小波分析及其应用课件
合集下载
小波分析的应用课件

小波分析的应用
报告人:张健明
组员:梁华庆、郭文彬、轩黎明、 周华、刘志平、王海婴、陈泽强、 常永宇、郭晓强、付景兴、李卫东
精
1
小波应用简介 小波在图像编码中的应用 小波在时变线性系统建模中的应用 小波分析的应用前景
精
2
小波应用简介
小波分析在时域和频域同时具有良好的 局部化特性,对于信号处理、信息处理 起着至关重要的作用。
精
10
小波在图像编码中的应用
一幅图像在二维频域
LL1
HL1
可被分解为四个子带,如
右图。图中LL1,LH1,
LH1
HH1
HL1,HH1分别表示
(x, y),1(x, y), 2(x, y), 3(x, y)
对应的分解。
L是图像的低频部分,H是图像的高频部分。
精
11
小波在图像编码中的应用
变换域编码的数据压缩过程如下图:
原始图像
正交 变换
量 化
熵 编 码
信道 解 码
逆 量 化
逆正交 重建图像 变换
精
6
小波在图像编码中的应用
为什么小波变换能用于图像编码
离散信号能量的度量
将离散信号x(n)用N维矢量表示x=(x0,x1,…,xN-1) 连表示,其能量定义为
N 1
Ex xT x xi2
图像压缩的变换域编码方法
将时域信号(如声音信号)或空域信号(如 图像信号)变换到另外一些正交矢量空间;
使变换域中的信号分量相关性很小,从而其码中的应用
常用的变换域方法有离散余弦变换、Haar 变换、Walsh-Hadamard变换等,小波变换 方法也属变换域方法中的一种;
报告人:张健明
组员:梁华庆、郭文彬、轩黎明、 周华、刘志平、王海婴、陈泽强、 常永宇、郭晓强、付景兴、李卫东
精
1
小波应用简介 小波在图像编码中的应用 小波在时变线性系统建模中的应用 小波分析的应用前景
精
2
小波应用简介
小波分析在时域和频域同时具有良好的 局部化特性,对于信号处理、信息处理 起着至关重要的作用。
精
10
小波在图像编码中的应用
一幅图像在二维频域
LL1
HL1
可被分解为四个子带,如
右图。图中LL1,LH1,
LH1
HH1
HL1,HH1分别表示
(x, y),1(x, y), 2(x, y), 3(x, y)
对应的分解。
L是图像的低频部分,H是图像的高频部分。
精
11
小波在图像编码中的应用
变换域编码的数据压缩过程如下图:
原始图像
正交 变换
量 化
熵 编 码
信道 解 码
逆 量 化
逆正交 重建图像 变换
精
6
小波在图像编码中的应用
为什么小波变换能用于图像编码
离散信号能量的度量
将离散信号x(n)用N维矢量表示x=(x0,x1,…,xN-1) 连表示,其能量定义为
N 1
Ex xT x xi2
图像压缩的变换域编码方法
将时域信号(如声音信号)或空域信号(如 图像信号)变换到另外一些正交矢量空间;
使变换域中的信号分量相关性很小,从而其码中的应用
常用的变换域方法有离散余弦变换、Haar 变换、Walsh-Hadamard变换等,小波变换 方法也属变换域方法中的一种;
第六章小波分析基础ppt课件

1、多分辨分析(MRA)的概念[5]
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
由母小波按如下方式的伸缩平移可构成L2(R)空间的标准正交基
j
j,k (t) 2 2 (2 j t k),j, k Z,t R
(3.1)
如何构造母小波呢?1989年,Mallat和Meyer提出了按多分辨分析 的思想来构造母小波,其基本思想是:
现构造一个具有特定性质的层层嵌套的闭子空间序列{Vj}jZ, 这个闭子空间序列充满了整个L2(R)空间。 在V0子空间找一个函数g(t),其平移{g(t-k)}k Z构成V0子空间的 Riesz基。
如图1所示的LENA图像f(x,y),假设图像的大小是512x512,量 化级是256,即
0 f (x, y) 255 0 x, y 511
y
x
2、L2(R)空间的正交分解和变换[1] 对 f(t)L2(R) , 存 在 L2(R) 的 一 组 标 准 正 交 基 gi(t) , t R ,
一、认识小波
1、预备知识 从数学的角度讲,小波是构造函数空间正交基的基本单元,
是在能量有限空间L2(R) 上满足允许条件的函数,这样认识小波 需要L2(R) 空间的基础知识,特别是内积空间中空间分解、函数 变换等的基础知识。
从信号处理的角度讲,小波(变换)是强有力的时频分析(处理) 工具,是在克服傅立叶变换缺点的基础上发展而来的,所以从信 号处理的角度认识小波,需要傅立叶变换、傅立叶级数、滤波器 等的基础知识。
