高中常见数列的公式及经典例题

合集下载

高二数学数列的经典例题

高二数学数列的经典例题

高二数学数列的经典例题
例题一:等差数列的通项公式
已知等差数列{an} 的首项a1 = 1,公差 d = 2,求第n 项的通项公式。

解:根据等差数列的通项公式,我们有:
an = a1 + (n - 1)d
将已知条件代入公式,得:
an = 1 + (n - 1) * 2
化简得:
an = 2n - 1
例题二:等比数列的求和公式
已知等比数列{bn} 的首项b1 = 2,公比q = 3,求前n 项和Sn。

解:根据等比数列的求和公式,我们有:
Sn = b1 * (1 - q^n) / (1 - q)
将已知条件代入公式,得:
Sn = 2 * (1 - 3^n) / (1 - 3)
化简得:
Sn = (3^n - 1)
例题三:数列的综合应用
已知数列{cn} 满足c1 = 1,且对任意的n ∈ N*,都有cn+1 = 2cn + 1,求数列{cn + 1} 的前n 项和Tn。

解:首先,我们将给定的递推关系式进行变形:
cn+1 + 1 = 2(cn + 1)
这说明数列{cn + 1} 是一个等比数列,其首项为c1 + 1 = 2,公比为2。

然后,我们利用等比数列的求和公式来求{cn + 1} 的前n 项和Tn:
Tn = (c1 + 1) * (1 - 2^n) / (1 - 2)
代入已知条件,得:
Tn = 2 * (2^n - 1)
化简得:
Tn = 2^(n+1) - 2。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

高中常见数列的公式及经典例题

高中常见数列的公式及经典例题

⾼中常见数列的公式及经典例题⾼中常见数列的公式及经典例题等差数列1.等差数列:⼀般地,如果⼀个数列从第⼆项起,每⼀项与它前⼀项的差等于同⼀个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常⽤字母“d ”表⽰)2.等差数列的通项公式:d n a a n )1(1-+= =n a d m n a m )(-+或 n a =pn+q (p 、q 是常数))3.有⼏种⽅法可以计算公差d ① d=n a -1-n a ② d =11--n a a n ③ d =mn aa m n -- 4.等差中项:,,2b a ba A ?+=成等差数列 5.等差数列的性质: m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式 6.等差数列的前n 项和公式(1)2)(1n n a a n S +=(2)2)1(1d n n na S n -+= (3)n )2da (n 2d S 12n -+=,当d ≠0,是⼀个常数项为零的⼆次式 8.对等差数列前项和的最值问题有两种⽅法:(1)利⽤n a :当n a >0,d<0,前n 项和有最⼤值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最⼩值可由n a ≤0,且1+n a ≥0,求得n 的值(2)利⽤n S :由n )2d a (n 2dS 12n -+=⼆次函数配⽅法求得最值时n 的值等⽐数列1.等⽐数列:如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,那么这个数列就叫做等⽐数列.这个常数叫做等⽐数列的公⽐;公⽐通常⽤字母q 表⽰(q ≠0),即:1-n na a =q (q ≠0) 2.等⽐数列的通项公式: )0(111≠??=-q a q a a n n ,)0(1≠??=-q a q a a m n m n3.{n a }成等⽐数列?nn a a 14.既是等差⼜是等⽐数列的数列:⾮零常数列. 5.等⽐中项:G 为a 与b 的等⽐中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ?=?7.判断等⽐数列的⽅法:定义法,中项法,通项公式法 8.等⽐数列的增减性:当q>1, 1a >0或01, 1a <0,或00时, {n a }是递减数列;当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等⽐数列前n 项和等⽐数列的前n 项和公式:∴当1≠q 时,q q a S n n --=1)1(1 ①或qq a a S n n --=11 ②当q=1时,1na S n =当已知1a , q, n 时⽤公式①;当已知1a , q, n a 时,⽤公式②.数列通项公式的求法⼀、定义法直接利⽤等差数列或等⽐数列的定义求通项的⽅法叫定义法,这种⽅法适应于已知数列类型的题⽬.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等⽐数列,255a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等⽐数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=?∵0≠d ,∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=??+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=?-+=点评:利⽤定义法求数列通项时要注意不⽤错定义,设法求出⾸项与公差(公⽐)后再写出通项。

