材料学外文资料翻译
材料科学与工程专业英语第三版翻译以及答案

UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。
历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。
二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。
随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。
这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。
此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。
在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。
因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。
三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。
对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。
科技英语翻译专业词汇-材料

Materials Science and Engineeringarc welding 电弧焊calcinations 煅烧casting 熔铸ceramic 陶瓷chemical properties 化学性能cold brittleness 低温脆性colour liquid crystals 彩色液晶congruent compound 合熔化合物constant-deformation tests 定变形试验Creep Strength 潜变强度crystal pattern 晶体结构data quartz fiber 数据石英光纤die casting 拉模铸造drawing & stamping 延轧Dynamics of Forging System 锻压系统动力学Edge Finish 边缘处理Engineering Materials 工程材料nano-material 纳米材料ceramic 陶瓷polymer 集合物composite material 复合材料biomaterial 生物材料semiconductor 半导体conductor 导体insulator 绝缘体synthetic fabrics 合成纤维microstructures 显微结构periodic table 周期表Equipment for Heating Processing 热处理设备Fatigue Test 疲劳测试Features of Metal 金属的特性Ferrous & Non Ferrous Metal 铁及非铁金属forging 锻造foundry 铸造High Polymer Material & Processing 高分子材料及加工Impact Test 冲击测试Intermetallic compound 金属间化物Ionic Solids 离子晶体Magnetic Transformation 磁性变态Mechanic Testing of Engineering Materials 工程材料力学性能的测定Mechanical Property of Metal 金属机械性能Metal Cutting Machine Tool 金属切削工具Metal Erosion & Protection 金属腐蚀及防护Metal Material Science 金属材料学Metallic Solids 金属晶体Metallographic Techniques 金相技术Metallography 金属学Metallography & Heat Treatment 金属学与热处理milling 铣削Molecular Solids 分子晶体mould 铸模(美:mold)Phase Rule 相律Principles & Technology for Heating Processing 热处理原理及工艺Principles of Metal Erosion 金属腐蚀原理Principles of Metal Molten Welding & Technique 金属熔焊原理及工艺Principles of Metallography 金属学原理quartz glass 石英玻璃recrystallization 再结晶refractory china 高温陶瓷rolling 挤压seam welding 滚焊silica, SiO2 硅石,二氧化硅solid solution 固熔体spot welding 点焊stamping, pressing 冲压standard single mode fiber; G.625 fiber 标准单模光纤Surface Finish 表面处理temper brittleness 回火脆性Thermal Equilibrium 合金平衡状态transformation Point 变态点transmission fiber 传输光纤coefficient of thermal expansion 热膨胀系数stress and strain 应力和应变elastic strain 弹性应变elastic modulus 弹性模量plastic strain 塑性应变yield strength 屈服强度ultimate tensile strength 最大抗拉强度附: 常见的化学元素英汉对照oxygen 氧hydrogen 氢carbon 碳nitrogen 氮fluorine 氟sodium 钠magnesium 镁aluminium 铝silicon 硅phosphorus 磷sulphur 硫chlorine 氯potassium 钾calcium 钙iron 铁zinc 锌silver 银gold 金mercury 汞lead 铅uranium 铀tin 锡iodine 碘barium 钡tungsten 钨platinum 铂nickel 镍copper 铜chromium 铬manganese 锰titaniu 钛Expanded 200 wordsactivator 活化剂active solder 活性焊剂air vent 排气道alloy steel 合金钢angle iron 角钢annealing 退火Antiferromagnetism 反铁磁体Atom Bonding 原子键结Austenite 奥氏体Austenite Carbon Steel 奥氏体碳钢billet 坯锭,钢坯bloom 带状薄板carbon and graphite material 碳和石墨材料carbon ceramic refractory 碳陶耐火物carbon electrode 碳电极carbon equivalent 碳当量carbon fiber 碳纤维carburization 渗碳case hardening 表面硬化cast steel 坩埚钢,铸钢casting 出铁cavity 型控母模cementation 粘固cementite 渗碳体,碳化铁Chrome Stainless Steel 铁铬系不锈钢片Coarse pearlite 粗珠光体coefficient of elasticity 弹性系数coefficient of friction 摩擦系数coefficient of scatter 散射系数Coefficient of thermal expansion 热膨胀系数coefficient of variation 变异系数coefficient of viscosity 黏度系数coke 焦炭Compound Material Mechanics 复合材料力学compression molding 压缩成型conduction cloth 导电布conductive polystyrene 导电聚苯乙烯condutive polythyne 导电聚乙烯condutive polypropylene 导电聚丙烯Continuous casting process 连续铸造法core 模心公模corrugated iron 瓦垅薄钢板crash forming 碰撞成形critical temperature 临界温度crude steel 粗钢cryolite 冰晶石Crystal Recovery 回复柔软decarbonization, decarburization 脱碳Degree of freedom 自由度Designation of SUS Steel Special Use Stainless 不锈钢片材常用代号Destructive Inspection 破坏的检验Diamagnetism 抗磁体dielectric ceramic materials 介质陶瓷材料diglycidyl 4,5-epoxy-tetrahydrophthalic ester 环氧树脂Distortion 畸变drawing 拉拔Drawing abillity 材料的加工性能elastic limit, Yeung's module of elasticity to yield point 弹性限度、阳氏弹性系数及屈服点electric steel 