风光互补路灯设计
60W风光互补LED路灯系统设计

摘要随着科技的发展,能源需求已经成为一个非常重要的社会问题。
人们对各种可再生能源进行了研究,特别是风能和太阳能。
太阳能与风能有着很好的互补特性,因此在部分远离电网的区域可以采用小型的风光互补发电系统供电。
近年来LED 照明技术得到快速发展,LED照明得到越来越广泛的应用。
研究一种基于风光互补发电的LED路灯,对节能和城市照明具有重要的意义。
本文设计了一套独立式风光互补LED路灯系统,并对风力发电机、太阳能电池、蓄电池和控制器进行了分析和设计。
其中在最大功率跟踪策略方面,分别采用了双输入升降压斩波硬件电路实现风能和太阳能的最大功率输出,并分别采用变步长扰动控制算法和改进扰动观察控制算法作为最大功率点跟踪(MPPT)控制策略。
在蓄电池充放电控制上采用双向直流升/降压式变换电路来实现蓄电池的充放电能量管理。
在智能控制器设计方面上,设计了一种以DSP为控制核心的风光互补LED路灯控制系统。
系统以TMS320F2812为主控芯片,主要设计了控制系统的数据采集模块,PWM信号驱动模块,控制系统的辅助电源模块,LED照明驱动电路以及系统时钟模块。
最后根据设计要求进行了参数计算和设备选择。
关键词:风光互补;最大功率跟踪;能源;LEDAbstractWith the development of science and technology, the demand for energy has become a very important social issue. Human research on many renewable energy, especially wind and solar power.Solar and wind power has a very good complementary characteristics and therefore Small scale Wind and Solar complementary electricity generating system can be used in part of the region far from the grid.LED lighting technology developed rapidly in recent years, LED lighting has been used more widely. Research on LED lights based on wind and solar power have great significance to energy saving and urban lighting.This paper designs a general structure scheme of a wind and solar LED street light,and analyze and design wind turbine and solar cell and storage battery. And in terms of the intelligent controller’s maximum power tracking control strategy, this paper uses two-input buck-boost chopper hardware circuit to achieve the wind and solar maximum power output,and uses the variable step control algorithms and improve disturbance observation control algorithms as themselves maximum power point tracking (MPPT) control strategy, the variable disturbance step can be taken place of the traditional fixed-step in the control process, which to improve the efficien cy of power generation. In terms of the intelligent controller’s