高中数列经典例集(习题)

高中数列经典例集(习题)

一、 经典例题剖析考点一:等差、等比数列的概念与性质 例题1.(1)数列{a n }和{b n }满足)(121n n b b b na +++=(n=1,2,3…), (1)求证{b n }为等差数列的充要条件是{a n }为等差数列。

(2)数列{a n }和{c n }满足*)(21N n a a c n n n ∈+=+,探究}{n a 为等差数列的充分必要条例题 2.已知数列{}n a 的首项121a a =+(a 是常数,且1a ≠-),24221+-+=-n n a a n n (2n ≥),数列{}n b 的首项1b a =,2n a b n n +=(2n ≥)。

(1)证明:{}n b 从第2项起是以2为公比的等比数列;(2)设n S 为数列{}n b 的前n 项和,且{}n S 是等比数列,求实数a 的值; (3)当a>0时,求数列{}n a 的最小项。

考点二:求数列的通项与求和 例题3..已知数列{}n a 中各项为:12、1122、111222、……、111n ⋅⋅⋅⋅⋅⋅ 个222n ⋅⋅⋅⋅⋅⋅个…… (1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .例题4. 已知数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (Ⅰ)求数列{}n a 的通项公式n a ; (Ⅱ)设21nn a b =,求数列{}n b 的前n 项和n S ;(Ⅲ)设2)12(sinπ-=n a c n n ,数列{}n c 的前n 项和为n T .求证:对任意的*∈N n ,74<n T .考点三:数列与不等式的联系例题5.已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1;⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<例题6已知数列{}n a 满足()111,21n n a a a n N *+==+∈(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足n n b nb b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列; (Ⅲ)证明:()23111123n n N a a a *++++<∈例题7. 已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若12a =则当n ≥2时,!n n b a n >⋅. 考点四:数列与函数、向量等的联系 例题8.已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1)写出2a 、3a 的值; (2)试比较n a 与54的大小,并说明理由; (3)设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).例题9.在平面直角坐标系中,已知三个点列{A n },{B n },{C n },其中),(),,(n n n n b n B a n A )0,1(-n C n ,满足向量1+n n A A 与向量n n C B 共线,且点(B ,n )在方向向量为(1,6)的线上.,11a b a a -==(1)试用a 与n 表示)2(≥n a n ;(2)若a 6与a 7两项中至少有一项是a n 的最小值,试求a 的取值范围。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 1 2数列的递推公式(知识梳理+例题+变式+练习)(含答案)

4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题)

