第六章 无穷级数
无穷级数

定理2 定理2 如果
a n +1 lim = ρ, n→∞ a n
n n +1 其中 an , an+1 是幂级数 ∑ an x n中 x , x 项的系数 且一切 项的系数,且一切
∞
an ≠ 0, 则
n =1
,
(1)当0 < ρ < +∞ 时, 该幂级数的收敛半径为 R = 当
1
(2)当 (2)当 ρ = 0 时, 该幂级数的收敛半径为 R = +∞; (3)当 (3)当 ρ = +∞ 时, 该幂级数的收敛半径为 R = 0.
∞
n
= C ∑ un
n =1 n
∞
(2)设级数 (2)设级数
∑ u ,∑v
n =1 n n =1
分别收敛到 s , σ ,则 ∑ ( un ± vn )
n =1
∞
收敛到 s ± σ . 在级数前面加上或去掉有限项不影响级数的敛散性. (3) 在级数前面加上或去掉有限项不影响级数的敛散性. 收敛级数加括弧后所成的级数仍然收敛于原来的和. (4) 收敛级数加括弧后所成的级数仍然收敛于原来的和. 级数收敛的必要条件
n =1 n =1 n =1
∞
∞
∞
发散. 发散
2. 比较审敛法的极限形式 设
∑u
n =1
∞
n
与 ∑ vn 都是正项级数,如果 都是正项级数,
n =1
∞
则
∑ u ,∑v
n =1 n n =1
∞
un lim = l (0 < l < +∞ ), n→∞ v n
∞ n
的敛散性相同. 的敛散性相同
比值审敛法(达朗贝尔审敛法) 3. 比值审敛法(达朗贝尔审敛法)
无穷级数知识点

⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。
2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。
. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。
②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。
③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。
4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。
无穷级数的概念与性质(课堂PPT)

无穷级数
14
收敛的必要条件
级数
un
n 1
收敛
lim
n
un
0.
证明 设
un s
n1
则
un sn sn1 ,
lim
n
un
lim
n
sn
lim
n
sn1
s
s
0.
逆否命题成立:
lim
n
un
0
级数 un 发散 n 1
无穷级数
15
例:判断级数(1)n n 的敛散性。 2n 1
解:lim (1)n n
12 23 34
n n1
1 1 n 1
lim
n
S
n
1 lim (1 )
n n 1
1
(无穷小与无穷大的互逆 关系)
上级数收敛
无穷级数
8
例:判断级数ln 2 ln 3 ln 4 ... ln n 1 ...是否收敛
123
n
解:上述数列的通项可用公式ln A ln A ln B化简 B
n 1 an ln n ln(n 1) ln n
解:部分和 Sn
n(n 1) 2
(等差数列求和公式 )
lim
n
Sn
lim n2 n n 2
上级数发散
无穷级数
7
例:判断级数 1 1 1 ... 1 ...是否收敛
1 2 23 3 4
n (n 1)
解:上述数列的通项有规律可循
an
1 n(n 1)
1 n
1 n 1
部分和Sn
(1 1) (1 1) (1 1) ... (1 1 )
若级数 un 的每一项 un 均为常数 , n1
第六章 无穷级数

第六章 无穷级数第一节 常数项级数的概念与性质我们把无穷数列}{n u :1u ,2u ,…,n u ,…的项依次用加号连接起来所得到的式子++++n u u u 21称为无穷级数(简称为级数),记为∑+∞=1n nu,即++++=∑+∞=n n nu u u u211,其中n u 称为级数的通项。
例如:+++++n 21814121; +++++n 131211; +-++-+--1)1(1111n 。
称无穷级数的前n 项和n n u u u s +++= 21为级数的部分和,这样,级数将对应一个部分和序列1s ,2s ,…,n s ,…。
若级数的部分和序列有极限,即:s s n n =+∞→lim ,就称级数收敛,并称极限s 为该级数的和,记为 ++++==∑+∞=n n nu u u us 211,否则,称该级数发散。
当级数收敛时,其部分和n s 是级数和s 的近似值。
称n s s -为级数的余项,记为n r ,即+++=-=++21n n n n u u s s r用级数的部分和n s 作为级数和s 的近似值所产生的绝对误差为}{n r ,显然,级数收敛的充要条件是 0lim =∞→n n r例 1 无穷级数+++++=-+∞=-∑1211n n n aq aq aq a aq称为等比级数(又称几何级数),其中0≠a ,q 称为级数的公比,试讨论此级数的收敛性。
解 如果1≠q ,其部分和n s 为qq a aqaq aq a s n n n --=+++++=-1)1(12 如果1<q ,则0lim =+∞→nn q ,得s qas n n =-=+∞→1lim , 故级数收敛,且它的和为qa s -=1。
如果1>q ,因∞=+∞→nn q lim ,∞=+∞→n n s lim ,此时级数发散。
当1=q 时,级数为 ++++a a a 由于+∞==+∞→+∞→na s n n n lim lim ,此时级数发散。
高数 第六章