小波变换有效地克服了傅立叶变换的这一缺点,信号变换到 小波域后,小波不仅能检测到高音与低音,而且还能将高音 与低音发生的位置与原始信号相对应,如图所示。
例2、信号逼近:如图(a)和(b)是原始信号,其余的是逼近信号。
因此我们需要这样一个数学工具:既能在时域很好地刻画信号的局部性,
最新小波分析(讲稿)课件ppt

一.FFT、STFT到Wavelet
1.Fourier Analysis
FFT变换是将信号分解成不同频率的正弦波的叠加和,即把信号
投影到一组正交基 e j.t 上。
一.FFT、STFT到Wavelet
1.Fourier Analysis 存在的主要问题:
(1) 无时域局部化特性。为了求得傅里叶系数,理论上必须知道时域的全部
1.Fourier Analysis 存在的主要问题: (3)傅氏分析采用窗宽固定的窗函数。为了分析提取信号的低频成分,T0应
取较大值,且频率分辩率较高;为了分析提取信号的高频成分,T0应取较小 值,时域分辩率较高,而对频率分辨率要求不高。 但T0固定时,两者不能同 时满足。
2.短时傅里叶变换 STFT(Short-Time Fourier Transform)
主要缺陷:STFT的窗函数一旦确定,就不能再变换。对于频率成分较多 的信号,很难找到一个最合适的窗函数,从而很难获得一个最佳的分析 精度。
2.STFT(Short-Time Fourier Transform)
(SF wfT ) (,b) f(t).w (tb)ej.td t
3.Wavelet Analysis
(2) 不能实现时频分析。信号分解转换到频域后,丢失掉了时域的信息, 频域中某频率或频带内的信息和时域中某时刻或时宽内的信息没有直接的对 应关系,即不能给出某一指定频带内的时域图形。这种对应关系称为时频分 析,所以傅里叶分析不能进行时频分析,而时频分析在工程中却相当有用。
一.FFT、STFT到Wavelet
(SF wfT ) (,b) f(t).w (tb)ej.td t
STFT将信号在时域上加窗函数,然后进行傅立叶变换,再在时域上 移动窗函数,最后完成连续重叠变换,得到与时间有关的信号频谱的描 述。从而在时频域得到一个信号能量的三维分布。
小波分析简述(第五章)PPT课件

六、多分辨率分析(Multi-resolution Analysis ,MRA),又称为多尺度分析
若我们把尺度理解为照相机的镜头的话,当尺 度由大到小变化时,就相当于将照相机镜头由 远及近地接近目标。在大尺度空间里,对应远 镜头下观察到的目标,只能看到目标大致的概 貌。在小尺度空间里,对应近镜头下观察目标, 可观测到目标的细微部分。因此,随着尺度由 大到小的变化,在各尺度上可以由粗及精地观 察目标,这就是多尺度(即多分辨率)的思想。
小波变换(Wavelet Transform)
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
主要内容
一、小波的发展历史 二、小波定义 三、连续小波变换 四、小波变换的特点 五、离散小波变换 六、多分辨率分析 七、Mallat算法 八、小波的应用 九、小波的进展
傅立叶分析是把一个信号分解成各种不同频率的正弦波, 因此正弦波是傅立叶变换的基函数。同样,小波分析是 把一个信号分解成由原始小波经过移位和缩放后的一系 列小波,因此小波是小波变换的基函数,即小波可用作 表示一些函数的基函数。
8
• 小波变换的反演公式
xtc1 0 a d2a W xa T ,a,td
26
小波基函数和滤波系数(db 2--正交,不对称 )
db小波
“近似”基函 数
“细节”基 函数
“正变换” 低频 和
高频 “滤波系数 “ ”反变换” 低频 和
• 小波基必须满足的条件—允许条件
ˆ2
c d
ˆ00
tdt0
9
四、小波变换的特点
《小波分析》PPT课件

(Orthonormal Wavelet and Multiresolution Analysis)
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
3.1. 多分辨分析
(Multiresolution Analysis)
➢ 在(a,b)-W(a,b)给出的二维小波谱空间 ,二进离散小波谱点的分布规律可以用 Appendix C Fig.3. 加以说明。
Appendix C Fig.3.