人教版高中数列知识点总结(知识点+例题)Lesson6 数列知识点1:等差数列及其前n 项 1.等差数列的定义 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式a n =a 1+(n -1) d .3.等差中项a +b如果 A =2 ,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n-m )d ,(n ,m ∈N *) .(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N *) ,则 (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为.(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *) 是公差为的等差数列.5.等差数列的前n 项和公式n (a 1+a n )n (n -1)设等差数列{a n }的公差d ,其前n 项和S n 或S n =na 1+22.6.等差数列的前n 项和公式与函数的关系d d 2⎛S n 2+ a 1-2n . 数列{a n }是等差数列⇔S n =An 2+Bn ,(A 、B 为常数) .⎝⎭7.等差数列的最值在等差数列{a n }中,a 1>0,d 0,则S n 存在最小值.[难点正本疑点清源] 1.等差数列的判定(1)定义法:a n -a n -1=d (n ≥2) ; (2)等差中项法:2a n +1=a n +a n +2.2.等差数列与等差数列各项和的有关性质(1)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (2)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (3)S 2n -1=(2n -1) a n .n(4)若n 为偶数,则S 偶-S 奇=2. 若n 为奇数,则S 奇-S 偶=a 中(中间项) .31例1(等差数列的判定或证明):已知数列{a n }中,a 1=5a n =2-(n ≥2,a n -11n ∈N *) ,数列{b n }满足b n =(n ∈N *) .a n -1(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.11(1)证明∵a n =2-(n ≥2,n ∈N *) ,b n =.a n -1a n -111∴n ≥2时,b n -b n -1=a n -1a n -1-111=1a n -1-1⎛2a -1⎝n -1⎭a n -11-=1. a n -1-1a n -1-15∴数列{b n }是以-2为首项,1为公差的等差数列.712(2)解由(1)知,b n =n -2,则a n =1+b 1+2n -7n2设函数f (x ) =1+2x -77⎛7⎛⎫易知f (x ) 在区间-∞,2和 2,+∞⎪内为减函数.⎝⎭⎝⎭∴当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.例2(等差数列的基本量的计算)设a 1,d 为实数,首项为a 1,公差为d 的等差数列{an }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1 (2)求d 的取值范围.-15解 (1)由题意知S 6=S 3,a 6=S 6-S 5=-8.5⎧5a 1+10d =5,所以⎨⎩a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7. (2)方法一∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d ) +15=0,2即2a 21+9da 1+10d +1=0.因为关于a 1的一元二次方程有解,所以Δ=81d 2-8(10d 2+1) =d 2-8≥0,解得d ≤-22或d ≥2. 方法二∵S 5S 6+15=0,∴(5a 1+10d )(6a 1+15d ) +15=0, 9da 1+10d 2+1=0.故(4a 1+9d ) 2=d 2-8. 所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2.例3(前n 项和及综合应用)(1)在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值; (2)已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和.解方法一∵a 1=20,S 10=S 15,10×915×145∴10×20+2d =15×20+2d ,∴d =-3.565⎛5∴a n =20+(n -1) × -3=-3+3⎝⎭∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n12×11⎛5⎫∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×202× -3⎪⎝⎭=130.5方法二同方法一求得d =-3n (n -1)⎛52523 125521255-n -∴S n =20n 2·3=-6n +6=-6+242⎝⎭⎝⎭∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. (2)∵a n =4n -25,a n +1=4(n +1) -25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列.⎧a n =4n -2511由①得nn (n -1)⎧21n +⎪2×(-4) (n ≤6)T n =⎨(n -6)(n -7)66+3(n -6)+×4 (n ≥7)⎪⎩22⎧-2n +23n (n ≤6),=⎨2 ⎩2n -23n +132 (n ≥7).例4,已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例5等差数列{a n },{b n }的前n 项和分别为{S n },{T n },且S n a =, 则使得n 为正T n n -3b n整数的正整数n 的个数是 3 . (先求an/bn n=5,13,35)已知递推关系求通项:这类问题的要求不高,但试题难度较难把握. 