1 2 1 3 n 1 x ln(1 + x ) = x x + x L + ( 1) +L 2 3 n x ∈ (1,1]
(1 + x)α = 1 +αx +
n
α(α 1)
2!
x +L+
2
α(α 1)L(α n + 1)
n!
xn +L
x ∈(1,1)
二、典型例题
例1
判断级数敛散性: (1)
∑
n=1
∞
n
1 n+ n
1n (n + ) n
1 n
;
1 n
解
n nn n , un = = 1 n 1 n (1 + 2 ) (n + ) n n
1 1 n 1 n2 n Q lim(1 + 2 ) = lim[(1 + 2 ) ] = e 0 = 1; n→ ∞ n→ ∞ n n 1 1 1 n x lim n = lim x = exp{lim ln x } n→ ∞ x →∞ x →∞ x
6、幂级数
(1) 定义
的级数称为幂级数 幂级数. a n ( x x 0 ) n 的级数称为幂级数 ∑
n= 0 ∞
形如
当x0 = 0时,
an xn ∑
n=0
∞
为幂级数系数. 其中a n 为幂级数系数
定义: 正数R称为幂级数的收敛半径. 称为幂级数的收敛半径 定义: 正数 称为幂级数的收敛半径 幂级数的收敛域称为幂级数的收敛区间 幂级数的收敛域称为幂级数的收敛区间. 收敛区间
n→∞
收 , 其 数 敛 且 和s ≤ u1 ,其 项n 的 对 rn ≤ un+1. 余 r 绝 值
文科考研第六章无穷级数PPT课件

n 1
n 1
n 1
n 1
解 由 0ann 1(n1,2, ),
得|(1)nan2|an 2n12
,而级数
n1
1 n2
收敛,
所 以 级 数 (1)nan 2绝 对 收 敛 .
n1
【答案】 应选(D). 25
例3 (91,3分 )设 0ann 1(n1,2, ), 则 下 列 级
数 中 肯 定 收 敛 的 是
3
收敛级数的基本性质 性质1: 级数的每一项同乘一个不为零的常数, 敛散性不变. 性质2:收敛级数可以逐项相加与逐项相减. 性质3:在级数前面加上有限项不影响级数的敛 散性. 性质4:收敛级数加括弧后所成的级数仍然收敛 于原来的和.
级数收敛的必要条件: ln i mun 0.
4
常数项级数审敛法
正项级数
第六章 无穷级数
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容
标题添加
点击此处输入相 关文本内容
点击此处输入 相关文本内容
1、常数项级数
定义
unu1u2u3 un
n1
n
级数的部分和 snu1u2 un ui
i1
级数的收敛与发散
常 数 项 级 数 收 敛 ( 发 散 ) n l is n m 存 在 ( 不 存 在 ) .
必 收 敛 的 是 ( ) .
(A)
( A )a n( B )( 1 ) n a n( C ) a n ( D )( 1 ) n a n 2
n 1
n 1
n 1
n 1
解 【评注】
(A)、 (C)反 例 : an21n;
0, n为奇数
高等数学-无穷级数ppt

