下列各式(a >0,b >0).(1)a2 2.【答案】(1)52a ; (2)136a ; (3)7362a b ; (4)76a . 【解析】 【分析】由根式与有理数指数幂的关系,结合指数幂的运算性质化简求值即可. (1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==. (3)原式=1221711333233332622222()()a ab a a b a b a b +⋅===.(4)原式=55722666a a a a --⋅==. 2.计算或化简下列各式: (1)(a -2)·(-4a -1)÷(12a -4)(a >0);(2)213-233+0.0028-⎛⎫- ⎪⎝⎭-2)-1+0.【答案】(1)-13a ;(2)-1679.【解析】 【分析】直接根据指数幂的运算性质计算即可. 【详解】(1)原式21434114(12)33a a a a ----+=-÷=-=-(2)原式213227118500--⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭213323()5002)12-⎡⎤=-+-+⎢⎥⎣⎦=49+20+1=- 1679. 3.计算:(1)1111242114310.7562)164300---⎫⎛⎫⎛⎫⨯⨯+++ ⎪ ⎪⎝⎭⎝⎭⎝⎭111133420,0)a b a b a b ->>⎛⎫ ⎪⎝⎭【答案】(1)-16 (2)(0,0)a a b b>> 【解析】 【分析】(1)根据分数指数幂的运算规则化简计算即可; (2)根据分数指数幂的运算规则化简得出结果. (1)原式=111222411010233-⎫⎫⎛⎫⨯⨯++⨯+ ⎪⎝⎭⎝⎭⎝⎭(12410223⎫=⨯-⨯+⎝⎭220216=-+=-(2)原式543311233(0,0)a baa b bab a b-==>> 4.计算:(1)1132114(2)924---⎛⎫⎛⎫-⨯-+- ⎪ ⎪⎝⎭⎝⎭;(2)2932)-⨯【答案】(1)196(2)【解析】 【分析】(1)利用指数幂的运算性质即可求解.(2)利用根式与分数指数幂的互化以及指数幂的运算性质即可求解. (1)原式1111924()1218236=-⨯-+=++-=. (2)原式24119555636333222221[(8)](10)10(2)1010102---=⨯÷=⨯÷=⨯721102=⨯=== 5.(1)()21603278()[2]8---;(2)()())1213321()0040.1a b a b --->,>.【答案】(1)8π+;(2)85. 【解析】 【分析】(1)(2)均根据指数幂的运算性质即可计算; 【详解】(1)原式233(2)=-1+|3﹣π|162(2)+=4﹣1+π﹣3+23=π+8.(2)原式3332223322248510a b a b--⋅==.针对练习二 指数函数的概念6.在①4x y =;①4y x =;①4x y =-;①()4xy =-;①()121,12xy a a a ⎛⎫=->≠ ⎪⎝⎭中,y 是关于x 的指数函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】直接根据指数函数的定义依次判断即可. 【详解】根据指数函数的定义,知①①中的函数是指数函数, ①中底数不是常数,指数不是自变量,所以不是指数函数; ①中4x 的系数是1-,所以不是指数函数; ①中底数40-<,所以不是指数函数. 故选:B .7.下列函数是指数函数的是( )A .y =()2x πB .y =(-9)xC .y =2x -1D .y =2×5x【答案】A 【解析】 【分析】根据指数函数定义判断. 【详解】B 中底数90-<,C 中指数是1x -,不是x ,D 中5x 前面系数不是1,根据指数函数定义,只有A 中函数是指数函数, 故选:A.8.下列函数中为指数函数的是( )A .23x y =⋅B .3x y =-C .3x y -=D .1x y =【答案】C 【解析】 【分析】根据指数函数的定义,逐项判定,即可求解. 【详解】根据指数函数的定义知,()0,1xy a a a =>≠,可得函数23x y =⋅不是指数函数;函数3x y =-不是指数函数;函数3x y -=是指数函数;函数1x y =不是指数函数. 故选:C.9.函数()244xy a a a =-+是指数函数,则有( )A .a =1或a =3B .a =1C .a =3D .a >0且a ≠1【答案】C 【解析】 【分析】根据已知条件列不等式,由此求得正确选项. 【详解】由已知得244101a a a a ⎧-+=⎪>⎨⎪≠⎩,即2301a a a a ⎧+=⎪⎨⎪≠⎩,解得3a =.故选:C10.若函数()x f x a =(a >0,且a ≠1)的图象经过(12,)3,则(1)f -=( ) A .1 B .2 CD .3【答案】C 【解析】 【分析】由指数函数所过的点求解析式,进而求(1)f -的值. 【详解】由题意,21(2)3f a ==,又a >0,则a =①()x f x =,故1(1)f --== 故选:C针对练习三 指数函数的图像11.函数2x y -=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数的解析式可得函数2x y -=是以12为底数的指数函数,再根据指数函数的图像即可得出答案. 【详解】解:由122xxy -⎛⎫== ⎪⎝⎭,得函数2x y -=是以12为底数的指数函数,且函数为减函数,故D 选项符合题意. 故选:D.12.函数①x y a =;①x y b =;①x y c =;①x y d =的图象如图所示,a ,b ,c ,d 分别是下列四个数:5413,12中的一个,则a ,b ,c ,d 的值分别是( )A .5413,12 B 54,12,13C .12,1354D .13,12,54【答案】C 【解析】 【分析】由直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b 即可求解. 【详解】解:直线1x =与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,511423>>, 所以a ,b ,c ,d 的值分别是12,1354, 故选:C.13.若0a >且1a ≠,则函数()11x f x a -=+的图象一定过点( )A .()0,2B .()0,1-C .()1,2D .()1,1-【答案】C 【解析】 【分析】令10x -=求出定点的横坐标,即得解. 【详解】解:令10,1-=∴=x x .当1x =时,()1111=2f a -=+,所以函数()f x 的图象过点()1,2. 故选:C.14.已知函数f (x )= ax +1的图象恒过定点P ,则P 点的坐标为( ) A .(0,1) B .(0,2) C .(1,2)D .()1,1a +【答案】B 【解析】 【分析】由指数函数过定点的性质进行求解. 【详解】()x f x a =的图象恒过定点()0,1,所以()1x f x a =+的图象恒过定点()0,2故选:B15.对任意实数01a <<,函数()11x f x a -=+的图象必过定点( )A .()0,2B .()1,2C .()0,1D .()1,1【答案】B 【解析】 【分析】根据指数函数的知识确定正确选项. 【详解】当10x -=,即1x =时,()12f =, 所以()f x 过定点()1,2. 故选:B针对练习四 指数函数的定义域16.函数y ) A .