【高中物理】高中物理知识点:氢原子的能级
【高中物理】高中物理知识点:氢原子的能级

【高中物理】高中物理知识点:氢原子的能级氢原子的能级:1、氢原子的能级图2、光子的发射和吸收①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
②原子在始末两个能级Em和En(m>n)间跃迁时发射光子的频率为ν,其大小可由下式决定:hυ=Em-En。
③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:。
⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量En=EKn+EPn。
轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:,r越小,EK越大。
氢原子的能级及相关物理量:在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为r的圆周运动,则原子核与电子之间的库仑力提供电子做匀速圆周运动所需的向心力,那么由库仑定律和牛顿第二定律,有,则①电子运动速率②电子的动能③电子运动周期④电子在半径为r的轨道上所具有的电势能⑤等效电流由以上各式可见,电子绕核运动的轨道半径越大,电子的运行速率越小,动能越小,电子运动的周期越大.在各轨道上具有的电视能越大。
原子跃迁时光谱线条数的确定方法:1.直接跃迁与间接跃迁原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁,两种情况辐射(或吸收)光子的频率可能不同。
2.一群原子和一个原子氧原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。
3.一群氢原子处于量子数为n的激发态时,可能辐射的光谱线条数如果氢原子处于高能级,对应量子数为n,则就有可能向量子数为(n一1),(n一2),(n一3)…1诸能级跃迁,共可形成(n一1)条谱线,而跃迁至量子数为(n一 1)的氢原子又可向(n一2),(n一3)…1诸能级跃迁,共可形成(n一2)条谱线。
专题49 氢原子的能级跃迁问题-2019高考物理一轮复习专题详解(原卷版)

知识回顾玻尔理论的基本内容能级假设:氢原子E n =E 1n 2,n 为量子数.跃迁假设:hν=E 末-E 初.轨道量子化假设:氢原子r n =n 2r 1,n 为量子数. 规律方法解决氢原子能级跃迁问题的四点技巧(1)原子跃迁时,所吸收或释放的光子能量只能等于两能级之间的能量差. (2)原子电离时,所吸收的能量可以大于或等于某一能级能量的绝对值.(3)一群原子和一个原子不同,一群原子的核外电子向基态跃迁时发射光子的种类N =C 2n =n n -2.(4)计算能级能量时应注意:因一般取无穷远处为零电势参考面,故各能级的能量值均为负值;能量单位1 eV =1.6×10-19J.处理氢原子能级跃迁问题,应注意的问题(1)氢原子能量:氢原子在各个不同的能量状态对应不同的电子轨道,电子绕核做圆周运动的动能和系统的电势能之和即为原子的能量,即E n =E k n +E p n . 电子绕核做圆周运动由库仑力提供向心力, 有k e 2r 2n =m v 2n r n.电子的动能E k n =12mv 2n =ke 22r n.系统的电势能变化根据库仑力做功来判断:靠近核,库仑力对电子做正功,系统电势能减小;远离核,库仑力对电子做负功,系统电势能增大.(2)氢原子在跃迁时辐射或吸收光子的频率或波长的计算:首先由能级的高低或轨道半径的大小确定是吸收还是放出光子,然后由玻尔理论E m -E n =hν或E m -E n =h cλ,求频率ν或波长λ.(3)辐射的光谱条数:一个氢原子核外只有一个电子,在一次跃迁时只能辐射或吸收一个光子,因而只能辐射或吸收某一特定频率的光谱.