battery charging and discharging control strategy, this paper uses the bi-directional DC buck/boost converter to achieve the battery charging and discharging energy management. This project designed a wind and solar LED street light control based on DSP. In hardware design, TMS320F2812 is the MCU of this control system , we design the PWM signal driver modules, auxiliary power module of the control systems, LED lighting driver circuit.Final, According to the requirements of design parameter calculation and equipment selection.Key words:wind and solar street light;maximum power tracking;energy;LED目录第1章绪论 (1)1.1 研究背景与意义 (1)1.2 风光互补发电研究现状 (2)1.2.1 风力发电研究现状 (2)1.2.2 光伏发电研究现状 (2)1.2.3 风光互补研究现状 (3)1.3 风光互补LED路灯总体结构设计方案 (3)第2章风力发电机的设计 (4)2.1 风力发电机的工作原理及运行特性 (4)2.1.1风力发电机工作原理 (4)2.1.2 风力发电机运行特性 (4)2.2 最大功率跟踪控制策略 (7)2.2.1 风力发电机的基本控制策略 (7)2.2.2 风机最大功率跟踪控制策略 (7)2.2.3 功率扰动控制策略 (8)第3章太阳能电池板的设计 (10)3.1 太阳能电池的工作原理及运行特性 (10)3.1.1 太阳能电池原理 (10)3.1.2 太阳能电池工作特性 (10)3.2 最大功率跟踪控制 (12)3.2.1 太阳能电池板扰动观察法控制策略 (12)3.2.2 本文采用MPPT控制策略 (13)3.2.3 MPPT电路实现 (14)第4章蓄电池组的设计 (16)4.1 蓄电池工作原理及运行特性 (16)4.1.1 蓄电池的工作原理 (16)4.1.2 蓄电池的特性参数 (17)4.1.3 蓄电池的工作状态 (17)4.1.4 蓄电池的运行方式 (18)4.1.5 影响蓄电池寿命的因素及充放电保护 (19)4.2 蓄电池充放电方法 (19)4.3 充放电系统电路实现 (21)第5章参数确定及设备选择 (22)5.1 发电量与用电量计算 (22)5.2 设备参数确定 (22)5.3 LED路灯的选择 (23)5.3.1 LED的原理 (23)5.3.2 LED灯的特点 (23)5.3.3 LED路灯设计 (24)第6章风光互补路灯智能控制器的设计 (26)6.1风光互补发电系统主电路设计 (26)6.2 风光互补LED路灯控制器硬件设计 (27)6.2.1 TMS320F2812最小系统 (28)6.2.2 信号采集电路设计 (30)6.2.3 PWM驱动电路设计 (31)6.2.4 辅助电源设计 (33)6.2.5 实时时钟设计 (36)6.2.6 LED驱动设计 (37)6.3 系统软件设计 (38)6.3.1 主程序设计 (38)6.3.2 充放电程序设计 (39)6.3.3 LED照明管理程序设计 (40)第7章总结 (41)参考文献 (42)致谢 (43)附录Ⅰ锦州气候背景 (44)附录Ⅱ外文资料及翻译 (45)第1章绪论1.1研究背景与意义现阶段,人们主要使用的能源都是煤、石油、天然气等化石燃料以及少量的核能,随着现代人口的快速增长,以及人们对高质量生活的追求,化石能源的消耗量在进一步增加。
风光互补路灯课程设计

风光互补路灯课程设计一、课程目标知识目标:1. 让学生理解风光互补路灯的基本原理,掌握风能和太阳能转换为电能的基本过程。
2. 学会分析风光互补路灯系统的组成部分及其功能,了解其在现代城市照明中的应用。
3. 掌握风光互补路灯的优缺点,了解其在节能环保方面的意义。