(,3]-∞ B .[3,)+∞C .(,2]-∞D .[2,)+∞【答案】D 【解析】 【分析】根据函数的定义域定义求解即可. 【详解】要使得函数y 则390x -≥,39x ≥,233x ≥,解得2x ≥.故函数y [2,)+∞. 故选:D.17.函数()22f x x -的定义域为( ) A .[0,2) B .(2,)+∞C .()(),22,-∞+∞D .[0,2)(2,)⋃+∞【答案】D 【解析】求出使函数式有意义的自变量的范围即得、 【详解】由21020x x ⎧-≥⎨-≠⎩得02x x ≥⎧⎨≠⎩,即[0,2)(2,)x ∈⋃+∞.故选:D.18.设函数f (x ),则函数f (x 4)的定义域为( ) A .(],4∞- B .1,4∞⎛⎤- ⎥⎝⎦C .(]0,4D .10,4⎛⎤⎥⎝⎦【答案】A 【解析】 【分析】求得4x f ⎛⎫= ⎪⎝⎭0,结合指数函数的性质求解即可. 【详解】因为()f x =所以4x f ⎛⎫= ⎪⎝⎭因为44440,44,1,44x x x x -≥≤≤≤,所以4xf ⎛⎫⎪⎝⎭的定义域为(],4-∞,故选A .【点睛】本题主要考查函数的定义域以及指数函数的单调性的应用,是基础题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.19.已知函数()y f x =的定义域为()0,1,则函数()()21xF x f =-的定义域为( )A .(),1-∞B .()(),00,1-∞⋃C .()0,∞+D .[)0,1【答案】B 【解析】 【分析】抽象函数的定义域求解,要注意两点,一是定义域是x 的取值范围;二是同一对应法则下,取值范围一致. 【详解】()y f x =的定义域为()0,1,1021x-∴<<,即121121x x ⎧-<-<⎨≠⎩,10x x <⎧∴⎨≠⎩,解得:1x <且0x ≠, ()()21x F x f ∴=-的定义域为()(),00,1-∞⋃.故选:B .20.函数y (-∞,0],则a 的取值范围为( ) A .a >0 B .a <1 C .0<a <1 D .a ≠1【答案】C 【解析】 【分析】由题意可得10x a -≥,对a 讨论,分1,01a a ><<,运用指数函数的单调性,列不等式即可得到a 的范围. 【详解】要使函数0y a >且1)a ≠有意义, 则10x a -≥, 即01x a a ≥=, 当1a >时,0x ≥;当01a <<时,0x ≤,因为y =的定义域为(],0-∞ 所以可得01a <<符合题意,a ∴的取值范围为01a <<,故选C.【点睛】本题考查函数的定义域以及指数函数的单调性,注意运用偶次根式被开方式非负,意在考查分类讨论思想与运算能力,属于中档题.针对练习五 指数函数的值域21.函数2212x xy -⎛⎫= ⎪⎝⎭的值域为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦C .10,2⎛⎤⎥⎝⎦D .(]0,2【答案】D 【解析】 【分析】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,转求二次函数与指数函数的值域即可.【详解】令22t x x =-,则12ty ⎛⎫= ⎪⎝⎭,①()222111t x x x =-=--≥-,①(],2120ty ⎛⎫⎪⎭∈= ⎝,①函数2212x xy -⎛⎫= ⎪⎝⎭的值域为(]0,2,故选:D22.若23x ,则函数1()421x x f x +=-+的最小值为( ) A .4 B .0C .5D .9【答案】A 【解析】 【分析】设23x t =,则2()21=-+f t t t 利用函数()f t 单调性可得答案. 【详解】设23x t =,则()22()211=-+=-f t t t t (3t ), 对称轴为1t =,所以()f t 在[)3,+∞上单调递增,所以2min ()(3)32314f t f ==-⨯+=.故选:A.23.函数2121x x y -=+的值域是( )A .()(),11,-∞--+∞B .(),1-∞-C .()1,1-D .()(),11,-∞+∞【答案】C 【解析】 【分析】将函数化为121xyy+=-,利用20x >列出关于y 的不等式,解出不等式即可. 【详解】设2121x x y -=+,由原式得121xy y +=-,20x >, 101yy+∴>-, ①11y -<<,即函数()f x 的值域为(1,1)-. 故选:C24.已知函数()()1123,12,1x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是( ) A .10,2⎡⎫⎪⎢⎣⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .(),0-∞D .[)0,2【答案】A 【解析】 【分析】先求出12x y -=在[)1,+∞上的取值范围,再利用分段函数的值域进行求解.【详解】因为12x y -=在[)1,+∞上单调递增, 所以当1≥x 时,1022=1x y -=≥, 若函数()f x 的值域为R ,则1201231a a a ->⎧⎨-+≥⎩, 解得102a ≤<. 故选:A.25.函数2x y a =-(0a >且1a ≠,11x -≤≤)的值域是5,13⎡⎤-⎢⎥⎣⎦,则实数=a ( )A .3B .13C .3或13D .23或32【答案】C 【解析】当0a >且1a ≠时,函数为指数型函数,需要分情况进行讨论解决.当1a >时,函数2x y a =-是增函数;当01a <<时,函数2x y a =-是减函数,由此结合条件建立关于a的方程组,解之即可求得答案. 【详解】当1a >时,2xy a =-在[]1,1-上为增函数, 211523a a-=⎧⎪∴⎨-=-⎪⎩,解得3a =;当01a <<时,2xy a =-在[]1,1-上为减函数,523121a a⎧-=-⎪⎪∴⎨⎪-=⎪⎩,解得13a =.综上可知:3a =或13. 故选:C 【点睛】关键点点睛:本题主要考查了指数函数的单调性和值域,解题的关键是利用函数的单调性求解函数值域,但含有参数时往往需要讨论.针对练习六 指数函数的单调性26.函数2435x x y -+-=的单调递减区间是( ) A .[2,)+∞ B .(,2]-∞ C .(,1]-∞ D .[1,)+∞【答案】A 【解析】 【分析】利用复合函数的单调性“同增异减”来解题. 【详解】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞. 故选:A.27.函数223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为( ) A .(1,)+∞ B .3,4⎛⎤-∞ ⎥⎝⎦C .(),1-∞D .3,4⎡⎫+∞⎪⎢⎣⎭【答案】D 【解析】 【分析】根据复合函数单调性法则“同增异减”求解即可. 【详解】解:因为函数2231y x x =-+在区间3,4⎛⎫-∞ ⎪⎝⎭上单调递减,在3,4⎡⎫+∞⎪⎢⎣⎭上单调递增,函数12xy ⎛⎫= ⎪⎝⎭在定义域内是单调递减函数,所以,根据复合函数单调性法则“同增异减”得223112x x y -+⎛⎫= ⎪⎝⎭的单调递减区间为3,4⎡⎫+∞⎪⎢⎣⎭. 故选:D28.若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥-【答案】C 【解析】 【分析】根据复合函数单调性来求得a 的取值范围. 