一般有三常见思路:(1)算出前几项,再归纳、猜想;(2)“a n+1=pa n+q ”这种形式通常转化为an +1+λ=p (an +λ), 由待定系数法求出, 再化为等比数列; (3)逐差累加或累乘法.2S n例6 已知数列{a n }中,当n ≥2时,其前n 项和S n 满足a n =,则数列{a n }a 1=,n 的通项公式为2⎧(n =1)⎪a n =⎨3(n ≥2)⎪⎩1-4n 2S n -S n -122S n =2S n -1⇒S n -1-S n =2S n S n -1⇒11-=2(n ≥2) S n S n -1⇒S n =. 2n +1a a a aa n =n ⋅n -1⋅⋅3⋅2⋅a 1, n ≥2.n -1n -2212+ln n例7在数列{a n }中,a 1=2,a n +1=a n +ln(1+) ,则a n =n知识点2:等比数列及其n 项和 1.等比数列的定义 2.等比数列的通项公式 3.等比中项若G 2=a ·b (ab ≠0) ,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a n q n-m,(n,m ∈N *) .(2)若{an }为等比数列,且k +l =m +n ,(k,l ,m ,n ∈N *) ,则a k ·al =a m ·a n . (3)若{an },{bn }(项数相同) 是等比数列,则{λan }(λ≠0) ,⎧1⎫⎧a n ⎫2⎨,{an },{an ·b n },⎨b 仍是等比数列.⎩a n ⎭⎩n ⎭5.等比数列的前n 项和公式等比数列{an }的公比为q(q≠0) ,其前n 项和为S n ,当q =1时,S n =na 1;a 1(1-q n )a 1-a n q当q ≠1时,S n ==.1-q 1-q6.等比数列前n 项和的性质公比不为-1的等比数列{an }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q .n7. 等比数列的单调性【难点】1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.等比数列的前n 项和S n(1)等比数列的前n 项和S n 是用错位相减法求得的,注意这种思想方法在数列求和中的运用.na (1-q )a 1-a n q 1n -1(2)等比数列的通项公式a n =a 1q 及前n 项和公式S n ==(q ≠1)1-q 1-q共涉及五个量a 1,a n ,q ,n ,S n ,知三求二,体现了方程的思想的应用.(3)在使用等比数列的前n 项和公式时,如果不确定q 与1的关系,一般要用分类讨论的思想,分公比q =1和q ≠1两种情况.例1:(1)在等比数列{a n }中,已知a 6-a 4=24,a 3a 5=64,求{a n }的前8项和S 8; (2)设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大的项为27,求数列的第2n 项. (1)设数列{a n }的公比为q ,由通项公式a n =a 1q n -1及已知条件得:32⎧a 6-a 4=a 1q (q -1)=24,①⎨a 5=(a 1q 3)2=64. ②⎩a 3·由②得a 1q 3=±8.将a 1q 3=-8代入①式,得q 2=-2,无解将a 1q 3=8代入①式,得q 2=4,∴q =±2. ,故舍去.当q =2时,a =1,∴S a 1(1-q 8)181-q 255;当q =-2时,a ,∴S a 1(1-q 8)1=-181-q 85.(2)若q =1,则na 1=40,2na 1=3 280,矛盾.⎧①∴q ≠1,∴⎨⎪a 1(1-q n )1-q =40,⎪⎩a 1(1-q 2n )1-q =3 280,②②①1+q n =82,∴q n=81,③ 将③代入①得q =1+2a 1. ④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列.∴a n =a 1q n -1=27,⑤ 由③、④、⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.例2 已知数列{an }的前n 项和为S n ,数列{bn }中,b 1=a 1,b n =a n -a n -1 (n≥2) ,且a n +S n =n.(1)设c n =a n -1,求证:{cn }是等比数列; (2)求数列{bn }的通项公式. 1) 证明∵a n +S n =n ,∴a n +1+S n +1=n +1. ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(an +1-1) =a n -1,∴a n +1-1a n -1=12,∴{an -1}是等比数列.∵首项c 1=a 1-1,又a 1+a 1=1,∴a 1111=2,∴c 12q =2又c n =a n -1,∴{c是以-11n }2为首项,2为公比的等比数列.(2)解由(1)可知c n =⎛ 1⎛1⎝-2⎭ n -1⎝⎭=-⎛ 12⎝2n ⎭,∴a n =c n +1=1-⎛ 1⎝2n ⎭. ∴当n ≥2时,b n =a n -a n -1=1-⎛ 1n ⎡⎛1⎝2⎭-⎢⎣1-⎝2n -1⎤⎭⎥⎦=⎛ 1⎝2⎫⎪n -1⎭-⎛1⎝2⎫⎪n ⎭=⎛ 1⎫n ⎝2⎪⎭. 又b 11=a 1=⎛12∴b n = 2n ⎝⎭.① ②1例3 在等比数列{a n }中,(1)若已知a 2=4,a 5=-2,求a n ; (2)若已知a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.a 1解 (1)设公比为q ,则a q 3,即q 3=-8,21⎛1--∴q =-2,∴a n =a 5·q n 5=-2n 4.⎝⎭2(2)∵a 3a 4a 5=8,又a 3a 5=a 4,∴a 34=8,a 4=2.5∴a 2a 3a 4a 5a 6=a 54=2=32.a n +a n +1例4已知数列{a n }满足a 1=1,a 2=2,a n +2=2n ∈N *. (1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.