技能目标:1. 培养学生运用物理知识解决实际问题的能力,通过小组合作,设计简单的风光互补路灯系统。
2. 提高学生的实验操作能力,学会使用相关仪器和设备进行风光互补路灯的测试与评估。
3. 培养学生的数据分析能力,能对实验数据进行处理和分析,得出合理结论。
情感态度价值观目标:1. 培养学生对新能源技术的兴趣,激发他们探索科学奥秘的热情。
2. 增强学生的环保意识,让他们认识到风光互补路灯在节能环保方面的重要性。
3. 培养学生的团队协作精神,让他们在合作中学会尊重、理解和帮助他人。
课程性质:本课程为跨学科综合实践活动课程,结合物理、能源、环保等多方面知识。
学生特点:本课程面向初中学生,他们对新能源有一定了解,但缺乏深入的认识,动手能力和团队合作能力有待提高。
教学要求:注重理论与实践相结合,鼓励学生积极参与实验,培养他们的观察、分析和解决问题的能力。
在教学过程中,关注学生的个体差异,充分调动他们的学习积极性,提高教学效果。
通过本课程的学习,使学生能够达到上述课程目标,并在后续的教学设计和评估中,对具体学习成果进行跟踪与反馈。
二、教学内容1. 引言:介绍风光互补路灯的基本概念,引导学生关注新能源在现代城市建设中的应用。
相关教材章节:《新能源技术与应用》第一章 新能源概述2. 风能利用原理:- 风能的基本概念和特点- 风力发电机的结构和工作原理相关教材章节:《新能源技术与应用》第二章 风能及其利用3. 太阳能利用原理:- 太阳能的基本概念和特点- 太阳能电池的原理与分类相关教材章节:《新能源技术与应用》第三章 太阳能及其利用4. 风光互补路灯系统组成与设计:- 系统的组成部分及其功能- 风光互补路灯的设计原则和步骤- 案例分析:介绍典型的风光互补路灯项目相关教材章节:《新能源技术与应用》第四章 风光互补发电系统5. 实践操作:- 搭建简易风光互补路灯模型- 实验操作:测试风光互补路灯的性能- 数据收集与分析相关教材章节:《新能源技术与应用》第五章 实践操作6. 总结与评价:- 对风光互补路灯的优缺点进行总结- 评估学生在实践操作中的表现- 讨论风光互补路灯在节能环保方面的意义相关教材章节:《新能源技术与应用》第六章 新能源评价与展望教学内容安排和进度:本课程共计6课时,每课时40分钟。
风光互补太阳能路灯方案

风光互补太阳能路灯方案随着可再生能源的不断发展和应用,太阳能成为一种受到广泛关注的清洁能源选择。
在城市照明中,传统的路灯需要消耗大量电力,对能源资源造成了很大的压力。
而风光互补太阳能路灯方案则能够更好地利用太阳能和风能,实现能源的互补利用,为城市照明带来新的解决方案。
1. 方案概述风光互补太阳能路灯方案是将太阳能光伏发电系统与小型风力发电机结合在一起,通过收集太阳能和风能来为路灯供电。
方案中包含了光伏发电模块、风力发电模块、储能装置、控制系统和LED灯具等组成部分。
2. 光伏发电模块光伏发电模块是风光互补太阳能路灯方案的核心部分之一。
模块由多个太阳能电池组成,能够将太阳能转化为电能。
光伏发电模块一般使用高效的单晶硅或多晶硅太阳能电池片制成,具有较高的太阳能转化效率。
3. 风力发电模块风力发电模块是风光互补太阳能路灯方案的另一个重要组成部分。
模块采用小型垂直轴风力发电机,能够通过收集风能转化为电能。
风力发电模块设计合理,能够在不同风速下稳定工作,并将产生的电能输送到储能装置中。
4. 储能装置储能装置是风光互补太阳能路灯方案中非常关键的一环。
它能够将光伏发电模块和风力发电模块产生的电能进行储存。
储能装置一般采用锂离子电池或钛酸锂电池等高能量密度的电池,具有较高的充放电效率和较长的使用寿命。
5. 控制系统控制系统是风光互补太阳能路灯方案中起到调控和管理作用的关键部分。
控制系统通过监测光照强度、风速和电池电量等参数,能够自动控制路灯的亮灭和光照强度。
同时,控制系统还能够监测故障信息,提供远程管理和维修。
6. LED灯具LED灯具是风光互补太阳能路灯方案的照明设备。
相比传统路灯,LED灯具具有更高的光效和更长的使用寿命。
LED灯具采用半导体发光技术,能够提供更亮、更远的照明效果,并且具有较低的能源消耗。
7. 方案优势风光互补太阳能路灯方案具有以下几个明显的优势:(1)清洁可再生能源。
光伏发电和风力发电是清洁的可再生能源,能够减少对传统能源的依赖,并降低碳排放。
偏远农村风光互补路灯控制系统设计

偏远农村风光互补路灯控制系统设计在偏远山区、农村由于电力缺乏,乡间道路上几乎都没有安装路灯,对居民晚间出行十分不利。