电工钢,电炉钢Electro-galvanized Steel Sheet 电镀锌(电解)钢片electrolysis 电解elinvar 镍铬恒弹性钢Elongation 伸长度Elongation test 拉伸测试(顺纹测试) epoxy molding compound 环氧膜塑料Eutectoid Transformation 共释变态Fe / Mn / Al / Stainless Steel 铁锰铝不锈钢Ferrimagnetism 亚铁磁体ferrite 铁氧体,铁醇盐Ferrite Stainless Steel 含铁体不锈钢Ferromagnetism 铁磁体ferronickel 镍铁fine pearlite 幼珠光体flash mold 溢流式模具forming 成型Free Cutting Stainless Steel 易车(快削)不锈钢fritting, sintering 烧结Fusible Alloy 易溶合金fusion, melting, smelting 熔炼(Non-Oriented) Grain Oriented & Non-Oriented 晶粒取向(Grain-Oriented)及非晶粒取向hard steel 硬钢hardenability 硬化性能hardening淬水Hardness & Tensile strength test 硬化及拉力测试heat conductivity 导热度high-speed steel 高速钢Hyper-ectectic Alloy 过共晶体Hyper-eutectoid 过共释钢Hypo-Eutectoid 亚铁释体Hypoeutetic Alloy 亚共晶体intermetallic compound 金属间化物Interstitial solid solution 插入型固熔体iron ingot 铁锭Killed steel 全静钢Lattice constant 格子常数Leaded Free Cutting Steel 含铅易车钢liquid crystals for display 液晶显示材料Low Carbon Martensite Stainless Steel 低碳马氏体不锈钢magnetic fluid 磁性液体Magnetic particle inspection 磁粉探伤法Magnetic Permeability 透磁度Magnetic Susceptibility (Xm) 磁化率Martensite Stainless Steel 马氏体不锈钢Medium pearlite 中珠光体metal space lattice 金属结晶格子metal strip, metal band 初轧方坯microscopic inspection 显微观察法mild steel, soft steel 软钢,低碳钢Mill's Index 米勒指数moulded steel 铸钢Nickel Chrome Stainless Steel 镍铬系不锈钢nickel-copper alloy 镍铜合金nitriding 渗氮No Excessive Oxidation 提防过份氧化Non – destructive inspections 不破坏检验Non-Metal Materials 非金属材料Paramagnetism 顺磁体patternmaking 制模Pearlite &Eutectoid 珠光体及共释钢Penetrate inspection 渗透探伤法Peritectic Alloy 包晶合金Peritectic Reaction 包晶反应Peritectic Temperature 包晶温度phosphor for monochromatic display tube 荧光粉pig iron 生铁plastic fiber 塑料光纤Precipitation Hardening Stainless Steel 释出硬化不锈钢preheating 预热Primary Creep 第壹潜变期Pro-entectoid ferrite 初释纯铁体profiled bar 铁带,钢带puddling 搅炼pulverization 粉化,雾化quenching 淬火Quenching Media 淬火剂Radiographic inspection 放射线探伤法reduction 还原Reduction of area 断面缩率refining 精炼Refractory Fiber Modules 耐火纤维组件refractory steel 热强钢,耐热钢Reinforced Concrete 钢筋混凝土Reinforced Concrete & Brick Structure 钢筋混凝土及砖石结构Reinforced Concrete Structure 钢砼结构remelting 再熔化,重熔Resistance Welding 电阻焊Rimmed steel 沸腾钢(未净钢) round iron 圆铁runner system 浇道系统scrap iron 废铁Secondary Creep 第二潜变期semiconductor super lattic materials 半导体超晶格材料Semi-killed steel 半静钢shape iron 型钢shape memory alloy; memory alloy 形状记忆合金siliver-copper braging alloy 银铜焊料Single Phase Metal 单相金属Size Tolerance 公差slagging, scorification 造渣Slip Plan 滑动面Soldering and Brazing Alloy 焊接合金solders of low melting point alloys 低温合金钎料Specific gravity & specific density 比重Specific Heat 比热Specific resistivity & specific resistance 比电阻split mold 分割式模具stainless steel 不锈钢steatite ceramics 滑石陶瓷Steel Phases 铁相stoneware 粗瓷Stress –relieving Annealing Temperature 应力退火温度Submerged-arc Welding 埋弧焊Substitutional type solid solution 置换型固熔体Sulphuric Free Cutting Steel 含硫易车钢Surface Insulation 绝缘表面synthetic quartz crystal 人造石英晶体tapping 出渣,出钢,出铁tempering 回火Tertiary Creep 第三潜变期TERTM(Thermal-Expansion Resin Transfer Molding) 热膨胀树脂传递模塑Thermoplastic plastics 热塑性塑料thermoset resin 热固性树脂Thickening agent 增粘剂tinplate, tin 马口铁to insufflate, to inject 注入trimming 清理焊缝ultrafine platinum powder 超细箔粉Ultrasonic inspection 超声波探伤法Unit cell 单位晶格Vinyl chloride resin 聚氯乙烯树脂water flux 水溶性焊剂water soluble soldering flux; water cleaning soldering flux 水溶性助焊剂welding line 熔合痕white fused alumina powder 白刚玉微粉wire 线材wiredrawing 拉丝Work Hardening 硬化wrought iron 熟铁X – ray crystal analyics method X线结晶分析法Yield strength 屈服强度(降伏强度)。
材料科学与工程专业英语第三版-翻译以及答案.doc

材料科学与工程专业英语第三版-翻译以及答案UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。
历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。
二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。
随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。
这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。
此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。
在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。
因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。
三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。
对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。
材料科学与工程专业英语课文翻译(1,2,3,10).