【详解】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-. 故选:C29.若函数()(),1,513,13x a x f x a x x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递减,则实数a 的取值范围是( ) A .12,33⎛⎤⎥⎝⎦B .1,2C .11,32⎡⎫⎪⎢⎣⎭D .20,3⎛⎫⎪⎝⎭【答案】A 【解析】 【分析】根据分段函数的性质,以及函数()f x 在R 上单调递减,结合指数函数的性质,可知011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,求解不等式,即可得到结果. 【详解】①函数()f x 在R 上单调递减,①011305133a a a a⎧⎪<<⎪-<⎨⎪⎪-+≥⎩,解得1233a <≤,实数a 的取值范围是12,33⎛⎤⎥⎝⎦. 故选:A.30.已知函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,是R 上的单调函数,那么实数a 的取值范围为( )A .()01,B .()13,C .423⎡⎫⎪⎢⎣⎭,D .312⎛⎤ ⎥⎝⎦,【答案】C 【解析】 【分析】根据()f x 的单调性列不等式组,由此求得a 的取值范围. 【详解】 函数()()4211xa x x f x a x ⎧-≤=⎨>⎩,,,若()f x 在R 上为单调递增函数,则()14201421a a a a ⎧->⎪>⎨⎪-⨯≤⎩,解得423a ≤<;若()f x 在R 上为单调递减函数,则()142001421a a a a ⎧-<⎪<<⎨⎪-⨯≥⎩,无解. 综上所述,实数a 的取值范围为423⎡⎫⎪⎢⎣⎭,. 故选:C针对练习七 比较大小与解不等式31.已知412a ⎛⎫= ⎪⎝⎭,124b =,122c =,则a ,b ,c 的大小关系是( ) A .a b c << B .c b a << C .a c b << D .b a c <<【答案】C 【解析】 【分析】根据指数函数的单调性判断指数式的大小关系. 【详解】由题设,42a -=,2b =,122c =,又2x y =在定义域上递增, ①a c b <<. 故选:C.32.已知1313422,3,4a b c ===,则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a【答案】B 【解析】 【分析】结合指数函数、幂函数的单调性确定正确选项. 【详解】4x y =在R 上递增,14y x =在()0,∞+上递增.123111334442422893c a b ==<==<==.故选:B33.若2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭,则实数a 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .(3,)+∞D .(3),-∞【答案】A 【解析】 【分析】根据指数函数的单调性,将函数不等式转化为自变量的不等式,解得即可; 【详解】解:因为12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,所以2141122a a+-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭等价于214a a +<-,解得1a <,即原不等式的解集为(,1)-∞ 故选:A34.若x 满足不等式221139x x -+⎛⎫ ⎪⎝⎭,则函数2x y =的值域是( )A .1,28⎡⎫⎪⎢⎣⎭B .1,28⎡⎤⎢⎥⎣⎦C .1,8⎛⎤-∞ ⎥⎝⎦D .[2,)+∞【答案】B 【解析】【分析】利用指数函数的单调性得到自变量的范围,进而得到指数函数的值域. 【详解】 由221139x x -+⎛⎫ ⎪⎝⎭可得2212(2)1339x x x -+--⎛⎫= ⎪⎝⎭,因为3x y =在R 上单调递增, 所以2124x x +-+即x 2+2x -3≤0, 解得:31x -≤≤ , 所以31222x y -=,即函数2x y =的值域是1,28⎡⎤⎢⎥⎣⎦,故选:B .35.若1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列正确的是( )A .33a b <B .ac bc >C .11a b<D .b c a c -<-【答案】D 【解析】 【分析】先根据题干条件和函数13xy ⎛⎫= ⎪⎝⎭的单调性得到a b >,A 选项可以利用函数的单调性进行判断,BC 选项可以举出反例,D 选项用不等式的基本性质进行判断. 【详解】因为13xy ⎛⎫= ⎪⎝⎭在R 上单调递减,若1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则a b >,对于选项A :若a b >,因为()3f x x =单调递增,所以33a b >,故A 错误;对于选项B :当a b >时,若0c ,则ac bc =,故B 错误;对于选项C :由a b >,不妨令1a =,2b =-,则此时11ab>,故C 错误; 对于选项D :由不等式性质,可知D 正确. 故选:D.针对练习八 指数函数的应用36.专家对某地区新型流感爆发趋势进行研究发现,从确诊第一名患者开始累计时间t (单位:天)与病情爆发系数()f t 之间,满足函数模型:0.22(340)1()1t f t e--=+,当()0.1f t =时,标志着疫情将要局部爆发,则此时t 约为(参考数据: 1.13e ≈)( )A .10B .20C .30D .40【答案】A 【解析】 【分析】根据()0.1f t =列式,并根据给出参考数据,结合指数函数的性质解相应的指数方程,即可得答案. 【详解】解:因为()0.1f t =,0.22(340)1()1t f t e--=+,所以0.22(340)10.11t e--=+,即0.22(340)011t e --=+,所以0.22(340)9t e --=,由于 1.13e ≈,故()21.12.29e e =≈, 所以0.22(23).240t e e --≈,所以()0.22340 2.2t --≈,解得10t ≈. 故选:A.37.基本再生数0R 与世代间隔T 是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在α型病毒疫情初始阶段,可以用指数函数模型(e )rt I t =描述累计感染病例数()I t 随时间t (单位:天)的变化规律,指数增长率r 与0R 、T 近似满足01R rT =+,有学者基于已有数据估计出0 3.22R =,10T =.据此,在α型病毒疫情初始阶段,累计感染病例数增加至(0)I 的4倍,至少需要( )(参考数据:ln 20.69≈) A .6天 B .7天 C .8天 D .9天【答案】B 【解析】 【分析】根据题意将给出的数据代入公式即可计算出结果 【详解】因为0 3.22R =,10T =,01R rT =+,所以可以得到01 3.2210.22210R r T --===0.2220(0)1I e ⨯==,由题意可知0.2224t e >,ln 42ln 220.696.20.2220.2220.222t ⨯>=≈≈ 所以至少需要7天,累计感染病例数增加至(0)I 的4倍 故选:B38.某灭活疫苗的有效保存时间T (单位:小时h )与储藏的温度t (单位:①)满足的函数关系为e ht b T +=(k ,b 为常数,其中e 2.71828=⋅⋅⋅,是一个和π类似的无理数,叫自然对数的底数),超过有效保存时间,疫苗将不能使用.