规范解答(1)证明 b 1=a 2-a 1=1, [1分]a n -1+a n当n ≥2时,b n =a n +1-a n =2-a n11=-2(a n -a n -1) =-2b n -1, [5分]1∴{b n }是首项为1,公比为-2 [6分]⎛1⎫(2)解由(1)知b n =a n +1-a n =-2⎪n -1, [8分]⎝⎭当n ≥2时,a n =a 1+(a 2-a 1) +(a 3-a 2) +…+(a n -a n -1) [10分]⎛1n -1 -21-⎝⎭⎛1⎛1n -2=1+1+-2+…+-2=1+⎝⎭⎝⎭⎛1⎫1--2⎪⎝⎭2⎡521⎛1⎤521=1+3⎢1--2n -1⎥=33-2n -1当n =1时,33-21-1=1=a 1,⎣⎝⎭⎦⎝⎭⎝⎭521∴a n 33-2n -1 (n ∈N *) . [14分]⎝⎭例4 (07 重庆11)设是1-a 和1+a 的等比中项,则a +3b 的最大值为 2 .(三角函数)2233例5 若数列1, 2cosθ, 2cos θ,2cos θ, … ,前100项之和为0, 则θ的值为(), 的三内角成等差数列例26 , 三边成等比数列, 则三角形的形状为__等边三角形k π△±k ∈Z __________.【综合应用】例7. 已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项. (1)求数列{a n }与{b n }的通项公式;c 1c 2c n(2)设数列{c n }对n ∈N 均有b b b a n +1成立,求c 1+c 2+c 3+…+c 2 013.12n解 (1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d ,∴(1+4d ) 2=(1+d )(1+13d ) .解得d =2 (∵d >0). ∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3,∴b n =3·3n -2=3n -1.c c c 2) 由b b …+b a n +1得12nc n -1c c 当n ≥2时,b b …+=a .b n -1n 12c 两式相减得:n ≥2时,b a n +1-a n =2.nn -1∴c n =2b n =2·3 (n ≥2) .c 1又当n =1时,b =a 2,∴c 1=3.1⎧3 (n =1)∴c n =⎨n -1.3 (n ≥2)⎩2·∴c 1+c 2+c 3+…+c 2 0136-2×32 013=3+=3+(-3+32 013) =32 013.1-3知识点3:数列的基本知识*1,a n 与S n 的关系:a n =S 1(n =1) 或S n -S n -1例1:设{a n }数列的前n 项和S n =n 2,则a 8的值为2,数列的递推公式及应用:利用数列的递推公式求数列的通项公式,一般有三种方法:累加法,累积法,构造法①对形如a 1=a ; a n +1=pa n +q 的递推公式(p . q 为常数且p ≠1),可令整理得λ=a n +1+λ=p (a n +λ),列②对形如a n +1=⎧1⎫求出⎨⎬即可⎩a n ⎭q, a n +1+λ=p (a n +λ),所以是{a n +λ}等比数p -1 a n 1q的递推公式,两边取倒数后换元转化为再=p +,a n +1a n pa n +q例2:已知数列{a n }满足a 1=33, a n +1-a n =2n ,则 a n的最小值为 10.5 n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中常见数列的公式及经典例题等差数列1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)2.等差数列的通项公式:d n a a n )1(1-+= =n a d m n a m )(-+或 n a =pn+q (p 、q 是常数))3.有几种方法可以计算公差d ① d=n a -1-n a ② d =11--n a a n ③ d =mn aa m n -- 4.等差中项:,,2b a ba A ⇔+=成等差数列 5.等差数列的性质: m+n=p+q ⇒q p n m a a a a +=+ (m, n, p, q ∈N ) 等差数列前n 项和公式 6.等差数列的前n 项和公式 (1)2)(1n n a a n S +=(2)2)1(1d n n na S n -+= (3)n )2da (n 2d S 12n -+=,当d ≠0,是一个常数项为零的二次式 8.对等差数列前项和的最值问题有两种方法:(1) 利用n a :当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值(2) 利用n S :由n )2d a (n 2dS 12n -+=二次函数配方法求得最值时n 的值等比数列1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1-n na a =q (q ≠0) 2.等比数列的通项公式: )0(111≠⋅⋅=-q a q a a n n ,)0(1≠⋅⋅=-q a q a a m n m n3.{n a }成等比数列⇔nn a a 1+=q (+∈N n ,q ≠0) “n a ≠0”是数列{n a }成等比数列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列. 5.等比中项:G 为a 与b 的等比中项. 即G =±ab (a ,b 同号).6.性质:若m+n=p+q ,q p n m a a a a ⋅=⋅7.判断等比数列的方法:定义法,中项法,通项公式法 8.等比数列的增减性:当q>1, 1a >0或0<q<1, 1a <0时, {n a }是递增数列; 当q>1, 1a <0,或0<q<1, 1a >0时, {n a }是递减数列;当q=1时, {n a }是常数列; 当q<0时, {n a }是摆动数列; 等比数列前n 项和等比数列的前n 项和公式:∴当1≠q 时,q q a S n n --=1)1(1 ① 或qq a a S n n --=11 ②当q=1时,1na S n =当已知1a , q, n 时用公式①;当已知1a , q, n a 时,用公式②.数列通项公式的求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式. 解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =, 即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………① ∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、公式法若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