United 1 材料科学与工程材料在我们的文化中比我们认识到的还要根深蒂固。
如交通、房子、衣物,通讯、娱乐和食物的生产,实际上,我们日常生活中的每一部分都或多或少地受到材料的影响。
历史上社会的发展、先进与那些能满足社会需要的材料的生产及操作能力密切相关。
实际上,早期的文明就以材料的发展程度来命名,如石器时代,铜器时代。
早期人们能得到的只有一些很有限的天然材料,如石头、木材、粘土等。
渐渐地,他们通过技术来生产优于自然材料的新材料,这些新材料包括陶器和金属。
进一步地,人们发现材料的性质可以通过加热或加入其他物质来改变。
在这点上,材料的应用完全是一个选择的过程。
也就是说,在一系列非常有限的材料中,根据材料的优点选择一种最适合某种应用的材料。
直到最近,科学家才终于了解材料的结构要素与其特性之间的关系。
这个大约是过去的60 年中获得的认识使得材料的性质研究成为时髦。
因此,成千上万的材料通过其特殊的性质得以发展来满足我们现代及复杂的社会需要。
很多使我们生活舒适的技术的发展与适宜材料的获得密切相关。
一种材料的先进程度通常是一种技术进步的先兆。
比如,没有便宜的钢制品或其他替代品就没有汽车。
在现代,复杂的电子器件取决于所谓的半导体零件.材料科学与工程有时把材料科学与工程细分成材料科学和材料工程学科是有用的。
严格地说,材料科学涉及材料到研究材料的结构和性质的关系。
相反,材料工程是根据材料的结构和性质的关系来设计或操纵材料的结构以求制造出一系列可预定的性质。
从功能方面来说,材料科学家的作用是发展或合成新的材料,而材料工程师是利用已有的材料创造新的产品或体系,和/或发展材料加工新技术。
多数材料专业的本科毕业生被同时训练成材料科学家和材料工程师。
“structure”一词是个模糊的术语值得解释。
简单地说,材料的结构通常与其内在成分的排列有关。
原子内的结构包括介于单个原子间的电子和原子核的相互作用。
在原子水平上,结构包括原子或分子与其他相关的原子或分子的组织。
(完整word版)所有学科英文翻译

哲学Philosophy马克思主义哲学 Philosophy of Marxism中国哲学 Chinese Philosophy外国哲学 Foreign Philosophies逻辑学 Logic伦理学 Ethics美学 Aesthetics宗教学 Science of Religion科学技术哲学 Philosophy of Science and Technology经济学 Economics理论经济学 Theoretical Economics政治经济学 Political Economy经济思想史 History of Economic Thought经济史 History of Economic西方经济学 Western Economics世界经济 World Economics人口、资源与环境经济学 Population, Resources and Environmental Economics应用经济学 Applied Economics国民经济学 National Economics区域经济学 Regional Economics法学 LawCommunist Movement中共党史(含党的学说与党的建设) History of the Communist Party of China(including the Doctrine of China Party and Party Building)马克思主义理论与思想政治教育 Education of Marxist Theory and Education in Ideology and Politi cs国际政治学 International Politics国际关系学 International Relations外交学 Diplomacy社会学 Sociology社会学 Sociology人口学 Demography人类学 Anthropology民俗学(含中国民间文学) Folklore (including Chinese Folk Literature)民族学 Ethnology民族学 Ethnology马克思主义民族理论与政策 Marxist Ethnic Theory and Policy 中国少数民族经济 Chinese Ethnic Economics中国少数民族史 Chinese Ethnic History中国少数民族艺术 Chinese Ethnic Art教育学 Education教育学 Education Science教育学原理 Educational Principle课程与教学论 Curriculum and Teaching Methodology教育史 History of Education比较教育学 Comparative Education学前教育学 Pre-school Education高等教育学 Higher Education成人教育学 Adult Education职业技术教育学 Vocational and Technical Education特殊教育学 Special Education教育技术学 Education Technology心理学 Psychology基础心理学 Basic Psychology发展与心理学 Developmental and Educational Psychology应用心理学 Applied Psychology体育学 Science of Physical Culture and Sports体育人文社会学 Humane and Sociological Science of Sports 运动人体科学 Human Movement Science体育教育训练学 Theory of Sports Pedagogy and Training民族传统体育学 Science of Ethnic Traditional Sports文学 Literature中国语言文学 Chinese Literature文艺学 Theory of Literature and Art语言学及应用语言学 Linguistics and Applied Linguistics汉语言文字学 Chinese Philology中国古典文献学 Study of Chinese Classical Text中国古代文学 Ancient Chinese Literature中国现当代文学 Modern and Contemporary Chinese Literature中国少数民族语言文学 Chinese Ethnic Language andLiterature比较文学与世界文学 Comparative Literature and World Literature外国语言文学 Foreign Languages and Literatures英语语言文学 English Language and Literature俄语语言文学 Russian Language and Literature法语语言文学 French Language and Literature德语语言文学 German Language and Literature日语语言文学 Japanese Language and Literature印度语言文学 Indian Language and Literature西班牙语语言文学 Spanish Language and Literature阿拉伯语语言文学 Arabic Language and Literature欧洲语言文学 European Language and Literature亚非语言文学 Asian—African Language and Literature外国语言学及应用语言学 Linguistics and Applied Linguistics inForeign Languages新闻传播学 Journalism and Communication新闻学 Journalism传播学 Communication艺术学 Art艺术学 Art Theory音乐学 Music美术学 Fine Arts设计艺术学 Artistic Design戏剧戏曲学 Theater and Chinese Traditional Opera电影学 Film广播电视艺术学 Radio and television Art舞蹈学 Dance历史学 History历史学 History史学理论及史学史 Historical Theories and History of Historical Science 考古学及博物馆学 Archaeology and Museology历史地理学 Historical Geography历史文献学(含敦煌学、古文字学) Studies of Historical Literature (including Paleography and Studies of Dunhuang)专门史 History of Particular Subjects中国古代史 Ancient Chinese History中国近现代史 Modern and Contemporary Chinese History世界史 World History理学 Natural Science数学 Mathematics基础数学 Fundamental Mathematics计算数学 Computational Mathematics概率论与数理统计 Probability and Mathematical Statistics应用数学 Applied mathematics运筹学与控制论 Operational Research and Cybernetics物理学 Physics理论物理 Theoretical Physics粒子物理与原子核物理 Particle Physics and Nuclear Physics原子与分子物理 Atomic and Molecular Physics等离子体物理 Plasma Physics凝聚态物理 Condensed Matter Physics声学 Acoustics光学 Optics无线电物理 Radio Physics化学 Chemistry无机化学 Inorganic Chemistry分析化学 Analytical Chemistry有机化学 Organic Chemistry物理化学(含化学物理) Physical Chemistry (including Chemical Physics)高分子化学与物理 Chemistry and Physics of Polymers天文学 Astronomy天体物理 Astrophysics天体测量与天体力学 Astrometry and Celestial Mechanics地理学 Geography自然地理学 Physical Geography人文地理学 Human Geography地图学与地理信息系统 Cartography and Geography Information System大气科学 Atmospheric Sciences气象学 Meteorology大气物理学与大气环境 Atmospheric Physics and Atmospheric Environment海洋科学 Marine Sciences物理海洋学 Physical Oceanography海洋化学 Marine Chemistry海洋生理学 Marine Biology海洋地质学 Marine Geology地球物理学 Geophysics固体地球物理学 Solid Earth Physics空间物理学 Space Physics地质学 Geology矿物学、岩石学、矿床学 Mineralogy, Petrology, Mineral Deposit Geology 地球化学 Geochemistry古生物学与地层学(含古人类学) Paleontology and Stratigraphy (including Paleoanthropology)构造地质学 Structural Geology第四纪地质学 Quaternary Geology生物学 Biology植物学 Botany动物学 Zoology生理学 Physiology水生生物学 Hydrobiology微生物学 