§1[1].2.2函数的表示方法(二)
必修1课件1.2.1-2 函数的概念 (二)

3.分段函数:有些函数在它的定义域中,对于自变 量x的不同取值范围,对应法则不同,这样的函数通 常称为分段函数.分段函数是一个函数,而不是几个 函数. 4.复合函数:设 f(x)=2x3,g(x)=x2+2,
则称 f[g(x)] =2(x2+2)3=2x2+1
g[f(x)] =(2x3)2+2=4x212x+11为复合函数.
2
a2
实数a 的取值范围(0,2].
复合函数
例如、y f (u ) u 2 , u R u g ( x) 2 x 1, x R 则y f [ g ( x)] (2 x 1) , x R.
2
例4.已知
f ( x) 的定义域为[-1,3],
的定义域。 解:∵f(x)的定义域为[-1,3],∴ 1 ∴
例2、求函数 y x 4x 6, x [1,5] 的值域
解:配方,得 ( x 2) 2 y xR y 2
2
函数的值域为 y | y 2} {
7 7 ∴函数的定义域为: , ) ( , ) ( 3 3
例3. 若函数
1 y ax ax 的定义域是R, a
2
求实数a 的取值范围
解:∵定义域是R,
1 ∴ ax ax 0恒成立, a a0 0 1 等价于 2 a 4a 0 a
例6.已知y=f(x+1)的定义域为[1,2],求f(x),f(x-3) 的定义域。 解:∵y=f(x+1)的定义域为[1,2], 即f(x)的定义域为[2,3] 又∵f(x)的定义域为[2,3], ∴ ∴
∴ 2 x 1 3
2 x3 3
§2 2.2 函数的表示法

像这样, 像这样,用图像把两个变量间的函数关系表示出来 的方法,称为图像法. 的方法,称为图像法. 特点:图像法可以直观地表示函数的局部变化规律, 特点:图像法可以直观地表示函数的局部变化规律, 进而可以预测它的整体趋势. 进而可以预测它的整体趋势.
3.解析法 3.解析法
一个函数的对应关系可以用自变量的解析表达式 (简称解析式)表示出来,这种方法称为解析法. 简称解析式)表示出来,这种方法称为解析法. 例如,设正方形的边长为x 面积为y 例如,设正方形的边长为x,面积为y,则y 是x的函数,用解析式表示为 y 的函数,
2.2 函数的表示法
1. 通过丰富的实例,体会函数的三种表示方法. 通过丰富的实例,体会函数的三种表示方法. 体会三种表示方法的使用情境与各自的特点. 2. 体会三种表示方法的使用情境与各自的特点. 3.通过具体实例,了解简单的分段函数, 3.通过具体实例,了解简单的分段函数,并能 通过具体实例 简单应用. 简单应用.
= x , x ∈ (0, +∞).
2
特点: 特点:解析法表示的函数关系能较便利地通过计算 等手段研究函数性质.但是,一些实际问题很难找到它的 等手段研究函数性质.但是, 解析式. 解析式.
例题讲解
例1.国内跨省市之间邮寄信函,每封信函的质量和对应的 1.国内跨省市之间邮寄信函, 国内跨省市之间邮寄信函 邮资如下表: 邮资如下表:
在研究函数的过程中, 在研究函数的过程中,采用不同的方法表示函 数,可以帮助我们从不同的角度理解函数的性质, 可以帮助我们从不同的角度理解函数的性质, 同时也是研究函数的重要手段. 同时也是研究函数的重要手段. 初中学习过的函数的表示法有三种: 初中学习过的函数的表示法有三种: 法一:列表法,即题中的表格. 法一:列表法,即题中的表格. 法二:解析法, 法二:解析法, 法三:图像法. 法三:图像法. y
教案8 函数的表示法(二)