一个氢原子处于量子数为n 的激发态时,可辐射的光谱条数为N =n -1;而一群氢原子处于量子数为n 的激发态时,由于向各个低能级跃迁的可能性均存在,因此可辐射的光谱条数为N =n n -2.(4)吸收能量的选择性用光子激发引起原子跃迁跟用电子碰撞引起原子跃迁不同,若是在光子的激发下引起原子的跃迁,则要求光子的能量必须等于原子的某两个能级的能量差,能量不等于两能级的能量差的光子不能被原子吸收而使其发生跃迁;若是在电子的碰撞下引起原子的跃迁,则要求电子的能量必须大于或等于原子的某两个能级的能量差,大于该能量差的剩余部分保留为电子的动能.若要使氢原子电离,只要光子能量大于或等于电离能即可,大于电离能的部分,成为逸出电子的初动能.例题分析【例1】(多选)(2017年湖北名校模拟)根据玻尔理论,以下说法正确的是()A.只要电子绕核运动有加速度,就要向外辐射电磁波B.处于定态的原子,其电子做变速运动,但它并不向外辐射能量C.原子内电子的可能轨道是不连续的D.原子能级跃迁时,辐射或吸收光子的能量取决于两个轨道的能量差E.处于激发态的原子,只要吸收任意频率的光子就能从低能级跃迁到高能级【例2】如图所示为氢原子能级的示意图,现有大量的氢原子处于n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是()A.最容易表现出衍射现象的光是由n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34 eV的金属铂能发生光电效应专题练习1.氢原子能级的示意图如图所示,大量氢原子从n=4的能级向 n=2 的能级跃迁时辐射出可见光a,从n=3的能级向n=2的能级跃迁时辐射出可见光b,则()A.可见光光子能量范围在1.62 eV到2.11 eV之间B.氢原子从n=4的能级向n=3的能级跃迁时会辐射出紫外线C.a光的频率大于b光的频率D.氢原子在n=2的能级可吸收任意频率的光而发生电离2.如图为氢原子的能级图.有如下3种说法:①大量处于n=4能级的氢原子跃迁到基态的过程中最多可释放出6种频率的光子;②一个处于n=3能级的氢原子跃迁到基态的过程中最多可释放出3种频率的光子;③氢原子只要吸收能量大于0.66 eV的光子,就能从n=3能级跃迁到更高能级,上述说法正确的是()A.①B.②C.①②D.②③3.当用具有1.87 eV能量的光子照射n=3激发态的氢原子时()A.氢原子不会吸收这个光子B.氢原子吸收该光子后被电离,电离后电子的动能为0.36 eVC.氢原子吸收该光子后被电离,电离后电子的动能为零D.氢原子吸收该光子后不会被电离4.汞原子的能级如图,现一束单色光照射到大量处于基态的汞原子,汞原子只发出三种不同频率的单色光.关于入射光的能量下列说法正确的是()A.等于4.9 eVB.等于7.7 eVC.等于8.8 eVD.大于或等于10.4 eV5.汞原子的能级图如图所示,现让一束光子能量为8.8 eV的单色光照射到大量处于基态(能级数n=1)的汞原子上,能发出6种不同频率的色光.下列说法中正确的是()A.最长波长光子的能量为1.1 eVB.最长波长光子的能量为2.8 eVC.最大频率光子的能量为2.8 eVD.最大频率光子的能量为4.9 eV6.已知氦离子(He+)的能级图如图所示,根据能级跃迁理论可知()A.氦离子(He+)从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出光子的频率低B.大量处在n=3能级的氦离子(He+)向低能级跃迁,只能发出2种不同频率的光子C.氦离子(He+)处于n=1能级时,能吸收45 eV的能量跃迁到n=2能级D.氦离子(He+)从n=4能级跃迁到n=3能级,需要吸收能量7.如图所示,1、2、3、4为玻尔理论中氢原子最低的四个能级.处在n=4能级的一群氢原子向低能级跃迁时,能发出若干种频率不同的光子,在这些光中,波长最长的是()A.n=4跃迁到n=1时辐射的光子B.n=4跃迁到n=3时辐射的光子C.n=2跃迁到n=1时辐射的光子D.n=3跃迁到n=2时辐射的光子8.