正交小波的点谱吸收特性
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
01234567
0
1
2
3
0
1
0
§3. 正交小波和多分辨分析
级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
信号f(x)的另一种等价描述(因为Fourier变
换是信号的等价描述)
局限
遗憾的是,Gabor变换存在如下局限:
Gabor变换没有“好”的(即可以
构成标架或者正交基)离散形式;
Gabor变换没有快速算法:比如没 有 类 似 于 离 散 Fourier 变 换 之 FFT
的快速数值算法;
Appendix A Fig.1. Gabor变换的固定时-频窗口
注释
注释:如果小波母函数 x
的
小波变换原理与应用ppt课件

3.小波变换的基本原理与性质
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
信号的时域表示和频域表示只适用于平稳信号,对于
非平稳信号而言,在时间域各种时间统计量会随着时 间的变化而变化,失去统计意义;而在频率域,由于 非平稳信号频谱结构随时间的变化而变化导致谱值失 去意义
幅度 A |Y(f)|
信 号 x(t)的 时 域 波 形 1
0.5
0
-0.5
2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
1.小波的发展历史——工程到数学
小波变换的概念是由法国从事石油信号处理的工程 师J.Morlet在1974年首先提出的,通过物理的直观和信 号处理的实际需要经验的建立了反演公式,当时未能 得到数学家的认可。幸运的是,1986年著名数学家 Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat 合作建立了构造小波基的同一方法枣多尺度分析之后 ,小波分析才开始蓬勃发展起来。
1.小波的发展历史——工程到数学
1909: Alfred Haar——发现了Haar小波 1980:Morlet——Morlet小波,并分别与20世纪70年代提
出了小波变换的概念,20世纪80年代开发出了连续小 波变换CWT( continuous wavelet transform ) 1986:Y.Meyer——提出了第一个正交小波Meyer小波 1988: Stephane Mallat——Mallat快速算法(塔式分解和 重构算法)
Rx(t1,t2)ExE(t)x(t1)x ( tx2)f(x)dRxx()m,x t2 t1
Ex2(t)
非平稳信号 不满足平稳性条件至少是宽平稳条件的信号
小波分析理论ppt课件
S(w,t ) f (t)g*(w t ) eiwt d t R
(1.12)
25
其中,“*”表示复共轭;g(t)为有紧支集的函数;f(t)为被 分析的信号。在这个变换中,ejwt起着频限的作用,g(t)起 着时限的作用。随着时间t的变化,g(t)所确定的“时间窗” 在t轴上移动,使f(t)“逐渐”进行分析。因此g(t)往往被称为
(1.4)
为序列{X(k)}的离散傅里叶逆变换(IDFT)。 在式(1.4)中,n相当于对时间域的离散化,k相当于频
率域的离散化,且它们都是以N点为周期的。离散傅里叶 变换序列{X(k)}是以2p为周期的,且具有共轭对称性。
9
若f(t)是实轴上以2p为周期的函数,即f(t)∈L2(0,2p) ,则f(t)可以表示成傅里叶级数的形式,即
(1.1)
F(w)的傅里叶逆变换定义为
f (t) 1 eiwt F (w)dw 2 π -
(1.2)
6
为了计算傅里叶变换,需要用数值积分,即取f(t)在R 上的离散点上的值来计算这个积分。在实际应用中,我们 希望在计算机上实现信号的频谱分析及其他方面的处理工 作,对信号的要求是:在时域和频域应是离散的,且都应 是有限长的。下面给出离散傅里叶变换(Discrete Fourier Transform,DFT)的定义。