包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.
(三)质疑答辩,排难解惑,发展思维
例1.下列哪些对应是从集合A到集合B的映射?
(1)A={ 是数轴上的点},B=R,对应关系 :数轴上的点与它所代表的实数对应;
(2)A={ 是平面直角坐标中的点}, 对应关系 :平面直角坐标系中的点与它的坐标对应;
2
教
学
设
计
教学内容
教学环节与活动设计
A开平方B A求正弦B
(1)(2)
A求平方B A乘以2 B
(四)巩固深化,反馈矫正
1、画图表示集合A到集合B的对应(集合A,B各取4个元素)
已知:(1) ,对应法则是“乘以2”;
(2)A= > ,B=R,对应法则是“求算术平方根”;
(3) ,对应法则是“求倒数”;
2、23页4题
教
学
小
结
怎样判断建立在两个集合上的一个对应关系是否是一个映射,你能归纳出几个“标准”呢?
课后
反思
3
5.函数的概念.
(二)研探新知
1.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).
2.先看几个例子,两个集合A、B的元素之间的一些对应关系:
(1)开平方;
(2)求正弦;
映射的概念
教
学
设
计
教学内容
教学环节与活动设计
(一)创设情景,揭示课题
复习初中常见的对应关系
1.对于任何一个实数 ,数轴上都有唯一的点 和它对应;
函数的表示方法及分段函数

5 25
小明带了25元钱,去买某种笔记本的单价是 5元,买x个笔记本需要y元.试用解析法和列 表法表示y与x的函数关系.
图像法欣赏
y(元)
25
20 15 10 5 0 1
2
3
4
5 x(本)
分段函数
国内跨省市之间邮寄平信,每封信的重量 x 和对应的邮资 y 如下表:
信函质量(x)/g 邮资(y)/元
优点:能形象直观显示 数据的变化规律
y
6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x -1 -2 函数可以用图像法来表 -3 -4 示,但并不是形如图像 -5 的变量关系,都是函数 -6
关系。
注意
函数的三种表示方法
解析法 列表法 图象法
函数的三种表示方法,各有优缺点。 解析法表示简洁,列表法数值清晰,图像法变化 直观。但是,解析法不能表示所有的函数,列表 法只能反映局部的函数关系,图像法又不够精确。 现实生活中常常根据实际问题的需要选择函数的 表示方法。
探究二:分段函数求值
例2:已知函 数
5 (1) 求f(-5),f(-3),f[f(- )]的值; 2
(2) 若f(a)=3,求实数a的值。
解
(1)、f(-5)=-5+1=-4,
f(- 3)=(- 3)2+2(- 3)=3-2 3.
5 5 3 3 - ∵f 2 =- +1=- ,而-2<- <2, 2 2 2 3 5 3 ∴f[f(- )]=f-2=- . 2 4
设票价为y,里程为x,则根据题意,如果某空 解: 调汽车运行路线中设21个汽车站,那么汽车行 驶的里程约为20公里,所以自变量x的取值范围 是(0,20]。 由空调汽车票价的规定,可得到以下函数解析式: 2, 0<x ≤ 5 3, 5 < x ≤ 10 4, 10 < x ≤ 15 y= 5, 15 < x≤20
§2.2 函数的定义域、值域及函数的解析式

(3)常见基本初等函数的定义域
①分式函数中分母不等于零. ②偶次根式函数、被开方式大于或等于0. ③一次函数、二次函数的定义域为___. R ④y=ax (a>0且a≠1),y=sin x, y=cos x,定义域均为__. R { x | x R且x k π , k Z} π ⑤y=tan x的定义域为________________________. 2 0的定义域为_________________. ⑥函数f(x)=x {x|x∈R且x≠0}
R
{ y | y R且y 0}
④y=ax (a>0且a≠1) ⑤y=logax (a>0且a≠1) ⑥y=sin x, y=cos x ⑦ y=tan x 主页
(0, ) R [1, 1] R
要点梳理
忆一忆知识要点
3.函数解析式的求法
(1)换元法:若已知f(g(x))的表达式,求f(x)的解析式, 通常是令g(x)=t,从中解出x= (t),再将g(x)、x代入已知 解析式求得f(t)的解析式,即得函数f(x)的解析式,这种方 法叫做换元法,需注意新设变量“t”的范围. (2)待定系数法:若已知函数类型,可设出所求函数的 解析式,然后利用已知条件列方程(组),再求系数. (3)消去法:若所给解析式中含有f(x), f ( 1 ) 或 f(x), f(-x) x 等形式,可构造另一个方程,通过解方程组得到f(x). (4)配凑法或赋值法:依据题目特征,能够由一般到特 殊或由特殊到一般寻求普遍规律,求出解析式.
对称性
函数的 基本性质 奇偶性 周期性 最值 函数常见的 几种变换 基本初等 函数 复合函数 抽象函数 函数与方程 函数的应用 常见函数模型
函 数
平移变换、对称变换、翻折变换、伸缩变换. 正(反)比例函数; 一次(二次)函数; 幂、指、对函数;
函数的表示