Microbiology神经生物学 Neurobiology遗传学 Genetics发育生物学 Developmental Biology细胞生物学 Cell Biology生物化学与分子生物学 Biochemistry and Molecular Biology生物物理学 Biophysics生态学 Ecology系统科学 Systems Science系统理论 Systems Theory系统分析与集成 Systems Analysis and Integration科学技术史 History of Science and Technology工学 Engineering力学 Mechanics一般力学与力学基础 General and Fundamental Mechanics固体力学 Solid Mechanics流体力学 Fluid Mechanics工程力学 Engineering Mechanics机械工程 Mechanical Engineering机械制造及其自动化 Mechanical Manufacture and Automation机械电子工程 Mechatronic Engineering机械设计与理论 Mechanical Design and Theory车辆工程 Vehicle Engineering光学工程 Optical Engineering仪器科学与技术 Instrument Science and Technology精密仪器及机械 Precision Instrument and Machinery测试计量技术及仪器 Measuring and Testing Technologies and Instruments 材料科学与工程 Materials Science and Engineering材料物理与化学 Materials Physics and Chemistry材料学 Materialogy材料加工工程 Materials Processing Engineering冶金工程 Metallurgical Engineering冶金物理化学 Physical Chemistry of Metallurgy钢铁冶金 Ferrous Metallurgy有色金属冶金 Non—ferrous Metallurgy动力工程及工程热物理 Power Engineering and Engineering Thermophysics 工程热物理 Engineering Thermophysics热能工程 Thermal Power Engineering动力机械及工程 Power Machinery and Engineering流体机械及工程 Fluid Machinery and Engineering制冷及低温工程 Refrigeration and Cryogenic Engineering化工过程机械 Chemical Process Equipment电气工程 Electrical Engineering电机与电器 Electric Machines and Electric Apparatus电力系统及其自动化 Power System and its Automation高电压与绝缘技术 High Voltage and Insulation Technology电力电子与电力传动 Power Electronics and Power Drives电工理论与新技术 Theory and New Technology of Electrical Engineering电子科学与技术 Electronics Science and Technology物理电子学 Physical Electronics电路与系统 Circuits and Systems微电子学与固体电子学 Microelectronics and Solid State Electronics电磁场与微波技术 Electromagnetic Field and Microwave Technology信息与通信工程 Information and Communication Engineering通信与信息系统 Communication and Information Systems信号与信息处理 Signal and Information Processing控制科学与工程 Control Science and Engineering控制理论与控制工程 Control Theory and Control Engineering检测技术与自动化装置 Detection Technology and Automatic Equipment系统工程 Systems Engineering模式识别与智能系统 Pattern Recognition and Intelligent Systems导航、制导与控制 Navigation, Guidance and Control计算机科学与技术 Computer Science and Technology计算机软件与理论 Computer Software and Theory计算机系统结构 Computer Systems Organization计算机应用技术 Computer Applied Technology建筑学 Architecture建筑历史与理论 Architectural History and Theory建筑设计及其理论 Architectural Design and Theory城市规划与设计(含风景园林规划与设计) Urban Planning and Design (including Landscape Plannin g and Design)建筑技术科学 Building Technology Science土木工程 Civil Engineering岩土工程 Geotechnical Engineering结构工程 Structural Engineering市政工程 Municipal Engineering供热、供燃气、通风及空调工程 Heating, Gas Supply, Ventilating and Air Conditioning Engineering防灾减灾工程及防护工程 Disaster Prevention and Reduction Engineering and Protective Engineeri ng桥梁与隧道工程 Bridge and Tunnel Engineering水利工程 Hydraulic Engineering水文学及水资源 Hydrology and Water Resources水力学及河流动力学 Hydraulics and River Dynamics水工结构工程 Hydraulic Structure Engineering水利水电工程 Hydraulic and Hydro-Power Engineering港口、海岸及近海工程 Harbor, Coastal and Offshore Engineering测绘科学与技术 Surveying and Mapping大地测量学与测量工程 Geodesy and Survey Engineering摄影测量与遥感 Photogrammetry and Remote Sensing地图制图学与地理信息工程 Cartography and Geographic Information Engineering化学工程与技术 Chemical Engineering and Technology化学工程 Chemical Engineering化学工艺 Chemical Technology生物化工 Biochemical Engineering应用化学 Applied Chemistry工业催化 Industrial Catalysis地质资源与地质工程 Geological Resources and Geological Engineering矿产普查与勘探 Mineral Resource Prospecting and Exploration地球探测与信息技术 Geodetection and Information Technology地质工程 Geological Engineering矿业工程 Mineral Engineering采矿工程 Mining Engineering矿物加工工程 Mineral Processing Engineering安全技术及工程 Safety Technology and Engineering石油与天然气工程 Oil and Natural Gas Engineering油气井工程 Oil-Gas Well Engineering油气田开发工程 Oil-Gas Field Development Engineering油气储运工程 Oil-Gas Storage and Transportation Engineering纺织科学与工程 Textile Science and Engineering纺织工程 Textile Engineering纺织材料与纺织品设计 Textile Material and Textiles Design纺织化学与染整工程 Textile Chemistry and Dyeing and Finishing Engineering服装设计与工程 Clothing Design and Engineering轻工技术与工程 The Light Industry Technology and Engineering制浆造纸工程 Pulp and Paper Engineering制糖工程 Sugar Engineering发酵工程 Fermentation Engineering皮革化学与工程 Leather Chemistry and Engineering交通运输工程 Communication and Transportation Engineering道路与铁道工程 Highway and Railway Engineering交通信息工程及控制 Traffic Information Engineering & Control交通运输规划与管理 Transportation Planning and Management载运工具运用工程 Vehicle Operation Engineering船舶与海洋工程 Naval Architecture and Ocean Engineering船舶与海洋结构物设计制造 Design and Construction of Naval Architecture and Ocean Structure 轮机工程 Marine Engine Engineering水声工程 Underwater Acoustics Engineering航空宇航科学与技术 Aeronautical and Astronautical Science and Technology飞行器设计 Flight Vehicle Design航空宇航推进理论与工程 Aerospace Propulsion Theory and Engineering航空宇航器制造工程 Manufacturing Engineering of Aerospace Vehicle人机与环境工程 Man—Machine and Environmental Engineering兵器科学与技术 Armament Science and Technology武器系统与运用工程 Weapon Systems and Utilization Engineering兵器发射理论与技术 Armament Launch Theory and Technology火炮、自动武器与弹药工程 Artillery, Automatic Gun and Ammunition Engineering军事化学与烟火技术 Military Chemistry and Pyrotechnics核科学与技术 Nuclear Science and Technology核能科学与工程 Nuclear Energy Science and Engineering核燃料循环与材料 Nuclear Fuel Cycle and Materials核技术及应用 Nuclear Technology and Applications辐射防护及环境保护 