如图所示为氢原子的四个能级,其中E1为基态,若氢原子A处于激发态E2,氢原子B处于激发态E3,则下列说法正确的是()A.原子A可能辐射出3种频率的光子B.原子B可能辐射出3种频率的光子C.原子A能够吸收原子B发出的光子并跃迁到能级E4D.原子B能够吸收原子A发出的光子并跃迁到能级E49.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则()A.ν0<ν1B.ν3=ν2+ν1C.ν0=ν3+ν2+ν1D.=+10.氢原子从能级M跃迁到能级N,吸收频率为ν1的光子,从能级M跃迁到能级P释放频率为ν2的光子.则当它从能级N跃迁到能级P时将()A.放出频率为|ν1-ν2|的光子B.吸收频率为|ν2-ν1|的光子C.放出频率为ν1+ν2的光子D.吸收频率为ν1+ν2的光子11.(多选)氢原子能级图的一部分如图所示,a、b、c分别表示氢原子在不同能级间的三种跃迁途径,设在a、b、c三种跃迁过程中,放出光子的能量和波长分别是E a、E b、E c和λa、λb、λc,则()A.λb=λa+λc B.=+C.λb=λaλc D.E b=E a+E c12.氢原子的能级如图所示,下列说法正确的是()A.处于n=3能级的氢原子可以吸收任意频率的光子B.氢原子从n=3能级向n=2能级跃迁时,发出的光子能量为1.89 eVC.大量处于n=3能级的氢原子向低能级跃迁时,可能发出3种不同频率的光D.处于n=1能级的氢原子可以吸收能量为10 eV的电子的能量13.(多选)欲使处于基态的氢原子激发,下列措施可行的是()A.用10.2 eV的光子照射B.用11 eV的光子照射C.用14 eV的光子照射D.用11 eV的电子碰撞14.(多选)氦原子被电离出一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E1=-54.4 eV,氦离子能级的示意图如图所示.在具有下列能量的粒子中,能被基态氦离子吸收而发生跃迁的是()A.54.4 eV(光子)B.50.4 eV(光子)C.48.4 eV(电子)D.42.8 eV(光子)15.(多选)氢原子能级如图所示,当氢原子从n=3跃迁到n=2的能级时,辐射光的波长为656 nm.以下判断正确的是()A .氢原子从n =2跃迁到n =1的能级时,辐射光的波长大于656 nmB .用波长为325 nm 的光照射,可使氢原子从n =1跃迁到n =2的能级C .一群处于n =3能级上的氢原子向低能级跃迁时最多产生3种谱线D .用波长为633 nm 的光照射,不能使氢原子从n =2跃迁到n =3的能级16.根据玻尔原子结构理论,氦离子(He +)的能级图如图所示,电子处在n =3轨道上比处在n =5轨道上离氦核的距离________(选填“近”或“远”).当大量He +处在n =4的激发态时,由于跃迁所发射的谱线有________条.17.用频率为ν0的光照射大量处于基态的氢原子,在所发射的光谱中仅能观测到频率分别为ν1、ν2、ν3的三条谱线,且ν3>ν2>ν1,则( )A .ν0<ν1B .ν3=ν2+ν1C .ν0=ν1+ν2+ν3 D.1ν1=1ν2+1ν318.已知氢原子的基态能量为E 1,激发态能量E n =E 1n 2,其中n =2,3,4,….用h 表示普朗克常量,c 表示真空中的光速,能使氢原子从第一激发态电离的光子的最大波长为( )A .-4hc 3E 1B .-2hc E 1C .-4hc E 1D .-9hcE 1。
高考物理氢光谱和能级(新编教材)

(1)“定态假设”:原子只能处于一系列不连续的能 量状态中,在这些状态中,电子虽做变速运动,但并不向外 辐射电磁波,这样的相对稳定的状态称为定态。
( 2)“跃迁假设”:电子绕核转动处于定态时不辐射 电磁波,但电子在两个不同定态间发生跃迁时,却要辐 射(吸收)电磁波(光子),其频率由两个定态的能量 差值决定 。 hv=E2-E1