若在0①时的有效保存时间是1080h ,在10①时的有效保存时间是120h ,则该疫苗在15①时的有效保存时间为( ) A .15h B .30h C .40h D .60h【答案】C 【解析】 【分析】根据已知的函数模型以及已知数据,待定系数即可求得结果. 【详解】由题意知1080e b =,1010120e e e k b k b +==⋅,所以()21051201ee 10809kk===, 所以51e 3k =,所以151e 27k =,所以15151ee e 10804027k bk b +=⋅=⨯=. 故选:C .39.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C ︒)满足函数关系e kx b y +=(e 2.718=为自然对数的底数,,k b 为常数).若该食品在0C ︒的保鲜时间是192小时,在33C ︒的保鲜时间是24小时,则该食品在22C ︒的保鲜时间是( ) A .20 小时 B .24小时 C .36小时 D .48小时【答案】D 【解析】 【分析】根据题意建立方程组,进而解出11e ,e b k ,然后将22代入即可求得答案. 【详解】由题意,331133e 1922411e e 19282e24b k k k b+⎧=⇒==⇒=⎨=⎩,所以该食品在22C ︒的保鲜时间是2222e e e 1192484k b k b +=⋅=⨯=.故选:D.40.牛顿曾经提出了常温环境下的温度冷却模型:()100e ktθθθθ-=-+,其中为时间(单位:min ),0θ为环境温度,1θ为物体初始温度,θ为冷却后温度),假设在室内温度为20C 的情况下,一桶咖啡由100C 降低到60C 需要20min .则k 的值为( ) A .ln 220B .ln 320C .ln 210-D .ln 310-【答案】A 【解析】 【分析】把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+可求得实数k 的值.【详解】由题意,把020θ=,1100θ=,60θ=,20t =代入()100e ktθθθθ-=-+中得2080e 2060k -+=,可得201e2k-=, 所以,20ln 2k -=-,因此,ln 220k =. 故选:A.。
高中数学第四章指数函数与对数函数经典大题例题(带答案)

高中数学第四章指数函数与对数函数经典大题例题单选题1、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A2、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1 又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0, 故选:D3、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.4、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x2+2=f(x),则f(x)为偶函数,当x⩾0时,f(x)=3x+x2+2,又y=3x,y=x2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x−1)>f(3−x),即|2x−1|>|3−x|,解得x<−2或x>43,所以f(2x−1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.5、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C分析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.6、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.7、化简√a3b2√ab23(a14b12)4⋅√a3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a3b2√ab23(a 14b12)4⋅√ba=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B8、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x−x2>0,得0<x<2,令t=2x−x2,则y=log2t,t=2x−x2在(0,1)上递增,在(1,2)上递减,因为y=log2t在定义域内为增函数,所以y=log2(2x−x2)的单调递减区间为(1,2),故选:A多选题9、已知函数f(x)=|lgx|,则()A.f(x)是偶函数B.f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.10、已知函数f(x)={x2,x∈(−∞,0), lnx,x∈(0,1),−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有2个零点,则实数m可以是()A.−1B.0C.1D.2答案:ABC分析:转化为函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象,根据图象可得解.因为函数g(x)=f(x)−m恰有2个零点,所以函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象如图:由图可知,m=1或m≤0,结合选项,因此m可以为-1,0,1.故选:ABC.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、已知函数f(x)=1−2x1+2x,g(x)=lg(√x2+1−x),则()A.函数f(x)为偶函数B.函数g(x)为奇函数C.函数F(x)=f(x)+g(x)在区间[−1,1]上的最大值与最小值之和为0D.设F(x)=f(x)+g(x),则F(2a)+F(−1−a)<0的解集为(1,+∞)答案:BCD分析:根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案对于A:f(x)=1−2x1+2x ,定义域为R,f(−x)=1−2−x1+2−x=−1−2x1+2x=−f(x),则f(x)为奇函数,故A错误;对于B:g(x)=lg(√x2+1−x),定义域为R,g(−x)=lg(√(−x)2+1−(−x))=−lg(√x2+1−x)=−g(x),则g(x)为奇函数,故B正确;对于C :F (x )=f (x )+g (x ),f (x ),g (x )都为奇函数, 则F (x )=f (x )+g (x )为奇函数,F (x )=f (x )+g (x )在区间[−1,1]上的最大值与最小值互为相反数, 必有F (x )在区间[−1,1]上的最大值与最小值之和为0,故C 正确; 对于D :f (x )=1−2x 1+2x =−(2x +1−22x +1)=22x +1−1,则f (x )在R 上为减函数,g (x )=lg(√x 2+1−x)=√x 2+1+x,则g (x )在R 上为减函数,则F (x )=f (x )+g (x )在R 上为减函数, 若F (2a )+F (−1−a )<0即F (2a )<F (1+a ), 则必有2a >1+a ,解得a >1,即F (2a )+F (−1−a )<0的解集为(1,+∞),故D 正确; 故选:BCD12、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.13、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD 填空题14、已知0<a <1,化简:√a 43−2a +a 23=______. 