传热学上机C程序源答案之一维非稳态导热的数值计算
传热学传热学--第三章 第三节 一维非稳态导热问题

传热学--第三章第三节一维非稳态导热问题§3 — 3 一维非稳态导热的分析解本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应用。
如何理解无限大物体,如:当一块平板的长度、宽度>> 厚度时,平板的长度和宽度的边缘向四周的散热对平板内的温度分布影响很少,以至于可以把平板内各点的温度看作仅是厚度的函数时,该平板就是一块“无限大”平板。
若平板的长度、宽度、厚度相差较小,但平板四周绝热良好,则热量交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题。
一、无限大平板的分析解已知:厚度的无限大平板,初温t0,初始瞬间将其放于温度为的流体中,而且>t0,流体与板面间的表面传热系数为一常数。
试确定在非稳态过程中板内的温度分布。
解:如图3-5 所示,平板两面对称受热,所以其内温度分布以其中心截面为对称面。
对于x 0 的半块平板,其导热微分方程:(0<x< , )定解条件:t(x,0)= t0(0 x )(边界条件)(边界条件)引入过余温度:则(0<x< , )(3-9)(x,0)= (0 x ) (初始条件)(边界条件)(边界条件)对偏微分方程分离变量求解得:(3-10 )其中离散值是下列超越方程的根,称为特征值。
其中Bi 是以特征长度为的毕渥数。
由此可见:平板中的无量纲过余温度与三个无量纲数有关:以平板厚度一半为特征长度的傅立叶数、毕渥数及即:(3-12)二、非稳态导热的正规状况阶段1 、平板中任一点的过余温度与平板中心的过余温度的关系前述得到的分析解是一个无穷级数,计算工作量大,但对比计算表明,当Fo>0.2 时,采用该级数的第一项与采用完整的级数计算平板中心温度的误差小于1% ,因此,当Fo>0.2时,采用以下简化结果:(3-13 )其中特征值之值与Bi 有关。
由上式(3-13 )可知:Fo>0.2 以后平板中任一点的过余温度(x ,τ) 与平板中心的过余温度(0 ,τ)=(τ )之比为:(3-14 )此式反映了非稳态导热过程中一种很重要的物理现象:即当Fo>0.2 以后,虽然(x ,τ) 与(τ )各自均与τ 有关,但其比值则与τ 无关,而仅取决于几何位置(x/ )及边界条件(Bi )。
传热学11 一维稳态和非稳态导热

• 两个边界条件中:一个为r=R时,T=Tw,由于内热源均 匀分布,圆柱体表面温度均为Tw,圆柱体内温度分布对 称于中心线,另一个边界条件可表示为 r=0时,dT/dr=0。 将微分方程分离变量后两次积分,结果为:
11.2 通过圆筒壁的一维稳态导热
qv 2 qv 2 dT T r C1 ln r C2 r r C1 4 dr 2 • 根据边界条件,在r=0时, dT/dr=0。可得C1=0;利用 另一个边界条件,在r=R时,T=Tw,可得
• 可见,该条件下平壁内温度是按抛物线规律分布。令 温度分布关系式中的x=0,则得平壁中心温度为:
qv 2 T Tw s 2
11.1 通过平壁的一维稳态导热
• 例题2:炉墙内层为粘土砖,外层为硅藻土砖, 它们的厚度分别为s1=460 mm;s2=230 mm,导 热系数分别为:λ1=0.7+0.64× 10-3T W/m℃; λ2=0.14+0.12× 10-3T W/m℃。炉墙两侧表面温度 各为T1=1400℃;T3=100℃,求稳态时通过炉墙 的导热通量和两层砖交界处的温度。
1
2
Tf1 Tf2 dT q C1 1 s 1 dx
q K (Tf1 Tf2 )
1 s
1
2
1
综合传热系数或传热系数 多层平壁
K
Tf1 Tf2 q n si 1 1
1
2
1
1
i 1
i
2
平壁面积A
Tf1 Tf2 Q n si 1 1 1 A i 1 i A 2 A
11.1 通过平壁的一维稳态导热
对T求导,得: dT C1
传热学上机C程序源答案之一维稳态导热的数值计算

一维稳态导热的数值计算1.1物理问题一个等截面直肋,处于温度t∞=80的流体中。
肋表面与流体之间的对流换热系数为h=45W/(m2∙℃),肋基处温度tw=300℃,肋端绝热。
肋片由铝合金制成,其导热系数为λ=110W/(m ∙℃),肋片厚度为δ=0.01m,高度为H=0.1m 。