Radiation and Environmental Protection农业工程 Agricultural Engineering农业机械化工程 Agricultural Mechanization Engineering农业水土工程 Agricultural Water—Soil Engineering农业生物环境与能源工程 Agricultural Biological Environmental and Energy Engineering 农业电气化与自动化 Agricultural Electrification and Automation林业工程 Forestry Engineering森林工程 Forest Engineering木材科学与技术 Wood Science and Technology林产化学加工工程 Chemical Processing Engineering of Forest Products环境科学与工程 Environmental Science and Engineering环境科学 Environmental Science环境工程 Environmental Engineering生物医学工程 Biomedical Engineering食品科学与工程 Food Science and Engineering食品科学 Food Science粮食、油脂及植物蛋白工程 Cereals, Oils and Vegetable Protein Engineering农产品加工及贮藏工程 Processing and Storage of Agriculture Products水产品加工及贮藏工程 Processing and Storage of Aquatic Products农学 Agriculture作物学 Crop Science作物栽培学与耕作学 Crop Cultivation and Farming System作物遗传育种学 Crop Genetics and Breeding园艺学 Horticulture果树学 Pomology蔬菜学 Olericulture茶学 Tea Science农业资源利用学 Utilization Science of Agricultural Resources土壤学 Soil Science植物营养学 Plant Nutrition植物保护学 Plant Protection植物病理学 Plant Pathology农业昆虫与害虫防治 Agricultural Entomology and Pest Control农药学 Pesticide Science畜牧学 Animal Science动物遗传育种与繁殖 Animal Genetics, Breeding and ReproductionScience动物营养与饲料科学 Animal Nutrition and Feed Science草业科学 Practaculture Science特种经济动物饲养学(含蚕、蜂等) The Rearing of Special-type EconomicAnimals (including Silkworm, Honeybees, etc.)兽医学 Veterinary Medicine基础兽医学 Basic Veterinary Medicine预防兽医学 Preventive Veterinary Medicine临床兽医学 Clinical Veterinary Medicine林学 Forestry林木遗传育种学 Forest Tree Genetics and Breeding森林培育学 Silviculture森林保护学 Forest Protection森林经理学 Forest Management野生动植物保护与利用 Wildlife Conservation and Utilization园林植物与观赏园艺 Ornamental Plants and Horticulture水土保持与荒漠化防治 Soil and Water Conservation and Desertification Combating水产学 Fisheries Science水产养殖学 Aquaculture Science捕捞学 Fishing Science渔业资源学 Science of Fisheries Resources医学 Medicine基础医学 Basic Medicine人体解剖与组织胚胎学 Human Anatomy, Histology and Embryology免疫学 Immunology病原生物学 Pathogenic Organisms病理学与病理生理学 Pathology and Pathophysiology法医学 Forensic Medicine放射医学 Radiation Medicine航空航天与航海医学 Aerospace and Nautical medicine临床医学 Clinical Medicine内科学(含心血管病学、血液病学、呼吸系病学、消化系病学、内分泌与代谢病学、肾脏病学、风湿病学、传染病学) Internal medicine (including Cardiology, Hematology, Respiratory, Gastroenterolog y, Endocrinology and Metabolism, Nephrology, Rheuma-tology, Infectious Diseases)儿科学 Pediatrics老年医学 Geriatrics神经病学 Neurology精神病与精神卫生学 Psychiatry and Mental Health皮肤病与性病学 Dermatology and Venereology影像医学与核医学 Imaging and Nuclear Medicine临床检验诊断学 Clinical Laboratory Diagnostics护理学 Nursing外科学(含普通外科学、骨外科学、泌尿外科学、胸心血管外科学、神经外科学、整形外科学、烧伤外科学、野战外科学) Surgery (General Surgery, Orthopedics, Urology, Cardiothoracic Surgery, Neuros urgery, Plastic Surgery, Burn Surgery, Field Surgery)妇产科学 Obstetrics and Gynecology眼科学 Ophthalmic Specialty耳鼻咽喉科学 Otolaryngology肿瘤学 Oncology康复医学与理疗学 Rehabilitation Medicine & Physical Therapy运动医学 Sports Medicine麻醉学 Anesthesiology急诊医学 Emergency Medicine口腔医学 Stomatology口腔基础医学 Basic Science of Stomatology口腔临床医学 Clinical Science of Stomatology公共卫生与预防医学 Public Health and Preventive Medicine流行病与卫生统计学 Epidemiology and Health Statistics劳动卫生与环境卫生学 Occupational and Environmental Health营养与食品卫生学 Nutrition and Food Hygiene儿少卫生与妇幼保健学 Maternal, Child and Adolescent Health卫生毒理学 Hygiene Toxicology军事预防医学 Military Preventive Medicine中医学 Chinese Medicine中医基础理论 Basic Theories of Chinese Medicine中医临床基础 Clinical Foundation of Chinese Medicine中医医史文献 History and Literature of Chinese Medicine方剂学 Formulas of Chinese Medicine中医诊断学 Diagnostics of Chinese Medicine中医内科学 Chinese Internal Medicine中医外科学 Surgery of Chinese Medicine中医骨伤科学 Orthopedics of Chinese Medicine中医妇科学 Gynecology of Chinese Medicine中医儿科学 Pediatrics of Chinese Medicine中医五官科学 Ophthalmology and Otolaryngoloy of Chinese Medicine针灸推拿学 Acupuncture and Moxibustion and Tuina of Chinese medicine民族医学 Ethnomedicine中西医结合医学 Chinese and Western Integrative Medicine中西医结合基础医学 Basic Discipline of Chinese and Western Integrative中西医结合临床医学 Clinical Discipline of Chinese and Western Integrative Medicine药学 Pharmaceutical Science药物化学 Medicinal Chemistry药剂学 Pharmaceutics生药学 Pharmacognosy药物分析学 Pharmaceutical Analysis微生物与生化药学 Microbial and Biochemical Pharmacy药理学 Pharmacology中药学 Science of Chinese Pharmacology军事学 Military Science军事思想学及军事历史学 Military Thought and Military History军事思想学 Military Thought军事历史学 Military History战略学 Science of Strategy军事战略学 Military Strategy战争动员学 War Mobilization战役学 Science of Operations联合战役学 Joint Operation军种战役学(含第二炮兵战役学) Armed Service Operation (including Operation of Strategic Miss ile Force)战术学 Science of Tactics合同战术学 Combined—Arms Tactics兵种战术学 Branch Tactics军队指挥学 Science of Command作战指挥学 Combat Command军事运筹学 Military Operation Research军事通信学 Military Communication军事情报学 Military Intelligence密码学 Cryptography军事教育训练学(含军事体育学) Military Education and Training (including Military Physical Training)管理学 Management Science管理科学与工程 Management Science and Engineering工商管理学 Science of Business Administration会计学 Accounting企业管理学(含财务管理、市场营销学、人力资源管理学) Corporate Management (including Financia l Management, Marketing, and Human Resources Management)旅游管理学 Tourist Management技术经济及管理学 Technology Economy and Management农林经济管理学 Agricultural and Forestry Economics & Management农业经济管理学 Agricultural Economics & Management林业经济管理学 Forestry Economics & Management公共管理学 Science of Public Management。