。将母函数y(t)经伸缩和平移后,就可以得到一个小波序
列。
对于连续的情况,小波序列为
y a,b (t)
2
其中,短时傅里叶变换和小波变换也是因传统的傅里叶变 换不能够满足信号处理的要求而产生的。短时傅里叶变换 分析的基本思想是:假定非平稳信号在分析窗函数g(t)的 一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,
小波分析理论与应用(清晰版)
−
ψ
1 2
+∞
−∞
x −b f (x )ψ dx =< f ,ψ a ,b > a
− 1 2
ψ a ,b ( x ) = a
x−b ψ a
1 f (x) = Cψ
da ∫−∞ ∫−∞ (Wψ f )(a, b)ψ a,b (x) a 2 db
+∞ +∞
基本概念:基小波与参数
• • • • • • 固有频率 振型 振型曲率 柔度矩阵 刚度矩阵 等……
敏感指标—小波包分量能
Ef = ∫
+∞ −∞
f
2
(t )dt = ∑ E ( f
i =1
+∞ −∞
2j
i j
)
E f
( )= ∫
i j
f (t ) dt
i j 2
f ji (t ) 是第j层第i个小波包分量
敏感指标—小波包分量能
小波分析理论与应用
•基本概念 •基于Matlab的使用 •健康监测等工程应用
发展历程
• 基础:现代调和分析理论 • 背景:泛函、傅里叶理论、数字信号等 • 历程:FT或FFT—STFT—WT与WPT
FT的优缺点——由其定义决定
• 优点:频域的分辩率最高 • 缺点:
– 频域丢失了时间信息,时域丢失了频率信息 – 仅适用于平稳信号
• 频带3,4
– 是由于一阶波浪效应引起
• 频带6,7
– 与结构共振有关,由风及二阶海浪效应引起
• 较大漂移由作用于结构的静水压力引起
对非平稳信号的把握
• 局部小波系数对瞬态事件的反映 • 从下例可看到能量在频带间的转移
频率调制信号的量图
ψ
1 2
+∞
−∞
x −b f (x )ψ dx =< f ,ψ a ,b > a
− 1 2
ψ a ,b ( x ) = a
x−b ψ a
1 f (x) = Cψ
da ∫−∞ ∫−∞ (Wψ f )(a, b)ψ a,b (x) a 2 db
+∞ +∞
基本概念:基小波与参数
• • • • • • 固有频率 振型 振型曲率 柔度矩阵 刚度矩阵 等……
敏感指标—小波包分量能
Ef = ∫
+∞ −∞
f
2
(t )dt = ∑ E ( f
i =1
+∞ −∞
2j
i j
)
E f
( )= ∫
i j
f (t ) dt
i j 2
f ji (t ) 是第j层第i个小波包分量
敏感指标—小波包分量能
小波分析理论与应用
•基本概念 •基于Matlab的使用 •健康监测等工程应用
发展历程
• 基础:现代调和分析理论 • 背景:泛函、傅里叶理论、数字信号等 • 历程:FT或FFT—STFT—WT与WPT
FT的优缺点——由其定义决定
• 优点:频域的分辩率最高 • 缺点:
– 频域丢失了时间信息,时域丢失了频率信息 – 仅适用于平稳信号
• 频带3,4
– 是由于一阶波浪效应引起
• 频带6,7
– 与结构共振有关,由风及二阶海浪效应引起
• 较大漂移由作用于结构的静水压力引起
对非平稳信号的把握
• 局部小波系数对瞬态事件的反映 • 从下例可看到能量在频带间的转移
频率调制信号的量图
《基于MATLAB的小波分析应用》课件第1章
第1章 小波分析基础
因此,如何求解Wn是下一步需要解决的问题。求解的
基本思想是:找到一个函数 (x) ,像函数 (x) 的伸缩和
平移 {2n/2(2n x k) ;k Z} 能够张成空间Vn一样,函数 (x) 的伸缩和平移 {2n / 2 (2n x k ) ;k Z} 也能张成空间Wn。同
第1章 小波分析基础
图1.5 V4中的分量
第1章 小波分析基础
图1.6 W7中的分量
第1章 小波分析基础
1.3 一维连续小波变换
定义2 设 (t) L2 (R) ,其傅里叶变换为,当满足容许