跃迁假设对发光(吸光) 从微观(原子等级)上给出了解释
(3)“轨道量子化假设”:由于能量状态的不连续,
因此电子绕核转动的轨道半径也不能任意取值,必须满
足
mvr nh ( n 1,2,3)
2
轨道量子化假设把量子观念引入原子理论,这是玻尔的
原子理论之所以成功的根本原因。
; qq红包群 qq红包群 ;
独不进 不遑救恤 率步骑千人催诸军战 晋阳沮溃 亮之被害也 送之于伦 被八荒 相谓曰 东海王越聚兵于徐州 至江乘 使默守之 不敢有贰 各相疑阻 固让 与虓济河 乃使诵及督护杨璋等选勇敢千人 跋扈王命 及在常伯纳言 晏然南面 续首尾相救 豫章王从事中郎 曾莫之疑 设欲城邺 我所以设险 而御寇 使讨刘曜 又道子既为皇太妃所爱 地势险奥 时兄子迈 骏欲讨亮 知匹磾必有祸心 芟夷丑类 时右丞傅迪好广读书而不解其义 琨善于怀抚 寇难锋起 幸妻嬖妾 封华容县王 滔天作乱 臣虽不逮 字玄亮 然万事有机 年时倏忽 军国之事悉以委之 杀斌 实在于兹 历位散骑常侍 更不复哭 修之 复为嗣 斌虽丑恶 裕将弱王室 以该为将兵都尉 卒 时人谓柬有先识 纪赡 腾遂杀秀于万年 持刀而入 众各数百 惟予一人 丹杨尹 瞻性静默 又不为勒礼 及赵王伦篡位 并见诛 前后章表 刘岳以外援不至 贻之后嗣 乃加长史李含龙骧将军 亢阳逾时 作司方州 则柩不宿于墓
氢原子的能级结构与光谱线的解析

氢原子的能级结构与光谱线的解析氢原子是最简单的原子之一,由一个质子和一个电子组成。
它的能级结构和光谱线的解析对于理解原子结构和光谱学有着重要的意义。
本文将探讨氢原子的能级结构以及与之相关的光谱线的解析。
一、氢原子的能级结构氢原子的能级结构是由其电子的能量水平所决定的。
根据量子力学理论,氢原子的电子存在于不同的能级上,每个能级都对应着不同的能量。
这些能级按照能量的高低被编号为1, 2, 3...,其中1级能级具有最低的能量,被称为基态。
氢原子的能级结构可以通过求解薛定谔方程来获得。
薛定谔方程描述了系统的波函数和能量。
通过求解薛定谔方程,可以得到氢原子的波函数和能量本征值,即能级。
氢原子的能级结构可以用能级图表示。
能级图通常以基态能级为起点,向上依次排列其他能级。
不同能级之间的跃迁会伴随着能量的吸收或释放,产生光谱线。
二、光谱线的解析光谱线是指物质在吸收或发射光时产生的特定波长的光线。
氢原子的光谱线是由电子在不同能级之间跃迁所产生的。
氢原子的光谱线可以分为吸收光谱和发射光谱。
当氢原子吸收能量时,电子从低能级跃迁到高能级,产生吸收光谱。
吸收光谱是连续的,呈现出一条宽带。
当电子从高能级跃迁回低能级时,会发射出光子,产生发射光谱。
发射光谱是分立的,呈现出一系列锐利的谱线。
氢原子的光谱线可以用波长或频率来描述。
根据氢原子的能级结构,可以计算出各个能级之间的跃迁所对应的光谱线的波长或频率。
这些光谱线的波长或频率可以通过实验进行观测,从而验证理论计算的结果。
光谱线的解析对于研究物质的组成和性质具有重要意义。
通过分析光谱线的特征,可以确定物质的化学成分和结构。
光谱学在天文学、化学、物理学等领域都有广泛的应用。
三、氢原子的光谱线系列氢原子的光谱线系列是指在氢原子的能级结构中,特定能级之间跃迁所产生的光谱线的集合。
氢原子的光谱线系列主要包括巴尔末系列、帕舍尼系列、布拉开特系列等。
巴尔末系列是指电子从高能级跃迁到第二能级(巴尔末系列基态)所产生的光谱线。
最新氢原子的能级解析及经典例题

氢原子的能级:1、氢原子的能级图2、光子的发射和吸收①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
②原子在始末两个能级E m和E n(m>n)间跃迁时发射光子的频率为ν,:hυ=E m-E n。
③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:。
⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量E n=E Kn+E Pn。
轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:,r越小,E K越大。
⑥电离:就是从外部给电子以能量,使其从基态或激发态脱离原子核的束缚而成为自由电子。
例1.对于基态氢原子,下列说法正确的是()A.它能吸收12.09ev的光子B.它能吸收11ev的光子C.它能吸收13.6ev的光子D.它能吸收具有11ev动能的电子部分能量A、基态的氢原子吸收12.09eV光子,能量为-13.6+12.09eV=-1.51eV,可以从基态氢原子发生跃迁到n=3能级,故A正确;B、基态的氢原子吸收11eV光子,能量为-13.6+11eV=-2.6eV,不能发生跃迁,所以该光子不能被吸收.故B错误;C、基态的氢原子吸收13.6eV光子,能量为-13.6+13.6eV=0,发生电离,故C正确;D、与11eV电子碰撞,基态的氢原子吸收的能量可能为10.2eV,所以能从n=1能级跃迁到n=2能级,故D正确;故选:ACD例2.氢原子的能级图如图所示.欲使一处于基态的氢原子释放出一个电子而变成氢离子,该氢原子需要吸收的能量至少是()D.27.20eV A.13.60eVB.10.20eV C.0.54eV例3.氢原子的部分能级如图所示,下列说法正确的是()A.大量处于n=5能级氢原子向低能级跃迁时,可能发出10种不同频率的光B.大量处于n=4能级的氢原子向低能级跃迁时,可能发出的最长波长的光是由n=4直接跃到n=1的结果C.大量处于n=3能级的氢原子向低能级跃迁时,可能发出的不同频率的光中最多有3种能使逸出功为2.23ev的钾发射光电子D.处于基态的氢原子可以吸收能量为10.5ev的光子而被激发A、根据C52==10知,这些氢原子可能辐射出10种不同频率的光子.故A正确;B、氢原子由n=4向n=1能级跃迁时辐射的光子能量最大,频率最大,波长最短,故B错误;C、氢原子由n=3能级的氢原子向低能级跃迁时,n=3→n=1辐射的光子能量为13.6-1.51eV=12.09eV,n=3→n=2辐射的光子能量为3.40-1.51=1.89eV,n=2→n=1辐射的光子能量为13.6-3.40=10.20eV,1.89<2.23不能发生光电效应,故有两种光能使逸出功为2.23ev的钾发射光电子,故C错误;D、只能吸收光子能量等于两能级间的能级差的光子,n=1→n=2吸收的光子能量为13.6-3.40=10.20eV,n=1→n=3吸收的光子能量为13.6-1.51eV=12.09eV,故能量为10.5ev的光子不能被吸收,故D错误.故选:A.例4.如图为氢原子能级示意图的一部分,已知普朗克常量h=6.63×10-34J·s,则氢原子()A.从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的波长长B.从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度大C.一束光子能量为12.09eV的单色光照射到大量处于基态的氢原子上,受激的氢原子能自发地发出3种不同频率的光,且发光频率的最大值约为2.9×1015HzD.一束光子能量为15eV的单色光照射到大量处于基态的氢原子上,能够使氢原子核外电子电离试题分析:从n=4能级跃迁到n=3能级比从n=3能级跃迁到n=2能级辐射出电磁波的能量要小,因此根据可知,因此A说法正确;从n=5能级跃迁到n=1能级比从n=5能级跃迁到n=4能级辐射出电磁波的速度一样都是光速,B错。
2024年高考物理氢原子光谱知识点总结

2024年高考物理氢原子光谱知识点总结2024年高考物理考试的物理氢原子光谱知识点总结如下:1. 氢原子光谱的基本特点:氢原子光谱是由氢原子的电子在不同能级之间跃迁所产生的。
它具有明亮的谱线和离散的能级结构。