试计算肋内的温度分布及肋的总换热量。
1.2数学描述及其解析解引入无量纲过余温度θ=t -t∞tw -t∞,则无量纲温度描述的肋片导热微分方程及其边界条件:2220d m dxθθ-=x=0,θ=θw =1 x=H,0xθ∂=∂ 其中 Ahpm =λ上述数学模型的解析解为:[()]()()w ch m x H t t t t ch mH ∞∞--=-⋅()()w hpt t th mH m∞∅=-1.3数值离散1.3.1区域离散计算区域总节点数取N 。
1.3.2微分方程的离散对任一借点i 有:2220i d m dx θθ⎛⎫-= ⎪⎝⎭用θ在节点i 的二阶差分代替θ在节点i 的二阶导数,得:211220i i i i m x θθθθ+--+-=整理成迭代形式:()112212i i i m x θθθ+-=++ (i=2,3……,N-1)1.3.3边界条件离散补充方程为:11w θθ==右边界为第二类边界条件,边界节点N 的向后差分得:10N N xθθ--=,将此式整理为迭代形式,得:N 1N θθ-=1.3.4最终离散格式11w θθ==()112212i i i m xθθθ+-=++ (i=2,3……,N-1) N 1N θθ-=1.3.5代数方程组的求解及其程序假定一个温度场的初始发布,给出各节点的温度初值:01θ,02θ,….,0N θ。
将这些初值代入离散格式方程组进行迭代计算,直至收敛。
假设第K 步迭代完成,则K+1次迭代计算式为:K 11w θθ+=()11112212i i K K K i m xθθθ+-++=++ (i=2,3……,N-1) 111N K K N θθ-++=#include<stdio.h>#include<math.h>#define N 11main(){int i;float cha;/*cha含义下面用到时会提到*/float t[N],a[N],b[N];float h,t1,t0,r,D,H,x,m,A,p; /*r代表λ,x代表Δx,D代表δ*/printf("\t\t\t一维稳态导热问题\t\t");printf("\n\t\t\t\t\t\t----何鹏举\n");printf("\n题目:补充材料练习题一\n");printf("已知:h=45,t1=80, t0=200, r=110, D=0.01, H=0.1 (ISO)\n");/*下面根据题目赋值*/h=45.0; t1=80.0; t0=300.0; r=110.0; D=0.01; H=0.1;x=H/N; A=3.1415926*D*D/4; p=3.1415926*D; m=sqrt((h*p)/(r*A));/*x代表步长,p代表周长,A代表面积*/printf("\n请首先假定一个温度场的初始分布,即给出各节点的温度初值:\n");for(i=0;i<N;i++){scanf("%f",&t[i]);a[i]=(t[i]-t1)/(t0-t1);b[i]=a[i];/*这里b[i]用记录一下a[i],后面迭代条件及二阶采用温度初场要用到*/ }/*采用一阶精度的向后差分法数值离散*/cha=1;while(cha>0.0001){a[0]=1;for(i=1;i<N;i++)a[i]=(a[i+1]+a[i-1])/(2+m*m*x*x);a[N-1]=a[N-2];cha=0;for(i=0;i<N;i++)cha=cha+a[i]-b[i];cha=cha/N;/*cha代表每次迭代后与上次迭代各点温度差值的平均值*/}for(i=0;i<N;i++)t[i]=a[i]*(t0-t1)+t1;printf("\n\n经数值离散(一阶精度的向后差分法)计算得肋片的温度分布为:\n");for(i=0;i<N;i++)printf("%4.2f\t",t[i]);printf("\n\n");getchar();/*采用二阶精度的元体平衡法数值离散(温度初值还用设定的初场,便于比较)*/ for(i=0;i<N;i++)a[i]=b[i];cha=1;while(cha>0.0001){a[0]=1;for(i=1;i<N;i++)a[i]=(a[i+1]+a[i-1])/(2+m*m*x*x);a[N-1]=a[N-2]/(1+0.5*m*m*x*x);cha=0;for(i=0;i<N;i++)cha=cha+a[i]-b[i];cha=cha/N;}for(i=0;i<N;i++)t[i]=a[i]*(t0-t1)+t1;printf("\n\n经数值离散(二阶精度的元体平衡法)计算得肋片的温度分布为:\n"); for(i=0;i<N;i++)printf("%4.2f\t",t[i]);printf("\n\n");getchar();}-----精心整理,希望对您有所帮助!。