条件(完全重构条件或恒等分辨条件)
ˆ () 2
C
d
R
时,称 (t) 为一个基本小波或母小波。将母函数经伸缩和 平移后得
ˆ *() ˆ (2 j ) 2
j
由上式可以看出,稳定条件实际上是对上式分母的约束 条件,它的作用是保证对偶小波的傅里叶变换存在。
Wf (a, b)
第1章 小波分析基础
1.4 离散小波变换
在实际运用中,尤其是在计算机上实现时,连续小波
变换必须加以离散化。因此,有必要讨论连续小波 a,b (t)
时要求 (x) 和 (x) 能够建立直接的联系。
第1章 小波分析基础
定理1 设Wn是由形如 kZ ak(2n x k)( ak R)的函数所组成
的线性空间,其中ak含有限个非0项,则Wn构成Vn在Vn+1中 的正交补,并且Vn1 Vn Wn 。
定理2 能量有限空间L2(R)可以分解为如下形式之和: L2 (R) V0 W0 W1
V j {0}, V j L2 (R)
jZ
jZ
(4) 平移不变性:f (x)V0 f (x k)V0 ,k Z ;
小波分析PPT课件
4
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
一首数学史诗
• 多年的政治生涯及颠簸不定的生活,并没有使他放弃研究数学的强 烈兴趣.事实上,早在1807年他就研究了现在称之为Fourier分析的核 心内容.
• 1822年,正式出版推动世界科学研究进展的巨著——《热的解析理 论》(The Analytic Theory of Heat).由于这一理论成功地求解了困扰 科学家150年之久的牛顿二体问题微分方程,因此Fourier分析成为几 乎每个研究领域科学工作者乐于使用的数学工具,尤其是理论科学家。
• 目前,Fourier的思想和方法被广泛用于线性规划、大地测量以及电 话、收音机、x射线等难以计数的科学仪器中,是基础科学和应用科 学研究开发的系统平台。所以物理学家Maxwell称赞Fourier 分析是一 首伟大的数学史诗。
5
Fourier分析的核心内容
①用数学语言提出任何一个周期函数都能表示为一组正弦函数和余 弦函数之和。这一无限和现称之为Fourier级数。也就是说,任 何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑 的曲线之和,见图。
实际上是将信 号投影在由正 弦和余弦函数 组成的正交基 上,对其实施 Fourier变换。
6
Fourier分析的核心内容
②他解释了为什么这一数学论断是有用的。1807年,他显示任何周 期函数(最下图形)是由正弦和余弦函数叠加而成。 Fourier分析 从本质上改变了数学家对函数的看法.他提供了某些微分方程的 直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
但FFT 的本质还是Fourier变换。
10
Fourier变换的缺点
① Fourier分析对非线性问题感到力不从心。
因为非线性系统具有高度不可预测性,输入端微小的 变化会对输出端产生重大影响。例如牛顿定律方程是非线 性的,若用它来预测空间三个物体之间较长时间的行为是 十分困难的,甚至是不可能的,原因是该系统高度不稳定。 正如著名科学家Korner指出:“19世纪的伟大发现是证 明自然方程是线性的,20世纪的伟大发现是证明自然方程 是非线性的。” ② Fourier变换公式没有反映出随时间变化的频率。实际
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶变换 (Fourier)基
小波基
时间采样基
“时频局域性” 图解:Fourier变换的基(上)小波变换基(中 )
和时间采样学基习交(流PP下T )的比较
19
Haar小波基母函数
(a)Haar “近似”基函数 (b)Haar “细节”基
函数
低频滤波系数
高频滤波系数
H0= [ 1 1] ×q
其中: q=[ q2 q0] .7071
• 小波变换的多分辨度的变换,有利于各分辨度 不同特征的提取(图象压缩,边缘抽取,噪声 过滤等)
