高考经典物理模型:绳子受力突变问题精选.
高考经典物理模型:绳子突变

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
高考物理复习受力分析之动态平衡--晾衣绳模型

高考复习微专题---动态平衡之晾衣绳模型在高考中,有一类动态平衡问题,称之为晾衣绳模型。
模型特点:非弹性绳绳长s 不变,绳子两端间水平距离L 不变,绳子上通过光滑挂钩悬挂重物G ,由几何知识可知:L =+ααsin s sin s 21,所以L =αssin ,如果只有绳子端点高度变化而距离L 不变时,则绳子形成的夹角2α不变,与绳子端点高度无关。
例1、如图所示,在竖直放置的穹形光滑支架上,一根不可伸长的轻绳通过光滑的轻质滑轮悬挂一重物 G 。
现将轻绳的一端固定于支架上的 A 点,另一端从B 点沿支架缓慢地向C 点靠近。
则绳中拉力大小变化的情况是( )A 、先变小后变大B 、先变小后不变C 、先变大后不变D 、先变大后变小例2、(2017﹒天津高考)如图所示,轻质不可伸长的晾衣绳两端分别固定在竖直杆 M 、N 上的 a 、b 两点,悬挂衣服的衣架挂钩是光滑的,挂于绳上处于静止状态。
如果只人为改变一个条件,当衣架静止时,下列说法正确的是( )A 、绳的右端上移到b',绳子拉力不变B 、将杆N 向右移一些,绳子拉力变大C 、绳的两端高度差越小,绳子拉力越小D 、若换挂质量更大的衣服,则衣架悬挂点右移变式题:如图所示为一竖直放置的大圆环,在其水平直径上的A 、B 两端系着一根不可伸长的柔软轻绳,绳上套有一光滑小铁环.现将大圆环在竖直平面内绕O 点顺时针缓慢转过一个微小角度,则关于轻绳对A 、B 两点的拉力F A 、F B 的变化情况,下列说法正确的是 ( )A 、F A 变小,FB 变小B 、F A 变大,F B 变大C 、F A 变大,F B 变小D 、F A 变小,F B 变大例1:C例2:AB变式题:A。
高考物理建模之轻绳模型

高考物理建模之轻绳模型轻质绳是高考物理常见的一种建模,很多题型涉及到轻绳模型,考查方式多样化,可以以选择、计算题出现,可以是简单的受力,也可以是复杂的讨论形式。
可以说,轻绳模型是高中物理最常见也最重要的建模之一。
轻绳模型特点首先,它的质量可忽略不计,不考虑其重力。
其次,它只能产生拉力(弹力),不能产生压力或支持力,因此拉力方向一定沿着绳子指向绳子收缩的方向。
轻绳模型规律▪同一条绳子拉力处处相等;▪轻绳松弛时不产生拉力,轻绳不能像弹簧一样伸长;▪用轻绳连接的物体发生碰撞时,会引起机械能损失,即非弹性碰撞;▪轻绳的拉力会发生突变,具有瞬时突变;轻绳模型处理方法根据物体运动状态,选择相对应的定理或定律。
具体表现为:静止或动态平衡时涉及共点平衡原理,加速或减速涉及牛顿第二定律,圆周运动涉及向心力,绳子关联问题涉及运动的合成与分解等等。
轻绳模型常见题型▪轻绳涉及的平衡问题这类题型特点在于物体处于静止状态或动态平衡(缓慢移动、匀速运动),结合受力分析利用合成法或正交分解法解决。
特别提醒,轻绳会与定滑轮挂钩形成"活结",至于"活结类"的轻绳模型,可以参考这篇文章《高考物理建模型之活结和死结模型》加以理解。
经典例题如图所示,将一根不能伸长、柔软的轻绳两端分别系于A、B两点上,一物体用动滑轮悬挂在绳子上,达到平衡时,两段绳子间的夹角为θ1,绳子张力为F1;将绳子B端移至C点,待整个系统达到平衡时,两段绳子间的夹角为θ2,绳子张力为F2;将绳子B端移至D点,待整个系统达到平衡时,两段绳子间的夹角为θ3,绳子张力为F3,不计摩擦,则( )A. θ1=θ2=θ3B. θ1=θ2<θ3C. F1> F2> F3D. F1= F2< F3 答案:BD解析:先要证明θ跟什么因素有关。
根据轻绳模型可知,不管悬挂点在B、C、D点哪个位置,两段绳子的拉力是一样的,并且拉力的合力刚好在两段绳子夹角的角平分线上。
高考物理专题分析及复习建议: 轻绳、轻杆、弹簧模型专题复习