根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。
高等数学:无穷级数

化 为小数时,就会出现无限循环小
数,即 =0.3·.现在我们分析一下0.3·,看从中能得到什么 样的
表现形式:
无穷级数
无穷级数
1
这样, 这个有限的量就被表示成无穷多个数相加的形式.
3
从这个例子我们可以看出, 无穷多个数相加可能得到一个确
定的有限常数.也就是说,在一定条件下,无穷多个数相 加是有
无穷级数
无穷级数
无穷级数
三、 无穷级数的性质
性质10-1 若级数
也收敛,且收敛于kS.即,若
收敛于S,则对任意常数k,级数
则有
这说明,级数的每一项同乘以一个不为零的常数后,它的
敛散性不改变.
无穷级数
性质10-2 若级数
数
则有
分别收敛于S1 和S2,则级
也收 敛,且收敛于S1 ±S2.即,若
无穷级数
直接展开法的具体步骤为:
有直接展开
无穷级数
2.间接展开法
无穷级数
无穷级数
无穷级数
无穷级数
三、 幂级数的应用
1.利用幂级数进行近似计算
无穷级数
例10-21 【付款的现值问题】某基金会与一个学校签约,
合同规定基金会每年支付 300万元人民币用以资助教育,有效
期为10年,总资助金额为3000万元人民币.自签约之 日起支付
设想公式 (10-7)的项 数趋向无穷而成为幂级数,即
式(10-10)称为f(x)在点x0 处的泰勒级数.
无穷级数
当x0 =0时,幂级数
称为f(x)的麦克劳林级数.
无穷级数
无穷级数
无穷级数
二、 将函数展开成幂级数
将函数f(x)展开成x 的幂级数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n 1
n 1
① 由 vn 收敛,可推断 un 亦收敛;
n 1
n 1
② 由 un 发散,可推断 vn 亦发散.
n 1
n 1
6.1 常数项级数
1
例 讨论 p 级数 n1 n p 的敛散性( p 0 ).
1 1
解:① 当 p 1时, n1 n p n1 n 为调和级数,发散.
S
n
S ,则称级数
un
n 1
收敛,并称极限值 S 为级数
un
n 1
的和,记为 un n 1
= S .如果部分和数列 Sn 没有极限,则称级数 un 发散. n 1
6.1 常数项级数
1
例 讨论级数 n1 n(n 1) 的敛散性.
解:通项 un
1 n(n 1)
1 n
解: un
1 n ,显然有 un1
1 n 1
1 n
u
n
,且
lim
n
u
n
lim 1 n n
0 ,所以
该级数是收敛的.
将级数
(1)n1 1 的每一项取绝对值后变成调和级数
1
是发散的,于
n1
n
n1 n
(1)n1
是我们称
n 1
n
为条件收敛级数.
②
当
1 p 1时, n p
1
n ,由比较判别法知 n1
1 np
发散.
③
1 当 p 1时, n1 n p
1
(
1 2p
1 3p
)
1 (4p
1 5p
1 6p
1 7p
)
L
1
(
1 2p
1 2p
)
(
1 4p
1 4p
1 4p
1 4p
)
L
n1
(
1 2 p1
若 un 收敛,但 | un | 发散,则称 un 是条件收敛级数;若 un 收
n 1
n 1
n 1
n 1
敛, | un n 1
| 也收敛,则称 un n 1
为绝对收敛级数.如 (1) n1 n1
1 n2
是绝对收
敛级数.
6.2 幂级数
6.2.1 幂级数的概念
f (x) f (x0 )
f
( x0 1!
)
(
x
x0
)
f
( x0 2!
)
(x
x0
)2
f
(n) (x0 ) n!
(x
x0 )n
f (n1) ( ) (n 1)!
(x
x0
) n1 .
在 x 与 x0 之间.称上式为 f (x) 的泰勒展开式或泰勒公式,其中
Rn (x)
第六章 无穷级数
无穷级数是表示函数、研究函数的性质以及进行数值计算的重要工具,它主 要包括常数项级数和函数项级数两部分.
第六章 无穷级数
6.1 常数项级数 6.2 幂级数 6.3 函数的幂级数展开式 6.4 傅里叶级数
6.1.1 常数项级数的基本概念
6.1 常数项级数
定义 1 设给定数列 u1, u2 , , un , ,则将式子 u1 u2 un 称为