• 小波变换比快速Fourier变换还要快一个数量级 。信号长度为M时, Fourier变换(左)和小 波变换(右)计算复杂性分别如下公式:
O f M lo 2M g, O wM
学习交流PPT
18
小波基表示发生的时间和频率
f (t)= (4t); scale= 0.25
t
图1.2 小波的缩放操作
学习交流PPT
7
(2) 平移。简单地讲,平移就是小波的延迟或超前。在数学 上, 函数f(t)延迟k的表达式为f(t-k),如图1.3所示。
(t)
O
(t-k)
t
O
t
(a)
(b)
图1.3 小波的平移操作 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
学习交流PPT
12
S
A1
D1
A2
D2
A3
D3
图1.12 多层小波重构示意图
学习交流PPT
13
小波的时间和频率特性
时间A
时间B
运用小波基,可以提取信号中的“指定时间”和“指定频 率”的变化。
• 时间:提取信号中“指定时间”(时间A或时间B)的 变化。顾名思义,小波在某时间发生的小的波动。
• 频率:提取信号中时间A的比较慢速变化,称较低频 率成分;而提取信号中时间B的比较快速变化,称较 高频率成分。
的函数。
学习交流PPT
6
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放。简单地讲, 缩放就是压缩或伸展基本小波, 缩放 系数越小, 则小波越窄,如图1.2所示。
f (t) O
f (t)= (t); scale= 1
t
f (t) O
f (t)= (2t); scale= 0.5
t
f (t) O
学习交流PPT
8
原始 信号 小波 信号
C= 0.0102
图1.4 计算系数值C
学习交流PPT
9
原始 信号 小波 信号
图1.5 计算平移后系数值C
学习交流PPT
10
原始信 号 小波信 号
C= 0.2247
图1.6 计算滤波 器组
低通
高通
A
D
图1.7 小波分解示意图
学习交流PPT
21
小波分析发展历史
1807年 Fourier 提出傅里叶分析 , 1822年发表 “热 传导解析理论”论文
1910年 Haar 提出最简单的小波 1980年 Morlet 首先提出平移伸缩的小波公式,用
于地质勘探。 1985年 Meyer 和稍后的Daubeichies提出“正交小
小波分析及其应用
Wavelet Analysis and It’s Applications
学习交流PPT
1
小波分析及其应用
1、小波变换简介 2、小波分析在一维信号处理中的应
用 3 、小波分析在图象分析中的应用
图象特征抽取 图象压缩 数据隐藏和图象水印
学习交流PPT
2
小波变换简介
1.1小波变换的理论基础
H1= [ 1 -1] ×q =[ q -q]
学习交流PPT
20
Haar小波的基函数
H0= [ 1 1] ×q
尺度函数 近似基函数
H1= [ 1 -1] ×q
q 2 0.7071
小波函数 细节基函数
第 1 行基函数是取平均(近似), 第 2-8 行基函数是取变化(细节)。
细节包括变化速率和发生的时间。
下式表示:
C (sc,p ao les ) itif(o t)( n sc,p ao les ,t)d ittion
(1.1)
式(1.1)表示小波变换是信号f(x)与被缩放和平移的小波函
数ψ()之积在信号存在的整个期间里求和的结果。CWT的变换结果
是许多小波系数C,这些系数是缩放因子(scale)和平移(positon)
信号分析是为了获得时间和频率之间的相互关系。傅立 叶变换提供了有关频率域的信息,但有关时间的局部化信息 却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小 波(Mother wavelet)的宽度来获得信号的频率特征, 通过 平移母小波来获得信号的时间信息。对母小波的缩放和平移 操作是为了计算小波系数,这些小波系数反映了小波和局部 信号之间的相关程度。