风能与太阳能在发电方面的应用逐渐成熟起来,风光互补发电系统的并网使用又将其产业技术向前推进了一步。
偏远山区、农村空气污染较小、建筑物遮挡较少、地势空旷,太阳能、风能较充足,因此可以充分考虑采用风光资源,安装风光互补路灯来改善居民生活环境。
1 系统方案风光互补路灯控制系统方案框图如图1 所示:图1 风光互补路灯控制框图路灯控制系统过程为:控制器检测光伏电池的输出电压电流,并根据光伏阵列的输出电压、电流计算光伏阵列的输出的最大功率点,通过MPPT 算法控制DC/DC 电路,使DC/DC 输出电压始终高于蓄电池当前电压,从而提高蓄电池的充电效率。
当光伏电池系统输出电压、电流不正常或出现故障时,切断光伏发电系统,对其进行故障保护。
控制器根据检测风速大小,启动风机发电系统,风机输出的三相交流电压经过不可控整流、滤波输出。
控制器检测该输出电压、电流值,根据蓄电池的电压状况,为蓄电池提供合适的充电电压,当蓄电池已充满,而风机交流输出电压过高时,控制器启动卸载电路,对风机进行保护。
当出现强风,超出风机风速要求时,风机自动刹车,控制器切断风机发电系统,直至风速正常。
控制器对蓄电池进行管理,通过巡测蓄电池的电压、电流、温度状况,控制蓄电池充放电,并对蓄电池进行过充、过放保护等。
2 系统控制电路风光互补路灯控制系统电路主要分为光伏发电、风力电机发电、蓄电池管理、LED 电流控制四部分,各部分的电路及控制方法如下:2.1 光伏发电DC/DC 变换电路光伏发电存在的问题是光伏电池的输出特性受外界环境影响较大,电池表面温度和日照强度的变化都可以导致输出特性发生较大的变化。
光伏电池在一个既定的温度和光照强度下会在一个特定的工作点达到最大输出功率,这个工作点称最大功率点(Maximum Power Point)。
风光互补太阳能路灯设计方案

风光互补太阳能路灯设计方案设计单位:乌鲁木齐旭日阳光太阳能工程有限公司设计时间:二0 一一年三月二十日设计人员:姜广建电话:风光互补路灯设计方案现场效果图一、自然资源状况在跨入21 世纪之际,人类将面临实现经济和社会可持续发展的重大挑战,在有限资源和环保严格要求的双重制约下发展经济已成为全球热点问题。
而能源问题将更为突出,不仅表现在常规能源的匮乏不足,更重要的是化石能源的开发利用带来了一系列问题,如环境污染,温室效应都与化石燃料的燃烧有关。
目前的环境问题,很大程度上是由于能源特别是化石能源的开发利用造成的。
因此,人类要解决上述能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。
太阳能和风能等清洁能源以其独具的优势,其开发利用必将在21 世纪得到长足的发展,并终将在世界能源结构转移中担纲重任,成为21 世纪后期的主导能源。
1.1 化石能源带来的问题(1)能源短缺:由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满足其经济发展的需要。
从长远来看,全球已探明的石油储量只能用到2020 年,天然气也只能延续到2040 年左右,即使储量丰富的煤炭资源也只能维持二三百年。
因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。
(2)环境污染:当前,由于燃烧煤、石油等化石燃料,每年有数十万吨硫等有害物质抛向天空,使大气环境遭到严重污染,直接影响居民的身体健康和生活质量;局部地区形成酸雨,严重污染水土。
这些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。
(3)温室效应:化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全球气候变化。
这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国际组织已召开多次会议,限制各国CO2 等温室气体的排放量。
1.2 太阳能资源及其开发利用特点(1)储量的“无限性”:太阳能是取之不尽的可再生能源,可利用量巨大。
风光互补路灯设计实例与配置方案

风光互补路灯应用设计实例与典型配置方案一、任务导入风光互补路灯的技术优势在于利用了太阳能和风能在时间上和地域上的互补性,使风光互补发电系统在资源上具有最佳的匹配性。