高考物理专题分析及复习建议:轻绳、轻杆、弹簧模型专题复习,吊着重为180N的物体,不计摩向上移动些,二绳张力大例2:如图所示,三根长度均为l 的轻绳分别连接于C 、D 两点,A 、B 两端被悬挂在水平天花板上,相距2l .现在C 点上悬挂一个质量为m 的重物,为使CD 绳保持水平,在D 点上可施加力的最小值为()A.mgB.33mg C.21mg D.41mg 变式训练1.段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳() A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC变式训练2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.变式训练3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大变式训练4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
在滑轮之间的一段绳上悬挂物体m ,为使三个物体不可能保持平衡,求m 的取值范围。
(绳的“死结”问题,也就是相当于几根绳子,每根绳的拉力一般来说是不相同的。
) 左运动时,则对于:如图所示,轻杆的一端铰链连接于墙壁上,另一端装有一光滑的小滑轮,细绳绕过小悬挂在天花板上,下面还拴着劲度系数为k1的轻弹簧上移的高度是多少?的劲度系数分别为k1和k2,若在m1上随时间t变化的图像如图(乙)所示,则(在某一瞬间,物体由一种状态变化到另一种状态,从而引起运动和受力在短时间内发生急剧的变化,,的细绳,细绳上有一小的清滑轮,吊着重为180N的物体,不计向上移动些,二绳张力两端被悬挂在水平点A.mgB.33mg C.21mg D.41mg 2-1.一段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图4-7所示,其中OB 是水平的,A 端、B 端固定.若逐渐增加C 端所挂物体的质量,则最先断的绳(A )A .必定是OAB.必定是OBC .必定是OCD.可能是OB ,也可能是OC2-2.如图所示,物体的质量为2kg .两根轻细绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,当AB 、AC 均伸直时,AB 、AC 的夹角60θ=,在物体上另施加一个方向也与水平线成60θ=的拉力F ,若要使绳都能伸直,求拉力F 的大小范围.F 的取值范围为:≤F≤2-3.如图所示,电灯悬挂于两壁之间,更换水平绳OA 使连结点A 向上移动而保持O 点的位置不变,则A 点向上移动时(D )A .绳OA 的拉力逐渐增大B .绳OA 的拉力逐渐减小C .绳OA 的拉力先增大后减小D .绳OA 的拉力先减小后增大2-4.一轻绳跨过两个等高的定滑轮不计大小和摩擦,两端分别挂上质量为m 1=4Kg 和m 2=2Kg 的物体,如图所示。
涉及绳 子能发生突变的几个量

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。
现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。
当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。
已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。
设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。
力学中的突变问题(完美版)

突变问题常见的突变模型轻绳:只产生拉力,方向沿绳子。
绳子的弹力可以突变——瞬时产生,瞬时改变,瞬时消失。
轻弹簧:可产生拉力、支持力,方向弹簧。
弹簧的弹力不能突变,在极短的时间内可认为弹力不变。
轻杆:可产生拉力、支持力,方向不一定沿杆。
杆的弹力可以突变。
※典型例题※例题1、原来做匀速运动的升降机内有一被伸长的轻质弹簧拉住、具有一定质量的物体A静止放在地板上,如图所示,现发现A突然被弹簧拉向右方,由此可判断,此时升降机的运动可能是A.加速上升B.减速上升C.加速下降D.减速下降例题2、如图所示,两小球悬挂在天花板上,a、b两小球用细线连接,上面是一轻质弹簧,a、b两球的质量分别为m,2m,在细线烧断瞬间,两球的加速度分别是A.0;gB.-g;gC.-2g;gD.2g;0例题3、 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、固定于杆上,小球处于静止状态。
设拔去销钉M 瞬间。
小球加速度的大小为12m/s 2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(取g=10m/s 2)A .22m/s 2,竖直向上B .22m/s 2,竖直向下C .2m/s 2,竖直向上D .2m/s 2,竖直向下 例题4、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态。
当木板AB 突然向下撤离的瞬间,小球的加速度为A .0B .大小为g,方向竖直向下C .大小为3,方向垂直于木板向下D .大小为g 3,方向水平向右例题5、 如图所示,质量为m 的物体A 系于两根轻弹簧L 1、L 2上,L 1的一端悬挂在天花板上C 点,与竖直方向的夹角为θ,L 2处于水平位置,左端固定于墙上B 点,物体处于静止状态,下列说法正确的是A .若将L 2剪断,则剪断瞬间物体加 速度a=gtan θ,方向沿B 到AB .若将L 2剪断,则剪断瞬间物体加 速度a=gsec θ,方向沿A 到CC .若将L 1剪断,则剪断瞬间物体加速度a=gsec θ,方向沿C 到AD .若将L 1剪断,则剪断瞬间物体加速度a=g ,方向竖直向下例题6、 如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2kg 的物体A ,处于静止状态。
高三物理涉及绳子能发生突变的几个量