学习交流PPT
14
多分辨度分析(MRA)
• 1988年 Mallat 提出的多分辨度分析理论, 统一了几个不相关的领域:包括语音识别中 的镜向滤波,图象处理中的金字塔方法,地 震分析中短时波形处理等。
• 当在某一个分辨度检测不到的现象,在另一 个分辨度却很容易观察处理。例如:
学习交流PPT
15
学习交流PPT
16
学习交流PPT
参考: M. Vetterli, ”Wavelets and
Subband Coding “, Prentice Hall PTR, 1995
p.11
17
小波的3 个特点
• 小波变换,既具有频率分析的性质,又能表示 发生的时间。有利于分析确定时间发生的现象 。(傅里叶变换只具有频率分析的性质)
波基”,此后形成小波研究的高潮。 1988年 Mallat 提出的多分辨度分析理论(MRA)
,统一了语音识别中的镜向滤波,子带编码 ,图象处理中的金字塔法等几个不相关的领 域。
学习交流PPT
22
小波基可以通过给定滤波系数生成
• 小波基(尺度函数和小波函数)可以通过 给定滤波系数生成。
• 有的小波基是正交的,有的是非正交的。 有的小波基是对称的,有的是非对称的。
• 小波的近似系数和细节系数可以通过滤波 系数直接导出,而不需要确切知道小波基 函数,这是 I. Daubechies 等的重要发现, 使计算简化,是快速小波分解和重建的基 础。
学习交流PPT
3
… (a)
… (b)
(a) 正弦波曲线; (b) 小波曲线
学习交流PPT
4
学习交流PPT
5
从小波和正弦波的形状可以看出,变化剧烈的信号,用不 规则的小波进行分析比用平滑的正弦波更好,即用小波更能描 述信号的局部特征。
连续小波变换(Continuous Wavelet Transform, CWT)用
小波基
时间采样基
“时频局域性” 图解:Fourier变换的基(上)小波变换基(中 )
和时间采样学基习交(流PP下T )的比较
19
Haar小波基母函数
(a)Haar “近似”基函数 (b)Haar “细节”基
函数
低频滤波系数
高频滤波系数
H0= [ 1 1] ×q
其中: q=[ q2 q0] .7071
• 小波变换的多分辨度的变换,有利于各分辨度 不同特征的提取(图象压缩,边缘抽取,噪声 过滤等)
• 小波变换比快速Fourier变换还要快一个数量级 。信号长度为M时, Fourier变换(左)和小 波变换(右)计算复杂性分别如下公式:
O f M lo 2M g, O wM
学习交流PPT
18
小波基表示发生的时间和频率
f (t)= (4t); scale= 0.25
t
图1.2 小波的缩放操作
学习交流PPT
7
(2) 平移。简单地讲,平移就是小波的延迟或超前。在数学 上, 函数f(t)延迟k的表达式为f(t-k),如图1.3所示。
(t)
O
(t-k)
t
O
t
(a)
(b)
图1.3 小波的平移操作 (a) 小波函数ψ(t); (b) 位移后的小波函数ψ(t-k)
学习交流PPT
12
S
A1
D1
A2
D2
A3
D3
图1.12 多层小波重构示意图
学习交流PPT
13
小波的时间和频率特性
时间A
时间B
运用小波基,可以提取信号中的“指定时间”和“指定频 率”的变化。
• 时间:提取信号中“指定时间”(时间A或时间B)的 变化。顾名思义,小波在某时间发生的小的波动。
• 频率:提取信号中时间A的比较慢速变化,称较低频 率成分;而提取信号中时间B的比较快速变化,称较 高频率成分。
的函数。
学习交流PPT
6
基本小波函数ψ()的缩放和平移操作含义如下:
(1) 缩放。简单地讲, 缩放就是压缩或伸展基本小波, 缩放 系数越小, 则小波越窄,如图1.2所示。
f (t) O
f (t)= (t); scale= 1
t
f (t) O
f (t)= (2t); scale= 0.5
t
f (t) O
学习交流PPT
8
原始 信号 小波 信号
C= 0.0102
图1.4 计算系数值C