常数项无穷级数,简称数项级数,记作 un ,即 n 1
un = u1 u2 un ,
n 1
其中 u n 称为级数的通项或一般项.
定义 2 如果当 n 时,级数 un 的部分和数列 Sn 有极限 S ,即 n 1
lim
n
n1
n 1
数敛散性的判别方法如下:
如果交错级数 (1)n1un (un 0) 满足: n1
① un1 un (n 1, 2,3L ) ;
②
lim
n
un
0.
则该交错级数收敛,且其和 S u1 .
(1)n1
例 判定级数 n 1
n
的敛散性.
6.1 常数项级数
f (n1) (x) (n 1)!
x
n1
.
称为 f (x) 的麦克劳林展开式.
6.3 函数的幂级数展开式
例 写出函数 y e x 的麦克劳林展开式.
解: f (k) (x) e x , f (k) (0) 1 , (k 0,1,2, , n) , f (n1) (x) ex . 所以, y e x 的麦克劳林展开式为
f (n1) ( ) (n 1)!
(x
x0
) n1
称为 f (x) 的 n 阶泰勒余项.
在泰勒展开式中,当 x0 0 时,记 x ,( 0 1),公式成为
f (x)
f (0)
f (0) x 1!
f (0) x2 2!
f (n) (0) x n n!
6.1.3 级数收敛与发散的判定方法
1.正项级数收敛性的判定
如果级数 un 中的每一项均非负,即 un 0 (n 1, 2,3,L ) ,则称该级 n 1
数为正项级数.
(1)比较判别法
设 un , vn 均为正项级数,且 un vn (n 1, 2,3,L ) ,则
n0
n0
n0
这性质表明幂级数在收敛区间内可以逐项求导.
6.2 幂级数
例
求幂级数
n0
x 2n1 2n 1
的和函数,并求级数
n0
1 ( 1 )2n1 2n 1 2
的值.
1
解:因为
lim
n
2(n
1) 1
1
1,所以
R
1 .又
x2n1 2n 1
1.函数的项级数
设 u1(x),u2 (x),L ,un (x),L 都是定义在数集 E 上的函数,则和式
u1 (x) + u2 (x) +…+ un (x) +… un (x) (1) n 1
称为定义在数集 E 上的函数项级数, un (x) 称为一般项或通项.
当 x 在数集 E 上取某个特定值 x0 时,级数(1)就是一个数项级数.如果这个数项级
n 1
n 1
n1
性质 3
若
n 1
un
收敛,则
lim
n
u
n
0.
n
例 判别级数 n1 10n 3 的敛散性.
解:因为 un
n 10n
3
,
lim
n
un
n lim n 10n 3
1 10
0,
n
所以级数 n1 10n 3 发散.
6.1 常数项级数
ex
1
x
1 x2 2!
1 x3 3!
1 xn n!
(n
1
1)!
ex
x
n1
.
为了计算 e 的近似值,可在上式中取 x 1,得 e 的表达式为
n
例
讨论级数 n 1
2n
的敛散性.
n 1
解:lnim
u n 1 un
lim 2n1 n n
lim
n
n 1 2n
1 2
1,根据比值判别法,级数
n 1
n 2n
收敛.
2n
6.1 常数项级数
2.交错级数收敛性的判定
设 un 0 ,则级数 (1)n1un (或 (1)n un )称为交错级数.交错级
n0
an n 1
x n1
.
这性质表明幂级数在收敛区间内可以逐项积分.
性质 4 如果幂级数 an xn 的收敛半径 R 0,则在收敛区间 (R, R) 内, n0
其和函数 S(x) 是可导的,并且有
S (x) ( an xn ) (an xn ) nan x n1 .
x 2n1 1 1 x
n0
2n
1
ln 2
1
x
,
x (1,1)
.
1 ( 1 )2n1
n0 2n 1 2
1 ln 1 x 2 1 x
x1
1 2
ln
3
.
2
6.3 函数的幂级数展开式
6.3.1 泰勒级数
1.泰勒展开式
设 y f (x) 在 x0 的某邻域内有直至 n 1阶的导数,则对此邻域内任意 x 有
其和函数 S(x) 是连续函数.
6.2 幂级数
性质 3 如果幂级数 an xn 的收敛半径 R 0,则在收敛区间 (R, R) 内, n0
其和函数 S(x) 是可积的,并且有
x
S (t )dt
0
x
(
0
ant n )dt