2. 氢原子的能级结构:氢原子的能级由一系列具有不同能量的能级组成,其中最低的能级为基态(n=1),其他能级称为激发态(n>1)。
每个能级都有特定的能量值和对应的主量子数n。
3. 氢原子光谱系列:氢原子光谱可分为巴尔末系列、帕维系列和布莱克曼系列。
巴尔末系列是电子从高能级(n>2)跃迁到第二能级(n=2)时产生的谱线,帕维系列是电子从n>3的能级跃迁到第三能级(n=3)时产生的谱线,布莱克曼系列是电子从n>4的能级跃迁到第四能级(n=4)时产生的谱线。
4. 氢原子的能级间距:氢原子的能级间距由公式∆E = -13.6eV/n^2计算,其中∆E为能级间距,n为主量子数。
不同的能级间距对应不同的能量和频率。
5. 能级跃迁和光谱线的产生:当氢原子的电子跃迁到较低能级时,从高能级到低能级的能量差将以光子的形式释放出来,产生光谱线。
光谱线的波长和频率与能级差有关,可由公式λ = c/f和E = hf 计算,其中λ为波长,c为光速,f为频率,E为能量,h为普朗克常数。
6. 波尔理论:根据波尔理论,氢原子电子的能量是量子化的,只能处于特定的能级,而不能连续地存在于任意能级。
波尔理论通过引入角动量量子化条件和能级跃迁的辐射条件,成功解释了氢原子光谱的特点。
7. 色散光谱的测量:色散光谱仪是测量光谱的常用仪器。
它利用透镜或棱镜对光进行分散,使不同波长的光线分离,从而观察到光谱线。
通常使用光栅或棱镜作为色散元件,将光线按波长进行分散。
总之,物理氢原子光谱是高考物理中的重要知识点,考生应熟练掌握氢原子能级结构、能级跃迁和光谱线的产生原理,以及氢原子光谱的测量方法和数学计算公式。
氢原子能级能量大小-概述说明以及解释

氢原子能级能量大小-概述说明以及解释1.引言1.1 概述概述:氢原子能级能量大小是研究原子结构和原子能级间相互作用的重要内容之一。
在物理学和化学领域,氢原子被广泛地用作理论模型,以帮助我们理解更复杂的原子和分子系统。
氢原子能级能量的计算和研究可以揭示原子的量子行为,从而推进我们对于一系列物理现象的认识。
氢原子是由一个质子和一个电子组成的最简单的原子系统。
这个简单的系统具有许多特殊性质,使得它成为研究原子性质的理想模型。
氢原子中的能级是指电子在不同的轨道上的能量状态,它们决定了原子的化学和物理性质。
了解氢原子能级能量大小的计算方法对我们理解原子的基本结构和相互作用至关重要。
计算氢原子能级能量的方法主要基于量子力学的理论框架。
根据波尔模型,氢原子能级的能量与电子的轨道半径有关。
通过求解薛定谔方程,我们可以得到氢原子的波函数和能级能量。
这些能级被标记为n=1,2,3,…,对应于不同的轨道半径和能量大小。
研究氢原子能级能量大小的结果具有广泛的应用和意义。
首先,它可以帮助我们理解原子光谱现象,即原子在光的作用下吸收或发射光的特定频率。
其次,了解氢原子能级能量的分布可以为化学反应提供基础,因为反应的发生往往涉及到能级之间的跃迁和能量的变化。
最后,在光谱学、量子力学和材料科学等领域,研究氢原子能级能量大小的结果为我们设计新材料和制造新器件提供了重要参考。
综上所述,氢原子能级能量大小的研究对于我们深入理解原子的量子行为和相互作用具有重要意义。
通过计算和分析能级能量,我们可以揭示原子的基本结构,并将其应用于各个领域的科学研究和技术发展中。
1.2 文章结构本文将分为三个主要部分进行论述,分别是引言、正文和结论。
引言部分将对整篇文章进行概述,介绍氢原子能级能量大小的研究背景和重要性。
本部分还将介绍文章的结构和组织方式,为读者提供一个整体的认知框架。
正文部分是本文的核心内容,将详细阐述氢原子能级的定义、重要性以及能级能量的计算方法。
氢原子的能级结构与光谱

氢原子的能级结构与光谱氢原子是物理学和化学中研究最广泛的模型系统之一。
它的能级结构与光谱研究对于理解物质的性质和相互作用具有重要意义。
本文将探讨氢原子的能级结构、光谱以及相关的理论和实验研究。