答案:a 13−a 23分析:根据指数幂的基本运算结合指数函数的性质即可求解. 解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|,因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23.所以答案是:a 13−a 23. 15、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______.答案:16分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1=13−49+64−13+1=16. 所以答案是:16.16、若f (x )=1+a3x +1(x ∈R )是奇函数,则实数a =___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.解答题17、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min =u(1)=5+a >0,解得−5<a ≤−4,即a ∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.18、定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M >0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界,已知函数f(x)=14x+a 2x+1.(1)当a =-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 答案:(1)(1,+∞),函数f(x)在(-∞,0)上不是有界函数,理由见解析; (2)[-5,1].分析:(1)应用换元法及二次函数的性质求y =t 2-t +1在(1,+∞)上的值域,即知f(x)的值域,进而判断f(x)是否为有界函数.(2)将问题转化为−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,求a 的取值范围.(1)当a =-1时,y =f(x)=(12)2x −(12)x +1 (x <0),令t =(12)x ,x <0,∴t >1,y =t 2-t +1=(t −12)2+34,∴y >1,即函数f(x)在(-∞,0)上的值域为(1,+∞), ∴不存在常数M >0,使得|f(x)|≤M 成立. ∴函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3对x ∈[0,+∞)恒成立,即-3≤f(x)≤3对x ∈[0,+∞)恒成立, 令t =(12)x ,x ≥0,则t ∈(0,1].∴−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,即[−(t +4t)]max ≤a ≤(2t−t)min .设h (t )=−(t +4t ),p (t )=2t −t ,t ∈(0,1],∵h(t)在(0,1]上递增,p(t)在(0,1]上递减,∴h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1. ∴实数a的取值范围为[-5,1].。
高中数学必修一第四章指数函数与对数函数考点精题训练(带答案)

高中数学必修一第四章指数函数与对数函数考点精题训练单选题1、若2x=3,2y=4,则2x+y的值为()A.7B.10C.12D.34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x=3,2y=4,所以2x+y=2x⋅2y=3×4=12,故选:C2、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,900=18,故至少需要志愿者18名.50故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.3、已知函数f(x)=a x−2+1(a>0,a≠1)恒过定点M(m,n),则函数g(x)=n−m x不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:利用指数函数的性质求出m,n,得出g(x)的解析式,从而得出结论.∵f(x)=a x−2+1(a>0,a≠1)恒过定点(2,2),∴m=n=2,∴g(x)=2−2x ,∴g(x)为减函数,且过点(0,1), ∴g(x)的函数图象不经过第三象限. 故选:C .4、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果. 由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称,又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增,根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确. 故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f (−x )与f (x )的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.5、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12C .12,13,√3,54,D .13,12,54,√3, 答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .6、2021年10月16日,搭载神舟十三号载人飞船的长征二号F 遥十三运载火箭,在酒泉卫星发射中心成功发射升空,载人飞船精准进入预定轨道,顺利将3名宇航员送入太空,发射取得圆满成功.已知在不考虑空气阻力和地球引力的理想状态下,可以用公式v =v 0⋅ln Mm 计算火箭的最大速度v(m /s ),其中v 0(m /s )是喷流相对速度,m(kg )是火箭(除推进剂外)的质量,M(kg )是推进剂与火箭质量的总和,Mm 称为“总质比”.若某型火箭的喷流相对速度为1000m /s ,当总质比为625时,该型火箭的最大速度约为( )(附:lge ≈0.434,lg2≈0.301)A .5790m /sB .6219m /sC .6442m /sD .6689m /s 答案:C分析:根据对数的换底公式运算可得结果.v =v 0 lnM m=1000×ln625=1000×4lg5lg e=1000×4(1−lg2)lg e≈6442m/s .故选:C .7、下列函数中是偶函数且在区间(0,+∞)单调递减的函数是( ) A .f(x)=1|x |B .f(x)=(13)xC .f(x)=lg |x |D .f(x)=x −13答案:A分析:利用幂指对函数的性质逐一分析给定四个函数的单调性和奇偶性,可得结论. 