学习交流PPT
9
原始 信号 小波 信号
图1.5 计算平移后系数值C
学习交流PPT
10
原始信 号 小波信 号
C= 0.2247
图1.6 计算滤波 器组
低通
高通
A
D
图1.7 小波分解示意图
学习交流PPT
21
小波分析发展历史
1807年 Fourier 提出傅里叶分析 , 1822年发表 “热 传导解析理论”论文
1910年 Haar 提出最简单的小波 1980年 Morlet 首先提出平移伸缩的小波公式,用
于地质勘探。 1985年 Meyer 和稍后的Daubeichies提出“正交小
小波分析及其应用
Wavelet Analysis and It’s Applications
学习交流PPT
1
小波分析及其应用
1、小波变换简介 2、小波分析在一维信号处理中的应
用 3 、小波分析在图象分析中的应用
图象特征抽取 图象压缩 数据隐藏和图象水印
学习交流PPT
2
小波变换简介
1.1小波变换的理论基础
H1= [ 1 -1] ×q =[ q -q]
学习交流PPT
20
Haar小波的基函数
H0= [ 1 1] ×q
尺度函数 近似基函数
H1= [ 1 -1] ×q
q 2 0.7071
小波函数 细节基函数
第 1 行基函数是取平均(近似), 第 2-8 行基函数是取变化(细节)。
细节包括变化速率和发生的时间。
下式表示:
C (sc,p ao les ) itif(o t)( n sc,p ao les ,t)d ittion
(1.1)
式(1.1)表示小波变换是信号f(x)与被缩放和平移的小波函
数ψ()之积在信号存在的整个期间里求和的结果。CWT的变换结果
是许多小波系数C,这些系数是缩放因子(scale)和平移(positon)
信号分析是为了获得时间和频率之间的相互关系。傅立 叶变换提供了有关频率域的信息,但有关时间的局部化信息 却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小 波(Mother wavelet)的宽度来获得信号的频率特征, 通过 平移母小波来获得信号的时间信息。对母小波的缩放和平移 操作是为了计算小波系数,这些小波系数反映了小波和局部 信号之间的相关程度。
学习交流PPT
14
多分辨度分析(MRA)
• 1988年 Mallat 提出的多分辨度分析理论, 统一了几个不相关的领域:包括语音识别中 的镜向滤波,图象处理中的金字塔方法,地 震分析中短时波形处理等。
• 当在某一个分辨度检测不到的现象,在另一 个分辨度却很容易观察处理。例如:
学习交流PPT
15
学习交流PPT
16
学习交流PPT
参考: M. Vetterli, ”Wavelets and
Subband Coding “, Prentice Hall PTR, 1995
p.11
17
小波的3 个特点
• 小波变换,既具有频率分析的性质,又能表示 发生的时间。有利于分析确定时间发生的现象 。(傅里叶变换只具有频率分析的性质)
波基”,此后形成小波研究的高潮。 1988年 Mallat 提出的多分辨度分析理论(MRA)
,统一了语音识别中的镜向滤波,子带编码 ,图象处理中的金字塔法等几个不相关的领 域。
学习交流PPT
22
小波基可以通过给定滤波系数生成
• 小波基(尺度函数和小波函数)可以通过 给定滤波系数生成。
• 有的小波基是正交的,有的是非正交的。 有的小波基是对称的,有的是非对称的。
• 小波的近似系数和细节系数可以通过滤波 系数直接导出,而不需要确切知道小波基 函数,这是 I. Daubechies 等的重要发现, 使计算简化,是快速小波分解和重建的基 础。
学习交流PPT
3
… (a)
… (b)
(a) 正弦波曲线; (b) 小波曲线
学习交流PPT
4
学习交流PPT
5
从小波和正弦波的形状可以看出,变化剧烈的信号,用不 规则的小波进行分析比用平滑的正弦波更好,即用小波更能描 述信号的局部特征。
连续小波变换(Continuous Wavelet Transform, CWT)用