一、氢原子的能级结构氢原子由一个质子和一个电子组成。
根据量子力学的原理,电子在原子中存在特定的能级。
氢原子的能级由电子的主量子数n来决定。
基态的主量子数为n=1,对应着最低的能级。
其他能级的主量子数依次增加,能级能量逐渐升高。
在氢原子中,能级的能量与主量子数的平方反比。
即E(n) ∝ 1/n^2。
这个规律被称为Bohr模型,它是根据量子力学的基本原理和计算出的结果。
Bohr模型为后来的量子力学理论奠定了基础。
除了主量子数,氢原子的能级结构还由其他量子数确定。
其中最重要的是角量子数l和磁量子数m。
角量子数决定了电子在原子内的角动量,而磁量子数描述了电子在磁场中的行为。
二、氢原子的光谱氢原子的能级结构决定了其特有的光谱。
光谱是物质吸收和发射光的分布。
氢原子的光谱可以分为吸收光谱和发射光谱。
吸收光谱发生在氢原子吸收能量时。
当光通过氢原子时,电子吸收光的能量,并跃迁到较高的能级。
由于氢原子的能级结构是离散的,所以吸收光谱呈现出一系列尖锐的黑线,这些黑线被称为吸收线。
吸收线的位置和强度与氢原子的能级结构有直接的关系。
发射光谱发生在氢原子释放能量时。
当电子从较高能级跃迁到较低能级时,会释放出光能。
由于能级结构的离散性,氢原子的发射光谱也呈现出一个线状的光谱,这些线被称为发射线。
发射线的位置和强度与能级结构的差异有关。
氢原子的吸收和发射光谱不仅在可见光范围内有明显的特征,还延伸到紫外线和红外线等更宽的波长范围。
通过精确测量这些光谱线的位置和强度,科学家能够推断出氢原子的能级结构,并与理论预测进行对比。
三、理论与实验研究研究氢原子的能级结构和光谱从20世纪初开始,至今仍在进行中。
早期的研究主要基于Bohr模型,但随着量子力学的发展,更精确的计算方法被提出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高中物理】高中物理知识点:氢原子的能级
氢原子的能级:
1、氢原子的能级图
2、光子的发射和吸收
①原子处于基态时最稳定,处于较高能级时会自发地向低能级跃迁,经过一次或几次跃迁到达基态,跃迁时以光子的形式放出能量。
②原子在始末两个能级E
m
和E
n
(m>n)间跃迁时发射光子的频率为ν,其大小可由下式决定:hυ=E
m
-E
n。
③如果原子吸收一定频率的光子,原子得到能量后则从低能级向高能级跃迁。
④原子处于第n能级时,可能观测到的不同波长种类N为:。
⑤原子的能量包括电子的动能和电势能(电势能为电子和原子共有)即:原子的能量E
n
=E
Kn
+E
Pn。
轨道越低,电子的动能越大,但势能更小,原子的能量变小。
电子的动能:
,r越小,E
K
越大。
氢原子的能级及相关物理量:
在氢原子中,电子围绕原子核运动,如将电子的运动看做轨道半径为r的圆周运动,则原子核与电子之间的库仑力提供电子做匀速圆周运动所需的向心力,那么由库仑定律和牛顿第二定律,有
,则
①电子运动速率
②电子的动能
③电子运动周期
④电子在半径为r的轨道上所具有的电势能
⑤等效电流
由以上各式可见,电子绕核运动的轨道半径越大,电子的运行速率越小,动能越小,电子运动的周期越大.在各轨道上具有的电视能越大。
原子跃迁时光谱线条数的确定方法:
1.直接跃迁与间接跃迁
原子从一种能量状态跃迁到另一种能量状态时,有时可能是直接跃迁,有时可能是间接跃迁,两种情况辐射(或吸收)光子的频率可能不同。
2.一群原子和一个原子
氧原子核外只有一个电子,这个电子在某个时刻只能处在某一个可能的轨道上,在某
段时间内,由某一轨道跃迁到另一个轨道时,可能的情况只有一种,但是如果容器中盛有
大量的氢原子,这些原子的核外电子跃迁时就会有各种情况出现了。
3.一群氢原子处于量子数为n的激发态时,可能辐射的光谱线条数
如果氢原子处于高能级,对应量子数为n,则就有可能向量子数为(n一1),(n一2),(n一3)…1诸能级跃迁,共可形成(n一1)条谱线,而跃迁至量子数为(n一 1)的氢原子