(完整word版)一维非稳态导热的数值计算

int i,j,l;
float cha;
float a,x,y,Fo,Bi;
float t[N][K],b[N][K];
/*打印出题目*/
printf("\t\t\t一维非稳态导热问题\t\t");
printf("\n\t\t\t\t\t\t----何鹏举\n");
printf("\n题目:补充材料练习题三\n");
/*时刻为零时,赋予初场温度*/
for(i=0;i<N;i++)
t[i][0]=1000;
/*循环开始,每次计算一个时刻*/
for(j=0;j<K-1;j++)
{
for(i=0;i<N;i++)
b[i][j]=t[i][j];
/*下面对每一个时刻进行迭代求解对应的温度分布,公式按传热学课本P178页公式*/
y=1;/*y代表Δτ*/
x=0.05/(N-1);
a=34.89/(7800*712);
Fo=(a*y)/(x*x);
Bi=233*x/34.89;
printf("\n显示格式条件:");
printf("\n1、Fo=%3.1f<0.5\t",Fo);
printf("\t2、1-2Fo*Bi-2Fo=%4.2f>0\n\n",1-2*Fo*Bi-2*Fo);
{
printf("\n");
l=0;
}
}ห้องสมุดไป่ตู้
getchar();/*为了是生成的exe文件结果算的后不会立即退出,方便观看*/
传热学-学习课件-4-4 一维非稳态导热问题的数值求解

1
2
a x2
2h cx
2
a x2
t
i
N
1
2h cx
tf
③对称点
t (i)
-1
t (i)
2
传热学 Heat Transfer
2.直接用差分代替微分
①向前差分(forward difference)
i
t
t
i
n
1
t
i
n
n,i
②向后差分(backward difference)
t
t
i
n
t
i
n
1
n,i
i n,i+1
n-1,i n,i n+1,
t
i
n
1
t
n
i
a
t (i1) n 1
2
t
( n
i
1
)
x2
t (i1) n 1
(1,1)
n,i-1 i
n
x
整理成隐式格式:
传热学 Heat Transfer
传热学 Heat Transfer
主讲老师:王舫 适用专业:能源与动力工程专业
传热学 Heat Transfer
§4.4 一维非稳态导热问题的数值求解
在非稳态导热问题中,不但需要对空间区域进 行离散,还需要对时间变量进行离散,接下来以一 个一维非稳态导热问题为例,重点介绍对非稳态项 的离散方法,以及不同离散方法对计算带来的影响 等。
第三章第三节 一维非稳态导热的分析解

θ
( x,τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
μ1
cos(
μ1
e x ) − μ12F0 δ
θ
(0,τ θ0
)
=
θ m (τ θ0
)
=
μ1
+
2 sin μ 1 sin μ1 cos
μ1
e − μ12 F0
第三节一维非稳态导热的分析解
θ
( x,τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
式中常数a ,b ,c ,d 见P75表3-3 a`,b`,c`,d`见P75表3-4
第三节一维非稳态导热的分析解
3 正规热状况的实用计算方法-线算图法
诺谟图
以无限大平板为例,F0>0.2 时,取其级数首项即可
θ (x,τ ) =θ0
μ1
+
2sin μ1 sin μ1 cos
μ1
e−μ12
F0
cos(μ1
第三节一维非稳态导热的分析解
上式化为:
∂θ = a ∂ 2θ
∂τ
∂x 2
θ =θ0
∂θ = 0 ∂x
0 < x < δ ,τ > 0 τ =0 x=0
− λ ∂θ = hθ x = δ ∂x
第三节一维非稳态导热的分析解
用分离变量法可得其分析解为:
θ
( x,τ θ0
)
=
∞
∑
n =1
2 sin( β nδ ) cos( β n x) β nδ + sin( β nδ ) cos( β nδ
一维传热问题数值计算

一维传热问题数值计算
一维传热问题是热传导理论中的经典问题,涉及热量在一个维
度上的传递和分布。
数值计算一维传热问题通常涉及使用数值方法
来模拟热量在材料中的传递和分布。
这个问题在工程、物理学和材
料科学等领域都有重要的应用。
首先,我们可以考虑使用有限差分法来数值计算一维传热问题。
有限差分法将材料空间离散化为若干个网格点,然后利用热传导方
程进行离散化,最终转化为一个差分方程。
通过迭代求解这个差分
方程,我们可以得到材料中温度随时间和空间的分布。
这种方法通
常需要考虑边界条件和初始条件,以及选择合适的时间步长和空间
步长。
另外,有限元法也是计算一维传热问题的常用数值方法。
有限
元法将材料分割为有限个小单元,然后利用单元间的热传导关系建
立整个系统的方程。
通过求解这些方程,可以得到材料中温度的分布。
有限元法通常适用于复杂几何形状的材料,并且可以很好地处
理不均匀材料性质的情况。
除了这些基本的数值方法,还可以考虑使用计算流体动力学
(CFD)方法来模拟一维传热问题。
CFD方法可以更全面地考虑流体在传热过程中的影响,适用于液体或气体在管道或其他结构中的传热问题。
在进行数值计算一维传热问题时,需要注意选择合适的数值方法和参数,以确保计算结果的准确性和稳定性。
同时,还需要考虑材料的热物性参数、边界条件、初始条件等因素,以保证数值模拟的真实性和可靠性。
总之,数值计算一维传热问题涉及多种数值方法和复杂的物理过程,需要综合考虑材料性质、边界条件和数值方法的选择,以获得准确而可靠的计算结果。
一维非稳态导热问题的数值解

一维非稳态导热问题的数值解计算传热学程序报告姓名:学号:学院:能源与动力工程学院专业:工程热物理日期:2022年5月25日求解下列热传导问题:2T1T0(0某L)2t某T(某,0)0T(0,t)1,T(L,t)0L1,11.方程离散化对方程进行控制体积分得到:ttt2T1d某dtw某2etttTwtd某dtettt[(TT1)e()w]dt某某ew(TttTt)d某非稳态项:选取T随某阶梯式变化,有ew(TttTt)d某(TpttTpt)某扩散项:选取一阶导数随时间做显示变化,有ttt[(TTTT)e()w]dt[()te()tw]t某某某某进一步取T随某呈分段线性变化,有(TTWTTTPT)eE,()wP某(某)e某(某)w整理可以得到总的离散方程为:t1TEttTPtTEt2TPtTWt某22.计算空间和时间步长取空间步长为:h=L/N网格Fourier数为:F0t某2t(小于0.5时稳定)2某时间步长为:nF03.建立温度矩阵与边界条件T=one(N+1,M+1)T(:,1)=Ti(初始条件温度都为0)T(1,:)=To(边界条件某=0处温度为1)T(N+1,:)=Te(边界条件某=L处温度为0)4.差分法求解温度由离散方程可得到:ttttttTEF0(TE2TPTW)TPh2转化为相应的温度矩阵形式:T(m,k1)F0[T(m1,k)T(m1,k)2T(m,k)]T(m,k)5.输入界面考虑到方程的变量,采用inputdlg函数设置5个输入变量,对这5个变量设置了默认值,如图1所示。
在计算中可以改变不同的数值,得到不同的结果,特别注意稳定条件的临界值是0.5。
根据设置的默认值,得到的计算结果如图2所示。
图1matlab变量输入界面图2默认值的计算结果6.结果分析根据上面的分析,给出了程序的输入界面,以及默认值状态下的数值解。
可以通过改变不同的输入值,得到需要的分析结果,总结出了下面4点结论:(1)取F0=0.48,得到一维非稳态导热结果如下图所示图2F0=0.48时一维非稳态导热从图中可以看出,对于长度L=1的细杆,初始时刻t=0时温度为0,边界条件某=0时,T=1,边界条件某=1时,T=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二维稳态导热的数值计算
2.1物理问题
一矩形区域,其边长L=W=1,假设区域内无内热源,导热系数为常数,三个边温度为T1=0,一个边温度为T2=1,求该矩形区域内的温度分布。
2.2 数学描述 对上述问题的微分方程及其边界条件为:2222T T 0x y