解:f(x)=1|x |是偶函数且在区间(0,+∞)上单调递减,满足条件;f(x)=(13)x是非奇非 偶函数,不满足条件;f(x)=lg |x |是偶函数,但在区间(0,+∞)上单调递增,不满足条件; f(x)=x −13是奇函数不是偶函数,不合题意. 故选:A .8、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.多选题9、已知函数f(x)=lg(x2+ax−a−1),下列结论中正确的是()A.当a=0时,f(x)的定义域为(−∞,−1)∪(1,+∞)B.f(x)一定有最小值C.当a=0时,f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是{a|a≥−4}答案:AC分析:A项代入参数,根据对数型函数定义域求法进行求解;B项为最值问题,问一定举出反例即可;C项代入参数值即可求出函数的值域;D项为已知单调性求参数范围,根据二次函数单调性结合对数函数定义域求解即可.对于A ,当a =0时,f (x )=lg (x 2−1),令x 2−1>0,解得x <−1或x >1,则f (x )的定义域为(−∞,−1)∪(1,+∞),故A 正确;对于B 、C ,当a =0时,f (x )=lg (x 2−1)的值域为R ,无最小值,故B 错误,C 正确;对于D ,若f (x )在区间[2,+∞)上单调递增,则y =x 2+ax −a −1在[2,+∞)上单调递增,且当x =2时,y >0,则{−a2≤24+2a −a −1>0 ,解得a >−3,故D 错误. 故选:AC .10、已知n <m ,函数f (x )={log 12(1−x ),−1≤x ≤n22−|x−1|−3,n <x ≤m 的值域是[−1,1],则下列结论正确的是( ) A .当n =0时,m ∈(12,2]B .当n ∈[0,12)时,m ∈(n,2] C .当n ∈[0,12)时,m ∈[1,2]D .当n =12时,m ∈(12,2]答案:CD分析:先对分段函数去绝对值讨论单调性,作出y =log 12(1−x ),x ≥−1和y =22−|x−1|−3,x ≥−1的图象,n =0时,由图可得m 的范围,可判断A ;当n ∈[0,12)时先求出y =log 12(1−x ),−1≤x ≤n 的值域,进而可判断x ∈(n,m ]时,f (x )=1必有解,即可得m 的范围,可判断B ,C ;当n =12时,先计算f (x )=log 12(1−x )在[−1,12]上的值域,即可得y =22−|x−1|−3,n <x ≤m 的范围,进而可得m 的范围,可判断D .当x >1时,x −1>0,此时y =22−|x−1|−3=22−x+1−3=23−x −3单调递减,当−1<x <1时,x −1<0,此时y =22−|x−1|−3=22+x−1−3=21+x −3单调递增,所以y =22−|x−1|−3在(−1,1)上单调递增,在(1,+∞)上单调递减,所以当x =1时,y =22−|x−1|−3取得最大值,为22−3=1.作出y =log 12(1−x )与y =22−|x−1|−3在[−1,+∞)上的图象如图所示:对于A ,当n =0时,f (x )={log 12(1−x ),−1≤x ≤022−|x−1|−3,0<x ≤m,因为f (x )的值域为[−1,1],结合图象知m ∈[1,2],故A 不正确;对于B ,当n ∈[0,12),x ∈[−1,n ]时,1−x ∈[1−n,2],此时f (x )=log 12(1−x )∈[−1,log 12(1−n )],此时−1≤f (x )≤log 12(1−n )<1,因为f (x )的值域为[−1,1],则x ∈(n,m ]时,f (x )=1必有解,即22−|x−1|−3=1,解得x =1,由图知m ∈[1,2],故B 不正确,C 正确;对于D ,当n =12时,f (x )=log 12(1−x )在[−1,12]上单调递增,此时f (x )的最小值为f (−1)=log 122=−1,f (x )的最大值为f (12)=log 12(1−12)=1,要使f (x )的值域为[−1,1],由图知m ∈(12,2],故D 正确.故选:CD .小提示:关键点点睛:此题考查函数与方程的综合应用,考查分段函数的值域,解题的关键是根据题意作出f(x)的图象,结合图象逐个分析判断,考查数形结合的思想,属于较难题 11、已知正数x ,y ,z 满足3x =4y =6z ,则下列说法中正确的是( ) A .1x +12y=1zB .3x >4y >6zC .xy >2z 2D .x +y >(√32+√2)z答案:ACD分析:将已知条件转化为对数的形式,利用对数运算、商比较法、基本不等式等指数对选项进行分析,从而确定正确答案.正数x ,y ,z 满足3x =4y =6z ,设3x =4y =6z =t (t >1), 则x =log 3t ,y =log 4t ,z =log 6t .对于A ,1x +12y =log t 3+12log t 4=log t 6=1z ,故A 正确; 对于B ,3x =3log 3t ,4y =4log 4t ,6z =6log 6t , ∵3x 4y =3log 3t 4log 4t=34log 34<1,∴3x <4y , ∵4y 6z=4log 4t 6log 6t=23log 46<1,∴4y <6z ,∴3x <4y <6z ,故B 错误;对于C ,由1z=1x+12y>2√12xy(x ≠2y ),两边平方,可得xy >2z 2,故C 正确;对于D ,由xy >2z 2,可得x +y >2√xy >2√2z 2=2√2z >(√32+√2)z (x ≠y ),故D 正确. 故选:ACD 填空题12、里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为_________级. 答案:6分析:将A =1000,A 0=0.001代入等式M =lgA −lgA 0计算即可得解.将A =1000,A 0=0.001代入等式M =lgA −lgA 0得M =lg1000−lg0.001=lg106=6. 所以答案是:6.13、已知函数f (x )={2x +1,x ≤02,x >0 ,若f (a 2−2a )≤f (a −1),则实数a 的取值范围是_________.答案:[3−√52,+∞)分析:根据函数单调性分段处理即可得解.由题函数f (x )={2x +1,x ≤02,x >0在(−∞,0]单调递增,在(0,+∞)为常数函数,且f(0)=2若f(a2−2a)≤f(a−1)则a2−2a≤a−1≤0或a2−2a≤0≤a−1或{a 2−2a≥0a−1≥0则{a 2−3a+1≤0a≤1或{a2−2a≤00≤a−1或{a2−2a≥0a−1≥0解得:3−√52≤a≤1或1≤a≤2或a≥2,综上所述:a∈[3−√52,+∞)所以答案是:[3−√52,+∞)14、设x>0,y>0,若e x、e y的几何平均值为e(e是自然对数的底数),则x2、y2的算术平均值的最小值为__________.答案:1分析:利用指数的运算性质可得出x+y=2,再利用基本不等式可求得结果.由已知条件可得e x⋅e y=e x+y=e2,所以,x+y=2,因为x>0,y>0,由基本不等式可得x2+y2≥2xy,即2(x2+y2)≥x2+y2+2xy=(x+y)2=4,所以,x2+y22≥1,当且仅当x=y=1时,等号成立.因此,x2、y2的算术平均值的最小值为1.所以答案是:1.