风光互补路灯控制系统还可以根据用户的用电负荷情况和当地资源进行系统容量的合理配置,既可保证系统供电的可靠性,又可降低路灯系统的造价。
风光互补路灯系统可依据使用地的环境资源做出最优化的系统设计方案来满足用户的要求。
因此,风光互补路灯系统可以说是最合理的独立电源的照明系统。
这种合理性既表现在资源配置上,又体现在技术方案和性能价格上,正是这种合理性保证了风光互补路灯系统的可靠性。
从而为它的应用奠定了坚实的基础。
二、相关知识学习情境1风光互补路灯(一)风光互补路灯的技术特点风光互补路灯主要为夜间照明使用,采用两种工作模式:纯光控模式和光控+定时模式。
两种模式的设定和控制是通过路灯控制器的拨码来实现的,并且风光互补路灯控制系统对风力发电机、太阳能电池组件和蓄电池提供多种保护,使系统可以更可靠的稳定工作。
风光互补路灯使用方便,实现无人值守,免解缆;低风速启动,合理吸收风能和光能,大风切出保护系统使整个系统更加安全可靠,大大减少太阳能电池组件的配比,降低了灯具的设计成本,可以收到良好的社会效益和经济效益。
小功率风力发电机组的风力机体积小、质量小而且发电效率高。
风力发电机独特的电磁设计技术使其具有低的启动阻力矩。
按照风能公式,风中可用能量是风速的3次方。
这表示风速提高1倍时,风能将提高8倍。
一般风力发电机组的效率通常是线性的,因此无法利用风力的3次方效益。
发电机只在沿能量曲线上的1点或2点有效率。
通过改进风力机组的效率曲线,使其符合风中可用能量的分布,使它沿整个曲线都有效率。
(二)风光互补路灯的构成风光互补路灯具备了风能和太阳能产品的双重优点,没有风能的时候可以通过太阳能电池组件来发电并储存在蓄电池中,有风能没有光能的时候可以通过风力发电机来发电并储存在蓄电池中。
(完整版)风光互补路灯设计

离网光伏系统设计报告书设计题目:风光互补路灯设计设计人姓名:向枘1121560119 班级:能自1201 班目录1 风光互补路灯系统介绍 (4)1.1 概括 (4)5 风光互补路的背景 .................................................................................................1.1.2 风光互补路灯的发展过程及现状 (5)6 风光互补路灯的意义 .............................................................................................8 风光互补路灯的原理 .............................................................................................2 设计需求 (9)3 系统初始化设计 (10)当地气象数据资料 (10)灯源及灯杆设计 (11)照明方式的选择 (11)灯杆高度及路灯间距的计算 (12)路灯灯源的选择 (12)灯杆强度 (13)蓄电池的选择 (17)蓄电池的选择 (17)蓄电池的计算 (18)风力发电机组设计 (18)风力发电机组的选择 (18)风力发电机组功率确实定 (18)太阳能电池组件设计 (19)太阳能电池组件功率的选择 (19)太阳能电池组件功率确实定 (19)方阵倾斜角设计 (20)4 系统的主要配置说明 (21)系统配置表 (21)4.2 太阳能组件主要参数 (22)4.3 风力发电机主要参数 (22)4.4 控制器主要参数及说明 (23)4.5 风光互补路灯24V 直流系统原理图方框图 (24)5 系统建设及施工 (24)5.1 系统建设流程 (24)5.2 系统安装说明 (25)5.2.1 安装前须知事项 (25)5.2.2 安装准备 (26)安装操作流程 (27)6 系统的运转与保护 (30)6.1 系统的调试 (30)6.2 系统的查收 (32)6.3 系统的保护 (33)6.4 风光互补路灯系统的防雷及防腐 (33)6.5 常有故障及办理 (34)6.6 使用寿命 (35)7 系统成本剖析 (35)8 参照资料 (36)8.1 国家标准 (36)8.2 行业标准 (37)8.3 参照文件 (37)1风光互补路灯系统介绍概括能源是公民经济发展和人民生活一定的重要物质基础,在过去的 200 多年里,成立在煤炭、石油、天然气等化石燃料基础上的能源系统极大的推进了人类社会的发展。
风光互补路灯系统的优化设计方法