涉及绳子能发生突变的几个量与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;(2)求小球到达最低点时细绳上的拉力大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
涉及绳子能发生突变的几个量
与绳子相连接的物体,它的基本物理量如弹力、速度、能量等,能发生突变,这种突变比较隐蔽,不容易发现,容易产生错解,这就要求我们要认真理解和把握这类情况,这样我们在分析和处理类似问题时就会站得更高,看得更远,考虑问题也就会更周全一些,这对我们解决问题大有益处。
一. 绳子的弹力可发生突变
由于绳子的特点,它的弹力可发生突变,它与弹簧不同,弹簧的弹力不能发生突变,同学们一定要注意区别,不能混淆。
例1. 如图1所示,一条轻弹簧OB和一根细绳OA共同拉住一个质量为m的小球,
平衡时细绳OA是水平的,弹簧与竖直方向的夹角是,若突然剪断细绳OA,则在刚剪断的瞬间,弹簧拉力的大小是_________,小球加速度的方向与竖直方向的夹角等于
_________,若将弹簧改为一根细绳,则在OA线剪断瞬间,绳OB的弹力大小是________,小球加速度方向与竖直方向夹角等于__________。
图1
分析与解答:这是一道典型的要区分细绳与弹簧有什么不同的题,只要我们认清细绳可发生突变,而弹簧不能发生突变的情况,则这就不是一道难题。
细绳未剪断前,小球所受重力,弹簧的拉力和细绳的拉力是平衡的,即重力与弹簧的拉力的合力是沿水平方向向右,大小,细绳剪断后,弹簧的形变不能
马上改变,弹力仍保持原值,因重力、弹簧弹力不变,所以此时小球加速
度方向是沿水平向右,即与竖直方向夹角是,若弹簧改用细绳,则OA线剪断瞬间,细绳OB的形变发生突变,小球有沿圆弧切线方向的加速度,故重力与绳OB的拉力的
合力必沿切线方向,由此求得,夹角为。
二. 与绳子相连接的物体,速度发生突变
与绳子相连接的物体,由于某些时候绳子的形变发生突变,它的速度会随着发生突变,对这类问题若不加仔细分析,引起注意,接下来其他量的求解就会随着出错,因此必须引起高度重视。
例2. 如图2所示,质量为m的小球用长为L的细绳系于O点,把小球拿到O点正上方且使细绳拉直的位置A后,以的速度水平向右弹出(空气阻力不计)
(1)小球从弹出至下落到与O点等高的位置这一过程中,小球做什么运动,请说明理由;
(2)求小球到达最低点时细绳上的拉力大小。
图2
分析与解答:(1)设球在最高点只受重力且做圆周运动,则有:
因为,所以小球做平抛运动。
(2)设小球下落到与O点等高的位置时,在水平方向的位移为x,有,,得:
水平方向速度:
竖直方向的速度:
在此,小球在水平方向的速度突变为0,消失了,只剩下竖直向下的速度,此后,小球以为初速向下做圆周运动(同学们往往在此发生错误)。
设小球下落到最低点时速度为,绳子拉力为,由机械能守恒:
又由牛顿第二定律有:
解得:
三. 与绳子相连接的物体,机械能发生突变
与松弛的绳子相连接的物体,在突然被绳子紧拉一下时,其机械能会发生突变,转变为其他形式的能,解这类题目要特别注意,否则将发生一系列连锁错误。
例3. 在光滑水平面上,有一质量的小车,通过一根几乎不可伸长的轻绳与另一质量的拖车连接,一质量的物体放在拖车的平板上,物体与平板间的动摩擦因数,开始时,拖车静止,绳未拉紧,如图3所示,小车以的速度前进,求:
(1)以同一速度前进时,其速度的大小;
(2)物体在拖车平板上移动的距离。
图3
分析与解答:整个运动过程可分成两个阶段:①绳子被拉紧时,m1与m2获得共同速度,m1、m2系统的动量守恒,由于绳子由未绷紧到绷紧,会有机械能的损失(在这个问题上很容易被忽视),此时m3的速度还为零;②绳子拉紧后,在摩擦力作用下m3加速,m1与m2减速,m3与m2间有相对滑动,直至三者速度相等,一起运动。
此阶段系统动量守恒,机械能不守恒,但可由动能定理求解。
绳刚被拉紧时,设m1与m2的共同速度为v1,m1与m2系统动量守恒,有:
解得:
再对m1、m2、m3系统,由动量守恒得:
解得:
绳拉紧后,物体在拖车上相对滑动,设拖车位移为s1,物体位移为s2,分别对两车、物体用动能定理有:
小车和拖车:
物块:
可解得物体在拖车上移动的距离:
最新文件仅供参考已改成word文本。
方便更改。