解答题15、数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1)对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n=nlog a M(n∈R);(2)请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值;(3)因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注lg2019≈3.305)答案:(1)见解析(2)1712(3)20192020的位数为6677解析:(1)根据指数与对数的转换证明即可.(2)根据对数的运算性质将真数均转换成指数幂的形式再化简即可.(3)分析lg20192020的值的范围再判断位数即可.(1)方法一:设x=log a M所以M=a x所以M n=(a x)n=a nx所以log a M n=nx=nlog a M,得证.方法二:设x=nlog a M所以xn=log a M所以a xn=M所以a x=M n所以x=log a M n所以nlog a M=log a M n方法三:因为a log a M n=M na nlog a M=(a log a M)n=M n 所以a log a M n=a nlog a M所以log a M n=nlog a M得证.(2)方法一:lg3 lg4(lg8lg9+lg16lg27)=lg3lg22(lg23lg32+lg24lg33)=lg32lg2(3lg22lg3+4lg23lg3) =lg32lg2⋅17lg26lg3=1712.方法二:lg3 lg4(lg8lg9+lg16lg27)=log43(log98+log2716) =log223(log3223+log3324)=12log23(32log32+43log32)=12log23⋅176log32=1712.(3)方法一:设10k<20192020<10k+1,k∈N∗所以k<lg20192020<k+1所以k<2020lg2019<k+1所以k<2020×3.305<k+1所以6675.1<k<6676.1因为k∈N∗所以k=6676所以20192020的位数为6677方法二:设20192020=N所以2020lg2019=lgN所以2020×3.305=lgN所以lgN=6676.1所以N=106676.1=100.1×106676因为1<100.1<10,所以N有6677位数,即20192020的位数为6677小提示:本题主要考查了对数的运算以及利用对数的运算求解数字位数的问题,需要取对数分析对数值进行分析,属于中档题.。
高中数学《指数函数图像与性质》精选练习(含详细解析)

高中数学《指数函数图像与性质》精选练习(含详细解析)一、选择题1.函数y=的定义域为( )A.RB.(-∞,+∞)C.(-∞,0)D.{x|x≠0,x∈R}2.定义运算:a·b=则函数f(x)=1·2x的图象大致为( )3.若函数y=(1-a)x是实数集R上的减函数,则实数a的取值范围是( )A.(-1,0)B.(0,1)C.(-2,0)D.(0,2)4.下列函数中,值域为的函数是( )A.y=B.y=C.y=D.y=5.若函数f=a x-1(a>0且a≠1)的定义域和值域都是[0,2],则实数a等于( )A.1B.C.1或D.26函数f(x)=a x-b的图象如图所示,其中a,b均为常数,则下列结论正确的是( )A.a>1,b>0B.a>1,b<0C.0<a<1,b>0D.0<a<1,b<02.已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中可能成立的关系式有( )A.①②③B.①②⑤C.①③⑤D.③④⑤二、填空题7.若函数f(x)=(a2-2a+2)(a+1)x是指数函数,则a= .8.函数y=2a x-2+1(a>0,且a≠1)的图象过定点.9.当x>0时,函数f(x)=的值总是大于1,则a的取值范围是. 【补偿训练】当x<0时,函数y=(2a-1)x的值总小于1,则a的取值范围是.【解析】由题意,2a-1>1,所以a>1.答案:a>110已知函数f(x)=a x+b(a>0,且a≠1),经过点(-1,5),(0,4),则f(-2)的值为.11.函数y=(a>0,且a≠1)的定义域是(-∞,0],则实数a的取值范围为.三、解答题(每小题10分,共20分)12.求下列函数的定义域和值域:(1)y=-1.(2)y=.13已知函数f(x)=a x-1(x≥0)的图象经过点,其中a>0且a≠1.(1)求a的值.(2)求函数y=f(x≥0)的值域.14.若y=(a-3)(a-2)x是指数函数,求函数f(x)=的定义域与值域..15.已知函数f(x)=-1.(1)作出f(x)的简图.(2)若关于x的方程f(x)=3m有两个解,求m取值范围.(2).参考答案与解析1【解析】选D.因为2x-1≠0,所以x≠0.2【解析】选A.f(x)=3【解析】选B.由于函数y=(1-a)x是实数集R上的减函数,则有0<1-a<1,解得0<a<1.4【解析】选D.y=中y>0且y≠1,y=中y可以为0,y=中y>1.5【解析】选B.由题意知或解得a=.6【解析】选D.f(x)=a x-b的图象是由y=a x的图象平移得到的,由图象可知f(x)在R上是递减函数,所以0<a<1,由y=a x过点(0,1)得知y=a x的图象向左平移|b|个单位得f(x)的图象,所以b<0.7【解析】由指数函数的定义得解得a=1.答案:1【解析】令x-2=0,解得x=2,则y=3,所以过定点(2,3).答案:(2,3)【解题指南】指数函数只有底数大于1时,才会有x>0时,函数值总大于1.9【解析】由题意知,a2-1>1,即a2>2,解得a>或a<-.答案:a>或a<-10【解析】由已知得解得所以f(x)=+3,所以f(-2)=+3=4+3=7.答案:711【解析】由题意,当x≤0时,a x≥1,所以0<a<1.答案:0<a<1【误区警示】本题由x≤0时,a x≥1,易得出a>1的错误答案.12【解析】(1)要使y=-1有意义,需x≠0,则>0且≠1,故-1>-1且-1≠0,故函数y=-1的定义域为,函数的值域为(-1,0)∪(0,+∞).(2)函数y=的定义域为实数集R,由于2x2≥0,则2x2-2≥-2,故0<≤9,所以函数y=的值域为(0,9].13【解析】(1)函数图象经过点,所以a2-1=,则a=.(2)由(1)知函数为f(x)=(x≥0),由x≥0,得x-1≥-1.于是0<≤=2,所以函数的值域为(0,2].14【解析】因为y=(a-3)(a-2)x是指数函数,所以解得a=4,所以f(x)=,由x+2≠0,得x≠-2,所以f(x)的定义域是∪,令t=,所以t≠0,即f(x)≠1,所以f(x)的值域是∪15【解析】(1)f(x)=如图所示.作出直线y=3m,当-1<3m<0时,即-<m<0时,函数y=f(x)与y=3m有两个交点,即关于x的方程f(x)=3m有两个解。
指数函数的性质及常考题型(含解析)

【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个
)
B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于
数
函
数
︶
如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)
:
(1)底数相同,指数不同:利用指数函数的单调性来判断;
培
优
篇
高
【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).