材料化学专业外文翻译--合成β-mo2c薄膜(译文)-其他专业

中文4220字毕业论文外文资料翻译题目合成β-Mo2C薄膜出处:ACS applied materials & interfaces, 2011, 3(2): 517-521.合成β-Mo2C薄膜Colin A. Wolden*†, Anna Pickerell†,Trupti Gawai†, Sterling Parks†, JesseHensley‡, and J. Douglas Way†† Department of Chemical Engineering, Colorado School of Mines, Golden,Colorado 80401, United States‡ National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden,Colorado 80401, United StatesACS Appl. Mater. Interfaces, 2011, 3 (2), pp 517–521DOI:Publication Date (Web): January 20, 2011Copyright © 2011 American Chemical Society摘要使用两步合成工艺制备化学计量比的β-Mo2C薄膜。
MoF6在氢气,氧气的氛围下采用等离子体增强气象化学法首先生成密集氧化钼薄膜。
审查的沉积速率和质量方面的工作参数的依赖。
氧化膜厚度是100-500纳米,在H2和CH4气氛中,采用程序升温反应后生成钼硬质合金。
用X-射线衍射线测得,在20%的甲烷和氢气的混条件下,当加热到700°C的氧化钼将完全转变成β-Mo2C相。
渗碳后生成基本硅衬底的薄膜。
用X射线光电子能谱检测薄膜无杂质,Mo此时是一个单一的氧化状态。
用显微镜观察发现,沉积的氧化膜是没有什么特征的,而碳化物的薄膜是一个复杂的纳米结构。
材料成型及控制工程外文翻译文献

材料成型及控制工程外文翻译文献(文档含英文原文和中文翻译)在模拟人体体液中磷酸钙涂层激光消融L. Cle`ries*, J.M. FernaHndez-Pradas, J.L. Morenza德国巴塞罗那大学,西班牙1999年七月二十八日-2000年2月文摘:三种类型的磷酸钙涂层基质,在钛合金激光烧蚀技术规定提存,沉浸在一个模拟的身体# uid为了确定条件下他们的行为类似于人的血浆。
羟基磷灰石涂层也也非晶态磷酸钙涂层和a-tricalcium磷酸盐做溶解阶段b-tricalcium磷酸盐的涂料有细微的一个阶段稍微瓦解。
一个apatitic阶段降水量偏爱在羟基磷灰石涂层的涂料磷酸b-tricalcium上有细微的一个阶段。
在钛合金基体上也有降水参考,但在大感应时代。
然而,在非晶态磷酸钙涂层不沉淀形成。
科学出版社有限公司(2000保留所有权利。
关键词:磷酸钙,脉冲激光沉积,SBF1 介绍激光消融技术用于沉积磷酸钙涂层金属基体上,将用作植体骨重建。
用这个技术,磷酸钙涂层量身定做阶段和结构也成功地研制生产了[1,2]和溶解特性鉴定海洋条件]。
然而,真正的身体条件# uid饱和对羟基磷灰石的阶段,这是钙离子的浓度高于均衡的这个阶段。
因而,这就很有趣也测试条件磷酸钙涂料接近体内的情况,以了解其完整性,在这些条件及其催化反应性质}表面沉淀过程。
因此,非晶态磷酸钙涂层(ACP),羟基磷灰石(HA)涂层,涂层中的一个阶段b-tricalcium磷酸盐较小(ba-TCP)积下激光烧蚀是沉浸在饱和溶液为迪!时间、不同的结构性演变进行了测定。
饱和溶液的使用的是身体uid(SBF模拟#),解决了其离子浓度、酸碱度几乎等于那些人类血浆[5]。
该解决方案也是一个利用在仿生(沉淀)工艺生产磷灰石层在溶胶凝胶活性钛基体。
2 实验模拟身体化学溶解试剂级严格依照以下的顺序,除氢钠,NaHCO3:)3,K2HPO4 H2O,MgCl2)6 H2O,氯化钙和Na2SO4)2 H2O,在去离子水。
介绍材料科学与工程的作文英语

介绍材料科学与工程的作文英语English Answer:Materials science and engineering (MSE) is a field of study that is concerned with the development, characterization, and application of materials. Materials scientists and engineers work to understand how the properties of materials are affected by their composition, structure, and processing. They also develop new materials with improved properties for use in a variety of applications.MSE is a multidisciplinary field that draws on principles from chemistry, physics, biology, and engineering. Materials scientists and engineers use a variety of techniques to study the structure and properties of materials, including microscopy, spectroscopy, and mechanical testing. They also use computer simulations to model the behavior of materials and to design new materials with specific properties.MSE has a wide range of applications in a variety of industries, including aerospace, automotive, electronics, and healthcare. Materials scientists and engineers are responsible for developing new materials for use in everything from aircraft and cars to computers and medical devices.中文回答:材料科学与工程(MSE)是一门研究材料的开发、表征和应用的学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料学外文资料翻译DC resistivity of alumina and zirconia sintered with TiC Central Glass and Ceramic Research Institute,Kolkata 700 032,India College of Ceramic Technology,Kolkata 700 010,IndiaMS received 20 October 2003; revised 11 February 2005 Abstract:Pure alumina and zirconia powders were sintered separately with increasing amount of TiC up to ~ 65 vol.%,as a conducting second phase with an aim to prepare conducting structural ceramics which can be precisely machined by EDM technique. TiC did not help in sintering the parent phase but it decreased the d.c. resistivity of the composite to 1 ohm.cm at ~ 30 vol.% loading. The conductivity is explained by the effective media and percolation theories.Keywords. Alumina; zirconia; titanium carbide; composite; electrical conductivity; electrical resistivity1.introductionAttempts have been made in different directions to improve the mechanical properties of the structural ceramics. Promising among them is a second phase reinforcement in the parent matrix. The ceramics of superior mechanical properties in turn give rise to time consuming finishing processes which are quite expensive. As a solution to this problem,a newer technique of finishing the components at a faster rate and at a relatively reduced cost viz. electro discharge machining (EDM) technique,has been applied in some cases. The technique essentially needs the components to be electrically conducting (resistance < 100ohm-cm). The electrically conducting and compatible second phase materials such as nitrides (TiN),borides(TiB2),carbides (TiC) and silicides (MoSi2,Ti–Si),the electrical resistivity of which are in the range of 13–50 ×10–6 ohm-cm,may impart conductivity to the matrix. The reinforcing second phase may also improve mechanical properties of the material. The electrical conductivity of the matrix is directly dependent on the size and amount of the conducting second phase grains,in general (Pierson 1996).Research in this direction was carried out mainly with engineering ceramics like Si3N4,SiC etc (Matkin et al 1972; Bellosi et al 1989; Mclachlan et al 1990; Sawaguchi et al 1991; Nakayama and Kuroshima 1992). Si3N4 when sintered with SiC nanoparticle (Sawaguchi et al 1991) reduced the resistivity of the composite—the effect was remarkable above 10% SiC. Resistance with 25% SiCwas found to be ~ 1 × 107 W cm and the composite behaved