解:由1121111=⇒-==a a S a当2≥n 时,有,)1(2)(211nn n n n n a a S S a -⨯+-=-=-- 1122(1),n n n a a --∴=+⨯-,)1(22221----⨯+=n n n a a ……,.2212-=a a 11221122(1)2(1)2(1)n n n n n a a ----∴=+⨯-+⨯-++⨯-].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n经验证11=a 也满足上式,所以])1(2[3212---+=n n n a点评:利用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-211n S S n S a n nn n 求解时,要注意对n 分类讨论,但若能合写时一定要合并. 三、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

类型1 递推公式为)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

(2004全国卷I.22)已知数列{}n a 中,12211,(1),k k k a a -==+-且a 2123k k k a a +=+,其中1,2,3,k =……,求数列{}n a 的通项公式。

P24(styyj )例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

解:由条件知:111)1(1121+-=+=+=-+n n n n nn a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-=所以na a n 111-=-211=a ,nn a n 1231121-=-+=∴ 类型2 (1)递推公式为n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

(2004全国卷I.15)已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩ 12n n =≥ P24(styyj )例4. 已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a 。

解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ (2).由n n a n f a )(1=+和1a 确定的递推数列{}n a 的通项可如下求得: 由已知递推式有1)1(--=n n a n f a , 21)2(---=n n a n f a ,•••,12)1(a f a =依次向前代入,得1)1()2()1(a f n f n f a n ⋅⋅⋅--=,简记为111))((a k f a n k n -=∏= )1)(,1(01=∏≥=k f n k ,这就是叠(迭)代法的基本模式。

(3)递推式:()n f pa a n n +=+1 解法:只需构造数列{}n b ,消去()n f 带来的差异.例5.设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a . 解:设B An b a B ,An a b n n n n --=++=则,将1,-n n a a 代入递推式,得[]12)1(31-+---=---n B n A b B An b n n )133()23(31+----=-A B n A b n⇒⎪⎩⎪⎨⎧+-=-=∴13323A B B A A ⎩⎨⎧==11B A1++=∴n a b n n 取…(1)则13-=n n b b ,又61=b ,故n n n b 32361⨯=⨯=-代入(1)得132--⨯=n a n n说明:(1)若)(n f 为n 的二次式,则可设CBn An a b n n +++=2;(2)本题也可由1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得2)(3211+-=----n n n n a a a a 转化为q pb b n n +=-1求之. 例6.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---。

类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

(2006.重庆.14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a P24(styyj )例7. 已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所以{}n b 是以41=b 为首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a .类型4 递推公式为n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

相关文档
最新文档