风光互补路灯系统的优化设计方法
1.确定路灯布局:根据路段宽度、车流量以及附近建筑环境等因素,
确定合适的路灯布局方式。
2.选择光源:选择合适的光源,使光照适宜、亮度适中,同时达到节能、环保的目的。
3.设计光分布:通过光分布曲线的分析,确定光源的尺寸和角度,使
其能够呈现均匀的光照效果,不产生过度亮或不足的情况。
4.选用节能设备:利用节能技术,如LED灯光、智能控制系统等,减
少能耗和照明成本,同时延长维护周期。
5.选择保护装置:选用防水、防雷等保护装置,确保路灯系统稳定可靠,不受天气影响而失效。
6.设计电力系统:设计合理的电力系统,确保路灯系统的供电稳定,
避免短路、过载等安全隐患。
7.综合评估:通过对以上因素的评估,综合分析路灯系统的使用寿命、维护成本、节能效益等综合因素,进行最优化设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.系统配置说明
名称 光源 风机 太阳能板 控制器 蓄电池 灯杆 电缆附件 蓄电池箱 规格型号 LED 24V 40W 300W 40W 风光互补 12V 100Ah 10m/7.5m 单位 盏 台 块 台 只 套 套 个 1 数量 1 1 2 1 2 1 备注
5.建设施工
系统成型图
风光互补路灯和市电路灯的性价比
风机选型
应用于路灯系统的风力发电机组通常功 率为300W-500W。根据北京市昌平区的风力 资源状况,选择300W的风力发电机组。
太阳电池方阵选型
充电时间(小时)= 充电电池容量(Ah)×1.5 / 充电电流(A) (xW×5h+300W×1.5)/24V=100Ah×1.5 / 5h 应用于路灯系统的太阳能电池组件通常功率为60W-120W,现选取 x=80W,代入数据得:左边=35.42A>右边=30A,符合要求。用两块40W 的电池板。
风光互补路灯原理框图
光伏电池阵列 控 制 器 风力发电机 整流器
负载
蓄 电 池
2.设计要求
• 结合北京风力和光照情况实现路灯能实现 夜间照明2天需求
北京地区全年各月的月平均太阳辐射值
单位:MJ/(m2•d)
注:太阳能支架角度北京地区一般取40°,能获得较多的能量
3.组件选型
• • • • • • 灯源的选择 蓄电池选型 风机选型 太阳电池方阵的选择 控制器的选择 灯杆的选择
灯源选择
•
采用单边设置,截光型路灯 路宽:3.75*2=7.5m 取H=7.5m S=22.5m
光源照度15lx LED发光效率75lm/w 15×H×S/(0.95×0作12小时,电池充满后能满足两天供 电计算。 40w*12h*2d*1.2=CAh*24V C=96Ah 取电池容量为100Ah。 采用12V 100Ah 蓄电池两块串联。
规格 TSM-40M
标称功率 ( w) 40
峰值电压 ( v) 17.5±0.5
峰值电流 ( A) 2.28±0.2
尺寸 (mm) 635*535*40
重量 (Kg) 3.8
控制器选型
• • • • • • • • • • • • • • • ZYK-Ⅱ型智能控制器 风力机额定功率 300W 光伏功率 150W 最大充电电流 25A 每路最大负载电流 DC5A 每路最大输出功率 120W 缺省过充保护电压 28.2±0.2V 缺省浮冲电压 27.4±0.2V 缺省过放保护电压 22.2±0.2V 缺省过放恢复电压 24.8±0.2V 温度补偿 5mV/℃ 空载损耗 ≤20mA 环境温度 -10℃~+40℃8 防护等级 IP22 外形尺寸 250mm(长)×161mm(宽)×75(深)
谢谢!
风光互补路灯的设计
向枘 1121560119
• • • • •
风光互补路灯原理 设计要求 组件选型 系统的主要配置说明 建设施工
1.风光互补路灯原理
风光互补发电系统是一种风能和光能转化为电能 的装置,风光互补路灯工作原理是利用自然风作为动 力,风轮吸收风的能量,带动风力发电机旋转,把风 能转变为电能,经过控制器的整流,稳压作用,把交 流电转换为直流电,向蓄电池组充电并储存电能。利 用光伏效应将太阳能直接转化为直流电,供负载使用 或者贮存于蓄电池内备用。是风力发电机和太阳电池 方阵两种发电设备共同发电。 风光互补型路灯结构由太阳能电池组件、风机、 太阳能大功率LED、LPS灯具、光伏控制系统、风机控 制系统、太阳能专用免维护蓄电池等部件组成,还包 括太阳能电池组件支架、风机附件,灯杆,预埋件, 蓄电池地埋箱等配件。