like a semiconductor. The critical volume of SiC at the boundaries of sintered Si3N4 grains was 17% and the electrical behaviour of the composite followed the percolation theory. Up to 10%SiC increased the fracture toughness of the composite. Si3N4 sintered with TiN (Nakayama and Kuroshima 1992) without any other additivereduced impedance of the composite from ~ 1 ×107 W cm to ~ 1 × 103 W cm when measured in the presence of moisture. A lot of work was done on SiC based material as the use of SiC in electrical/electronic devices is wide, e.g. making heating elements,semiconductors,sensors,varistors,etc. Al2O3 and ZrO2 are two other common structural engineering ceramic materials. Scanty reports are available on increasing electrical conductivity of the materials (Guicciardi 1992; Buerger 1994; Krell et al 1995; Mao et al 1998; Wang et al 1998) or in the related field. Mao and co-workers (1998) worked on cobalt coated Al2O3–TiC composite and measured only the abrasion resistance of the composite. They showed that the role of cobalt coating was important and it was responsible for wear damage. Buerger (1994) used up to 50 wt.% TiC with Al2O3. DC resistivity decreased from 1 × 1012 to ~ 1 ×10–3 W cm with 45% TiC. The conductivity was explained by the model of connectivity of TiC particles. TiC,up to 30 wt.%,increased flexural strength of the composite. Krell and co-workers (1995) used 30% TiC with ZrO2 with or withoutTiH2. TiH2 changed the stoichiometry of TiC in the sintered matrix. The grains were free from amorphous phase; the strength and toughness of the composite was similar to 3Y-TZP. Bellosi and co-workers (1989) studied in detail the Al2O3 based composites. They used 20 and 30 vol.% of TiC/TiN or TiB2 and measured the CTE,E-modulus,Vicker’s hardness at 500 g load,fracture toughness,flexural strength up to 800°C,oxidation resistance and D.C. electrical resistivity. The effect of TiN on the above mentioned properties is more compared to the others. tivity decreases to ~ 10–3 ohm.cm with 30 vol.% TiN and the threshold percolation volume is below 20 vol.%. They inferred that the composite may be machined by EDM technique. Wang and co-workers (1999) reportedon D.C. resistivity of Si3N4–TiC composite and theirmechanical properties. They explained the conductivity through percolation theory and calculated the threshold loading of TiC for conductivity to be 18.5 vol.%.An attempt has been made in this work to study the D.C. electrical behaviour of pure Al2O3 and ZrO2 with addition of TiC and also to optimize the amount of TiC addition. Relevance of decrease of d.c. resistivity of ZrO2 and Al2O3 with TiC was explained with the help of effective media and percolation theories.2. ExperimentalPure Al2O3 (HTM30,99×5%,avg. particle size,5 mm,Indian Aluminium Co.,Kolkata),pure ZrO2 (99.9%,avg. particle size,10 mm,Indian Rare Earths Ltd.,Thiruvananthapuram) and TiC (99.0%,avg. particle size,16 mm,H.C. Starck,Goslar,Germany) were taken for preparation of the composites. Each composition (table 1) was mixed in pure isopropyl alcohol for 3 h. The pellets of18 mm diameter were dry pressed uniaxially at 300 MPa and sintered at 1600°C in pure argon in a graphite resistance heated furnace for 10,30,90 and 180 min. Bulk density of the sintered pellets were measured by water displacement method. X-raydiffractograph of the samples were taken to detect the major phases and to know if there was any reaction. The samples with low porosity were polished progressively with 60 mm,10 mm,6 mm,3 mm and 1 mm diamond paste for microstructural study. The ground pellets were coated with silver paint,cured and their D.C. resistivity was measured with a precision ohm-meter (Hewlett Packard Resistance Tester) at room temperature.3. Results and discussion3.1 SinteringSintered density of both Al2O3 and ZrO2 composites with varying percentages of TiC was measured and is plotted in figure 1. The density is compared with the theoretical density of the composites calculated using mixture rule. Sintered density of the composites achieved in the case of Al2O3 (0% TiC) based composition is 78% ( max. 80%)while that in the case of ZrO2 (0% TiC) is 73% because of poorer sinterability of ZrO2 compared to Al2O3 at 1600°C (even in 180 min). Sintering of alumina with TiC addition is,however,poor and the average density reduces to 67% compared to the theoretical value at 55 vol.% TiC. The average sintered density in the case of ZrO2–TiC composites measured over the whole range of TiC addition is ~ 73% while that with Al2O3 drops down slowly with increase of TiC content and achieves an average value of 67% at 55 vol.% TiC content in the composites. TiC in both cases acts as an inert phase and it does not react with the parent phase. TiC acts detrimentally with alumina in forming the composites. The SEM photomicrographs of the composites with 25.68 vol.% TiC–alumina and 33.75 vol.