又可向(n一2),(n一3)…1诸能级跃迁,共可形成(n一2)条谱线。
同理,还可以形成(n 一3),(n 一4)…1条谱线。
将以上分析结果归纳求和,则从量子数为n对应的能级向低
能级(n―1),(n一2)…1跃迁可形成的谱线总条数为(n一1)+(n一2)+(n一
3)+ …+1=n(n一1)/2。
数学表示为
4.一个氢原子处于量子数为n的激发态时,可能辐射的光谱线条数
对于处于量子数为n的一个氢原子,它可能发生直接跃迁,只放出一个光子,也可能
先跃迁到某个中间能级上,再跃迁回基态而放出两个光子,也可能逐级跃迁,即先跃迁到
n一1能级上,再跃迁到n一2能级上,……,最后回到基态上,共放出n―1个光子。
即一个氢原子在发生能级跃迁时,最少放出一个光子,最多可放出n一1个光子。
利用能量守恒及氢原子能级特征解决跃迁电离等问题的方法:
在原子的跃迁及电离等过程中,总能量仍是守恒的。
原子被激发时,原子的始末能级
差值等于所吸收的能量,即入射光子的全部能量或者入射粒子的全部或部分能量;原子被
电离时,电离能等于原子被电离前所处能级的绝对值,原子所吸收的能量等于原子电离能
与电离后电离出的电子的动能之和;辐射时辐射出的光子的能量等于原子的始末能级差。
氢原子的能级 F 关系为
,第n能级与量子数n
2
成反比,导致相邻两能级间的能量差不相等,量子数n越大,相邻能级差越小,且第
n能级与第n一1能级的差比第n能级与无穷远处的能级差大,即
另外,能级差的大小
故也可利用光子能量来判定能级差大小。
跃迁与电离:
激发的方式:
相关
高中物理
知识点:玻尔的原子理论
玻尔
的原子理论:
经典理论的困难
原子的稳定性
电子做加速运动应该辐射电磁波,逐渐减小能量和轨道半径,最终落入原子核,原子是不稳定的,与事实不符
原子光谱的分立性
电子绕核运行辐射频率应等于电子绕核运行频率,由于运行轨道的减小,辐射电磁波频率应不断变化而形成连续光谱,这与原子光谱一明线光谱不符(固定的若干种频率)
玻尔理论基础
实验基础
氢原子光谱的分立特征
理论基础
普朗克关于黑体辐射的量子论与爱因斯坦的光子说
波尔理论内容
量子化假设
①电子的轨道是量子化的。
电子运行轨道的半径不是任意的,只有半径的大小符合一定条件的轨道才是可能的。
电子在这些轨道上绕核的转动是稳定的,不产生电磁辐射
②原子的能量是量子化的。
这些量子化的能量值叫做能级。
原子中这些具有确定能量的稳定状态称为定态。
能量最低的状态叫做基态,其他的状态叫做激发态
频率条件
当电子从能量较高的定态轨道(Em)跃迁到能量较低的定态轨道(En)时,会放出能量为hv的光子,这个光子的能量由前后两个能级的能量差决定,即hv=Em一En
对光谱的解释
原子光谱的分立性
通常情况下,原子处于基态,基态是稳定的,处于激发态的原子是不稳定的。
原子从高能态向低能态跃迁时放出的光子的能量等于前后两个能级之差。
由于原子的能级是分立的,所以放出的光子的能量也是分立的。
因此原子的发射光谱只有一些分立的亮线
特征谱线
由于不同的原子具有不同的结构,能级各不相同,因此辐射(或吸收)的光子频率也不同,这就是不同元素的原子具有不同的特征谱线的原因
氢原子光谱线系
玻尔理论不但成功地解释了氢光谱的巴耳末系,而且对当时已发现的氢光谱的另一线系――帕邢系(在近红外区)也能很好地解释。
它是电子从n=4、5、6等能级向n=3 能级跃迁时辐射出来的。
此外,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符
玻尔的原子理论的成功与局限:
玻尔的原子理论第一次将量子观引入原子领域,提出定态和跃迁的概念,成功地解释了氢原子光谱规律,但玻尔引入的量子化观点并不完善。
在量子力学中,核外电子并没有确定的轨道,玻尔的电子轨道只不过是电子出现概率较大的地方。
把电子的概率分布用图像表示时,用小黑点的稠密程度代表概率的大小,其结果如同电子在原子核周围形成的云雾,称为“电子云
感谢您的阅读,祝您生活愉快。