∂∂+=∂∂ x=0,T=T 1=0
x=1,T=T 1=0
y=0,T=T 1=0
y=1,T=T 2=1 该问题的解析解:112121(1)sin n n n sh y T T n L x n T T n L sh W L ππππ∞=⎛⎫⋅ ⎪---⎛⎫⎝⎭=⋅ ⎪-⎛⎫⎝⎭⋅ ⎪⎝⎭
∑ 2.3数值离散
2.3.1区域离散
区域离散x 方向总节点数为N ,y 方向总节点数为M ,区域内任一节点用I,j 表示。
2.3.2方程的离散 对于图中所有的内部节点方程可写为:2222,,0i j i j
t t x y ⎛⎫⎛⎫∂∂+= ⎪ ⎪∂∂⎝⎭⎝⎭ 用I,j 节点的二阶中心差分代替上式中的二阶导数,得:
+1,,-1,,+1,,-1222+2+0i j i j i j
i j i j i j T T T T T T x y --+=
上式整理成迭代形式:()()22
,1,-1,,1,-12222+2()
2()i j i j i j i j i j y x T T T T T x y x y ++=++++ (i=2,3……,N -1),(j=2,3……,M -1)
补充四个边界上的第一类边界条件得:1,1j T T = (j=1,2,3……,M)
,1N j T T = (j=1,2,3……,M)
,1i j T T = (i=1,2,3……,N)
,2i M T T = (i=1,2,3……,N)
#include<stdio.h>
#include<math.h>
#define N 10
#define K 11
main()
{
int i,j,l;
float cha;
float a,x,y,Fo,Bi;
float t[N][K],b[N][K];
/*打印出题目*/
printf("\t\t\t一维非稳态导热问题\t\t");
printf("\n\t\t\t\t\t\t----何鹏举\n");
printf("\n题目:补充材料练习题三\n");
y=1;/*y代表Δτ*/
x=0.05/(N-1);
a=34.89/(7800*712);
Fo=(a*y)/(x*x);
Bi=233*x/34.89;
printf("\n显示格式条件:");
printf("\n1、Fo=%3.1f<0.5\t",Fo);
printf("\t2、1-2Fo*Bi-2Fo=%4.2f>0\n\n",1-2*Fo*Bi-2*Fo);
/*时刻为零时,赋予初场温度*/
for(i=0;i<N;i++)
t[i][0]=1000;
/*循环开始,每次计算一个时刻*/
for(j=0;j<K-1;j++)
{
for(i=0;i<N;i++)
b[i][j]=t[i][j];
/*下面对每一个时刻进行迭代求解对应的温度分布,公式按传热学课本P178页公式*/ cha=1;
while(cha>0.001)
{
for(i=0;i<N-1;i++)
{
if(i==0)
t[i][j+1]=Fo*(t[i+1][j]+t[i+1][j])+(1-2*Fo)*t[i][j];/*当计算t[0]时,要用到t[-1],其中t[-1]=t[2]的(对称分布)*/
else
t[i][j+1]=Fo*(t[i+1][j]+t[i-1][j])+(1-2*Fo)*t[i][j];
t[N-1][j+1]=t[N-2][j]*(1-2*Fo*Bi-2*Fo)+2*Fo*t[N-1][j]+2*Fo*Bi*20;/*边界点温度用热平衡法推导出公式*/
}
cha=0;
for(i=0;i<N;i++)
cha=cha+abs(t[i][j]-b[i][j]);
cha=cha/N;
}
}
/*输出温度分布,其中l控制输出值的排列;这个结果是横轴为x,纵轴为τ的直角坐标下从左上角开始依次的*/
printf("\n经数值离散计算的温度分布为:\n");
l=0;
for(j=K-1;j>=0;j--)
for(i=0;i<N;i++)
{
if(t[i][j]>999.99)
printf("%6.1f ",t[i][j]);
else
printf("%6.2f ",t[i][j]);
l=l+1;
if(l==N)
{
printf("\n");
l=0;
}
}
getchar();/*为了是生成的exe文件结果算的后不会立即退出,方便观看*/
}。