% TiC–zirconia are shown in figures 2a and b. The second phase was seen to be evenly dispersed in the matrix. XRD result shows no reaction between the matrix and the second phase.3.2 DC electrical resistivityFigure 3 shows the reduction of d.c. resistivity of the composites with amount of TiC. The fall of resistivity of the composites is similar in nature which reaches a plateau after a critical percolation volume of TiC. The compositessintered for 180 min had the critical volume of inflexion of resistivity (j c) at 34.0 and 26.3 vol% for ZrO2 and Al2O3,respectively. The fall in d.c. resistivity is sharp for the composites sintered for shorter time and the critical percolation volume is also low compared to the others. Sintering within such a short time is very poor and the fine TiC particles are also well distributed in the matrix,while the composites sinteredfor longer time shows more coagulation of TiC in the matrix. Hence the critical percolation volume is more although the matrix is denser than the former. From the microstructures of Al2O3–TiC it is obvious that TiC is more dispersed in the matrix and the effect is reflected in the j c values. The D.C. resistivity reduced to 1 W cm which is favourable for machining the matrix by EDM technique.The D.C. resistivity of the composites may be explained with the help of percolation theory which explains the conductivity of a composite medium near a metal–insulator transition region. This theory applies,in a strict sense,only when conductivity of the low conducting phase is zero or resistivity of the high conducting phase is zero (Wang et al 1999) ideally. In a real case,the generaleffective media (GEM) equation has been postulated (Mclachlan 1988) where conductance of both media (s h and s l) is finite occurrence thus overcoming the limitation of the percolation theory. The equation fits accurately the conductivityFigure 1. Variation of sintered density of (a) Al2O3–TiC and (b) ZrO2–TiC with amount of TiC sintered at 1600°C at different soaking times.for a large number of binary composite media.In a continuous medium,comprising of an insulating medium as the parentmatrix and an electrically conducting second phase,percolation theory predicts that near a conductor–nonconductor transition of the matrix,the resistivity will be given by the percolation equationr m = k {(1 – j)/jc}t,(1)where r m is the total resistivity of the composite,j the volume fraction of high conductivity phase,j c the criti cal (percolation) volume fraction for the high conduct ivity phase and t the resistivity exponent whose values range between 1×65 and 2×00 (Balberg 1987). Equation (1) can be written as log r m = log k + t log {(1 –j)/j c},(2) where k is the proportionality constant.-Figure 2. SEM micrograph of (a) 74.3 Al2O3–25.7 vol.% TiC composite and (b) 66.25 ZrO2–33.75 vol.% TiC compositTable 2. Values of threshold percolation volume (j c) and t of the composites.Figure 3. Variation of d.c. resistivity of Al2O3 and ZrO2 composites with TiC. The compositions of the matrix for microstructural studies were so selected that they are close to the threshold of the critical percolation volume of the systems to have an idea of the matrix. The threshold volume for such percolation in the systems are,however,dependent on the grain size and amount of the parent and the conducting second phases,shape,size and amount of the pores present in thematrix. The value of j c seems to be on the higher side in both cases mainly because of the larger particle size of the conducting phase and the presence of pores in the matrix (table 2).4. Conclusions(I) TiC was of no help in sintering of alumina and zirconia at 1600°C. Sintered density of alumina,however,increased while that of zirconia decreased with addition of TiC.(II) The minimum percolation volume of TiC in 180 min sintered alumina was 26.3 vol.% and that of zirconia,34.0 vol.%. This volume decreased when the composites were sintered for shorter time because of non-coagulation of TiC and finer Al2O3.(III) The D.C. resistivity of both composites were sufficiently low and there is a possibility of machining them by EDM technique as addition of 30 vol.% TiC also improves mechanical properties of the sintered composites,in general.AcknowledgementsThe work was carried out at the Non-Oxide Ceramic Section,Central Glass and Ceramic Research Institute,Kolkata. The authors are grateful to all the staff members of the section. The authors are also grateful to the Director,CGCRI,Kolkata,for providing facilities.ReferencesBalberg I 1987 Phys. Rev. Lett. 1305Bellosi A et al 1989 Electroconductive Si3N4 based composites,Euroceramics (ed.)G de with (London: Elsevier Applied Sci.),Vol 3,pp 3×389–93Buerger W 1994 Keram Z. 46 547,550Guicciardi B.de portu 1992 J. Euro. Ceram. Soc. 10 307 Krell A,Blank P,Pippel E and Woltersdorf J 1995 J. Am. Ceram.Soc. 78 2641Mao D S,Liu X H,Li J,Guo S Y,Zhang X B and Mao Z Y 1998 J. Mater. Sci.33 5677Matkin D I,Cavell I W and Dyson J R 1972 Proc. Br. Ceram.Soc. 23 58 Mclachlan D S 1988 J. Phys. C: Solid State Phys. C21 1521Mclachlan D S,Blaszkiewicz M and Newnham R E 1990 J. Am. Ceram. Soc. 73 2187Nakayama S and Kuroshima H 1992 J. Ceram. Soc. Japan100 758Pierson H O 1996 Handbook of refractory carbides and nitrides (USA: Noyes Publ.) Sawaguchi A,Toda K and Niihara K 1991 J. Am. Ceram. Soc.74 1142Wang H L,Li J B,Li Y and Liu J F 1999 Study of electrical conductivity ofTiC/Si3N4 ceramic composite,Proc. 1st China conf. on high performance ceramics,Beijing,(ed.) D S Yan and Z D Guan (Beijing: Tsinghua University Press) p. 432氧化铝与氧化锆和TiC烧结的直流电阻率中央玻璃陶瓷研究所,加尔各答700 032,印度陶瓷技术学院,加尔各答700 010,印度2003年10月20日收到,2005年2月11日修订摘要:纯氧化铝和氧化锆粉末分别与TiC烧结的增加额高达65%,作为一个有准备进行第二阶段达到结构陶瓷的目标,可由电火花精密加工技术完成。