中
(1)求()的解析式;
数
(2)解不等式( + 3) > (4).
学
︵
指
数
函
数
︶
【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1
指
C.0 < < 1, > 1
D. > 1,0 < < 1
数
函
【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =
指数函数练习题及答案

指数函数练习题及答案指数函数是高中数学中的重要内容,它在数学和科学领域中有着广泛的应用。
本文将通过一些练习题来帮助读者更好地理解指数函数的概念和运算规则,并提供相应的答案。
1. 求解指数方程:2^x = 16解:将16写成2的幂次形式,即16 = 2^4,所以原方程可以写成2^x = 2^4。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到x = 4。
2. 简化指数表达式:(2^3)^4解:根据指数函数的性质,指数的乘法规则,可以将指数表达式简化为2^(3*4),即2^12。
3. 求解指数方程:3^(2x+1) = 9解:将9写成3的幂次形式,即9 = 3^2,所以原方程可以写成3^(2x+1) =3^2。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到2x+1 = 2。
解方程得到x = 1/2。
4. 求解指数方程:e^x = 10解:将10写成自然对数的底数e的幂次形式,即10 = e^ln(10),所以原方程可以写成e^x = e^ln(10)。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到x = ln(10)。
5. 求解指数方程:10^(2x-1) = 100解:将100写成10的幂次形式,即100 = 10^2,所以原方程可以写成10^(2x-1) = 10^2。
根据指数函数的性质,当底数相同时,指数相等,所以可以得到2x-1 = 2。
解方程得到x = 3/2。
通过以上的练习题,我们可以看到指数函数在解方程中的应用。
指数函数的特点是底数不同,函数的性质也会有所不同。
在实际问题中,指数函数可以用来描述物质的衰减、增长和变化等现象,具有很强的实用性。
除了以上的练习题,我们还可以通过绘制指数函数的图像来更好地理解其特点。
以y = 2^x为例,我们可以绘制出其图像,发现随着x的增大,y的值呈指数级增长,这是因为指数函数的增长率是逐渐加大的。
总结起来,指数函数是高中数学中的重要内容,通过练习题和图像的分析,我们可以更好地理解指数函数的概念和运算规则。
(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学指数函数测试题(含答案) 高一数学同步测试指数函数
一、选择题:
1.化简[3 ]的结果为()
A.5 B. C.- D.-5
2.化简的结果为()
A.a16 B.a8 C.a4 D.a2
3.设函数()
A.(-1,1) B.(-1,+ )
C. D.
4.设,则()
A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2
5.当x[-2,2 时,y=3-x-1的值域是()A.[-, 8] B.[-,8] C.( ,9) D.[,9]6.在下列图象中,二次函数y=ax2+bx+c与函数y=( )x 的图象可能是()
7.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()
A.(0,1) B.( ,1 ) C.(-,0) D.(0,+)
8.若,则等于()
A.2 -1 B.2-2 C.2 +1 D.+1
9.设f(x)满足f(x)=f(4-x),且当x>2时f(x)是增函数,则a=f(1.10.9),b=f(0.91.1),c=的大小关系是()A.a>b>c B.b>a>c C.a>c>b D.c>b>a
10.若集合,则MP= ()
A. B. C. D.
11.若集合S={y|y=3x,xR},T={y|y=x2-1,xR},则ST是()
A.S B.T C. D.有限集
12.下列说法中,正确的是()
①任取xR都有3x>2x
②当a>1时,任取xR都有ax>a-x
③y=( )-x是增函数
④y=2|x|的最小值为1
⑤在同一坐标系中,y=2x与y=2-x的图象对称于y 轴A.①②④ B.④⑤ C.②③④ D.①⑤
二、填空题:
13.计算:=.
14.函数在上的最大值与最小值的和为3,则.
15.函数y= 的值域是________.
16.不等式的解集是.
三、解答题:
17.已知函数f(x)=ax+b的图象过点(1,3),且它的反函
数f-1(x)的图象过(2,0)点,试确定f(x)的解析式.18.已知求的值.
19.求函数y=3 的定义域、值域和单调区间.
20.若函数 y=a2x+b+1(a>0且 a1,b为实数)的图象恒过定点(1,2),求b的值.
21.设02,求函数y= 的最大值和最小值.
22.设是实数,,试证明:对于任意在上为增函数.参考答案
一、选择题:BCDDAACADCAB
二、填空题:13. ,1 4.2,15.(0,1),16. .
三、解答题:
17.解析:由已知f(1)=3,即a+b=3①?
又反函数f-1(x)的图象过(2,0)点即f(x)的图象过(0,2)点.?
即f(0)=21+b=2?
b=1代入①可得a=2
因此f(x)=2x+1
18.解析:由可得x+x-1=7
=27
= 18,
故原式=2
19.解析:(1)定义域显然为(-,+).
(2) 是u的增函数,
当x=1时,ymax=f(1)=81,而y= >0.
(3)当x1时,u=f(x)为增函数,是u的增函数,由xuy
即原函数单调增区间为(-,1];
当x>1时,u=f(x)为减函数,是u的增函数,由xuy
即原函数单调减区间为[1,+ .
20.解析:∵x=-时,y=a0+1=2
y=a2x+b+1的图象恒过定点(-,2)
- =1,即b=-2
21.解析:设2x=t,∵02,14
原式化为:y= (t-a)2+1
当a1时,ymin= ;
当1<a 时,ymin=1,ymax= ;
当a4时,ymin= .
22.证明:设,则
,
由于指数函数在上是增函数,且,所以即,又由,得,,即,
所以,对于任意在上为增函数.。