§1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:一.函数有三种表示方法:1、解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);2、图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);3、列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).二.分段函数的表示法与意义(一个函数,不同范围的x,对应法则不同).三.一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应:f A B→为从集合A到集合B的一个映射(mapping).记作“:f A B→”.判别一个对应是否映射的关键:A中任意,B中唯一;对应法则f.¤例题精讲:例1:某种笔记本的单价是5元,买{}(1,2,3,4,5)x x∈个笔记本需要y元,试用函数的三种表示法表示函数()y f x=练习:如图,有一块边长为a的正方形铁皮,将其四个角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出体积V以x为自变量的函数式是_____,这个函数的定义域为_______.例2画出的y x=图象练习:1.画出下列函数的图象:(1)|1|y x=-;(2)|1||4|y x x=-++.2.函数f(x)= 2(1)xx x⎧⎨+⎩,0,0xx≥<,则(2)f-=().A. 1 B .2 C. 3 D. 4例3:某市“招手即停”公共汽车的票价按照下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价为1元(不足5公里的按照5公里计算)。
如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。
新北师大版高中数学必修1课件:第二章 §2 2.2 第1课时 函数的三种表示方法

题型一 题型二 题型三
反思列表法、图像法和解析法分别从三个不同的角度刻画了自 变量与函数值的对应关系.采用列表法的前提是定义域内自变量的 个数较少;采用图像法的前提是函数的变化规律清晰;采用解析法 的前提是变量间的对应关系明确.
题型一 题型二 题型三
【变式训练1】 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个 笔记本需要y元,试用三种表示法表示函数y=f(x).
123456
解析:由题意知该学生离学校越来越近,故排除选项A;又由于开始 匀速,后来因交通堵塞停留一段时间,最后是加快速度行驶,故选C. 答案:C
123456
3若g(x+2)=2x+3,则g(3)的值是( ) A.9 B.7 C.5 D.3 答案:C
123456
4某航空公司规定,乘客所携带行李的质量(kg)与其运费(元)由图中 的函数图像确定,则乘客可免费携带行李的最大质量为( )
题型一 题型二 题型三
题型一 函数的表示方法 【例1】 某商场新进了10台彩电,每台售价3 000元,试分别用列 表法、图像法、解析法表示售出台数x(x∈{1,2,3,4,5,6,7,8,9,10})与 收款总额y(元)之间的函数关系. 分析:明确函数的定义域 明确函数的值域 用三种表示 方法表示函数
2.2 函数的表示法
第1课时 函数的三种表示方法
1.掌握函数的三种表示方法——解析法、图像法、列表法. 2.会作简单函数的图像,掌握求函数解析式的一般方法.
1.函数的表示法
名师点拨函数的三种表示方法的优缺点比较.
【做一做1】 以下形式中,不能表示“y是x的函数”的是 ( )
A.
x
1
2
3
4
必修1课件1.2.2函数的表示法

笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
例2.下表是某校高一(1)班三名同学在高一学年 度六次数学测试的成绩及班级平均分表。
第一次 第二次 第三次 第四次 第五次 第六次
王 伟 张 城 赵 磊
班平分
98 90 68 88.2
87 76 65 78.3
91 88 73 85.4
92 75 72 80.3
观察得出映射(1)有两个特点: ①集合A中不同的元素在B中有不同的象; ②集合B中的元素都有原象;
一一映射:
设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。
解:这个函数的定义域是数集{1,2,3,4,5}
用解析法可将函数y=f(x)表示为
y 5 x, x 1, 2, 3,4,5
用列表法可将函数表示为
笔记本数x 钱数y
1 5
2 10
3 15
4 20
5 25
用图象法可将函数表示为下图
y 25
20 . .
1 2 3 4
.
5
x
上例中(1)是A到B上的一一映射,(2)是A到B的 映射,但不是一一映射。
一一映射: 设A、B是两个集合, f : A B 是集合A到集合B 的映射,如果在这个映射下,对于集合A中不同的元 素在B中有不同的象,而且集合B中的每一个元素都 有原象,这个映射叫做A到B上的 一一映射。 注意:
①一一映射中集合A中不同的元素在B中有不同的象, 集合B中的元素都有原象;
例6 .判断下列对应是否映射?有没有对应法则?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2 函数的表示法(二)
编制:陈伟锋 审核:高一备课组 2009年8月 高一年级 班级 姓名
学习目标
1. 了解映射的概念及表示方法;
2. 能解决简单函数应用问题. 学习重、难点
重难点: 映射的概念. 知识链接
1.函数的定义是 . 2.函数的三要素指 . 3.函数的表示方法有 、 、 . 学习过程
一、知识点解析
一般地,设 A 、B 是两个非空的集合,如果按某一个确定的对应法则 f ,使对 于集合 A 中的_______________元素 x ,在集合 B 中都有_________________ 的元素 y 与之对应,那么就称对应 f : A →B 为从集合 A 到集合 B 的一个映 射(mapping ).记作“ f : A →B ” 注:
① 映射的对应情况有__________、_________ ,一对多是映射吗?_________. ② 关键:A 中任意,B 中唯一;对应法则 f.
③ 函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱 化为“任意两个非空集合”, 按照某种法则可以建立起更为普通的元素之间的对 应关系,即映射. 二、典型例题
例1 用图示意两个集合 A 、B 的元素之间的一些对应关系,并判断是否为映射? ① A = {1,4,9} , B ={-3,-2,-1 ,1,2,3} ,对应法则:开平方; ② A ={-3,-2,-1 ,1,2,3} , B = {1,4,9} ,对应法则:平方; ③ A ={30°,45°,60°} , B ={1, 22, 2
3 ,21}, 对应法则:求正弦.
例2 探究从集合 A 到集合 B 一些对应法则,哪些是映射?如果是从 B 到 A 呢? (1)A={P | P 是数轴上的点},B=R ; (2)A={三角形},B={圆};
(3)A={ P | P 是平面直角体系中的点},B ={(x, y) | x ∈R, y ∈R} ; (4)A={ x ∣ x 是新华中学的班级},B= { x ∣x 是新华中学的学生}.
当堂检测
练1.下列对应是否是集合 A 到集合B 的映射?
(1)A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则 f : x →2x + 1 ; (2)A = N* ,B = {0,1} ,对应法则 f : x → x 除以 2得的余数; (3)A = N , B = {0,1,2} , f : x →x 被 3 除所得的余数; (4)设X={1,2,3,4},Y={1,
21 , 3
1
, 41 }, f : x →x 1; (5) A ={x | x > 2, x ∈N}, B = N , f : x →小于 x 的最大质数.
(6)A ={1,2,3,4} , B = { 2,4,6,8} ,对应法则是“ 乘以 2”; (7)A=R*,B=R ,对应法则是“求算术平方根”;
(8) A = { x | x ≠ 0} , B =R ,对应法则是“求倒数”.
练 2. 已知集合 A = { a,b} , B = {- 1,1} , 从集合 A 到集合 B 的映射,试问能构造 出多少映射?
学习小结
1. 映射的概念;
2. 判定是否是映射主要看两条:一 条是 A 集合中的元素都要有对应,但B 中元素未必要有 对应;二条是 A 中元素与 B 中元素只能出现“一对一”或“多对一”的对应形式.
作业布置
1. 在映射 f : A → B 中, A = B = {(x, y) | x, y ∈R} ,且 f : (x, y)→(x - y, x + y ) ,则 与 A 中的元素(-1 ,2)对应的 B 中的元素为( ). A. (- 3,1) B. (1,3) C. (-1,- 3) D. (3,1)
2.下列对应 f : A → B :
① A = R, B = { x ∈R x > 0} , f : x → x ; ② A = N, B = N* , f : x →∣x - 1∣;
③ A = { x ∈R ∣ x > 0} ,B = R, f : x →2
x .
不是从集合A 到 B 映像的有( ).
A. ①②③
B. ①②
C. ②③
D. ①③ 3. 已知f(
x 1)=x
11, 则 f (x ) =______________ . 4. 已知 f(x)= 2
x - 1,g(x)= x + 1 则 f[g(x)] = ________________.。