11函数的表示方法1

合集下载

11-第五节 函数的应用(二)-课时1 函数的零点与方程的解高中数学必修一人教A版

11-第五节 函数的应用(二)-课时1 函数的零点与方程的解高中数学必修一人教A版
间 −2, −1 内存在零点,B正确;
在区间
1 2
,
2 3
1
2
1
8
= > 0,
2
3
=
1
− ,
27
1 = 0,所以
内至少存在一个零点,且 = 1也是 的零点,综上,
至少有3个零点,C错误; 的零点即方程 3 − 2 + 1 = 0的解,故
两者个数相等,D错误.
9.已知函数 的图象是连续不断的,且, 有如下的对应值表:
1 = 4 + 2 > 0,
正确;函数 的零点是方程 = 0的实数根,是函数 的图象与
轴的交点的横坐标,D正确,C错误.
4.函数 =
A.0
1
e
− lg 的零点个数为( C )
B.1
C.2
【解析】 函数 的零点个数可转化为函数
=
=
1

e
1

e
= lg 的图象的交点个数.作出
A. 0,1
B. 1,2
C. 2,3
D. 3,4
【解析】 由题意得, 在 0, +∞ 上单调递增.又
1
2
2 = lg 2 − = lg
区间为 2,3 .
2
10
< 0, 3 = lg 3 > 0,所以函数 的零点所在
8.[2024黑龙江双鸭山市一中期末]关于函数 = 3 − 2 + 1的零点,下
少有1个零点,在区间 4,5 内至少有1个零点.综上,函数 在区间[1,6]内
的零点至少有3个.
10.若 < < ,则函数 = − − + ( − )( − ) +

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

表示函数的方法(3知识点+4题型+强化训练)(学生版) 24-2025学年高一数学上学期必修第一册

3.1.2 表示函数的方法课程标准学习目标(1)在实际情境中, 会根据不同的需要选择恰当的方法(如图象法、列表法、解析法) 表示函数, 理解函数图象的作用。

(1)会求函数的解析式; (难点)(2)列表法表示函数(3)图象法表示函数。

知识点01 解析法把常量和表示自变量的字母用一系列运算符号连接起来得到的式子,叫作解析式(也叫作函数表达式或函数关系式),解析法就是用解析式来表示函数的方法。

比如正方形周长C 与边长a 间的解析式为C =4a ,圆的面积S 与半径r 的解析式S =πr 2等.求函数解析式的方法① 配凑法 ② 待定系数法③ 换元法④ 构造方程组法 ⑤ 代入法【即学即练1】已知函数f (x )=1x ,则f (x +1)=( )A .f (x +1)=1x+1B .f (x +1)=1x―1C .f (x +1)=2x―1D .f (x +1)=2x+1知识点02 列表法如上表,我们很容易看到y与r之间的函数关系.在初中刚学画一次函数时,想了解其图像是一直线,第一步就是列表,其实就是用表格法表示一次函数.【即学即练2】函数f(x)与g(x)的对应关系如下表.x―101x123f(x)132g(x)0―11则g(f(―1))的值为()A.0B.3C.1D.―1知识点03 图象法如上图,很清晰的看到某天空气质量指数I与时间t两个变量之间的关系,特别是其趋势.数学中的“数形结合”也就是这回事,它是数学一大思想,在高中解题中识图和画图尤为重要.【即学即练3】购买某种饮料x听,所需钱数是y元.若每听2元,试分别用解析法、列表法、图象法将y表示成x(x∈{1,2,3,4})的函数.【题型一:解析法表示函数】例1.若函数y=f(x)对任意x∈R,均有f(x+y)=f(x)+f(y),则下列函数可以为y=f(x)解析式的是()A.f(x)=x+1B.f(x)=2x―1C.f(x)=2x D.f(x)=x2+x变式1-1.一个等腰三角形的周长为20,底边长y是一腰长x的函数,则()A.y=10―x(0<x≤10)B.y=10―x(0<x<10)C.y=20―2x(5≤x≤10)D.y=20―2x(5<x<10)变式1-2.下列函数中,对任意x,不满足2f(x)=f(2x)的是()A.f(x)=|x|B.f(x)=―2xC.f(x)=x―|x|D.f(x)=x―1变式1-3.定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(4)=8,则f()A B.2C.4D.6变式1-4.若函数f(x)满足f(a+b)=f(a)+f(b)1―f(a)f(b),且f(2)=12,f(3)=13,则f(7)=A.1B.3C.43D.83【方法技巧与总结】理解函数解析式y=f(x),仅是用一系列运算符号连接起来得到的式子,它对定义域内任何一个值都是成立的;比如①函数f(x)=x2(x>0),可取任何大于0的值进行赋值;②若函数f(x)满足f(xy)=f(x)+f(y),则x ,y 取任何实数均可使得等式成立.【题型二:求函数的解析式】方法1 待定系数法例2.若二次函数f(x)满足f(x +1)―f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=―x 2―x ―1B .f(x)=―x 2+x ―1C .f(x)=x 2―x ―1D .f(x)=x 2―x +1变式2-1.已知f(x)是一次函数,且2f(2)―3f(1)=5,2f(0)―f(―1)=3,则f(x)=( )A .3x ―2B .3x +2C .92x ―12D .4x ―1变式2-2.已知函数f(x)是一次函数,且f[f(x)―2x]=3,则f(5)=( )A .11B .9C .7D .5变式2-3.已知二次函数f (x )满足f(2)=―1,f(1―x)=f(x),且f (x )的最大值是8,则此二次函数的解析式为f(x)=( )A .―4x 2+4x +7B .4x 2+4x +7C .―4x 2―4x +7D .―4x 2+4x ―7方法2 换元法例3.已知函数f 2)=x ―,则f(x)的解析式为( )A .f(x)=x 2+1(x ≥0)B .f(x)=x 2+1(x ≥―2)C .f(x)=x 2(x ≥0)D .f(x)=x 2(x ≥―2)变式3-1.已知函数f(1―x)=1―x2x2(x≠0),则f(x)=()A.1(x―1)2―1(x≠0)B.1(x―1)2―1(x≠1)C.4(x―1)2―1(x≠0)D.4(x―1)2―1(x≠1)变式3-2.设函数f1+=2x+1,则f(x)的表达式为()A.1+x1―x (x≠1)B.1+xx―1(x≠1)C.1―x1+x (x≠―1)D.2xx+1(x≠―1)变式3-3.已知f1)=x+3,则f(x)=()A.x2―2x+2(x≥0)B.x2―2x+4(x≥1)C.x2―2x+4(x≥0)D.x2―2x+2(x≥1)方法3 方程组法例4.已知定义在(0,+∞)上的函数f(x)满足f(x)=―15x,则f(2)的值为()A.152B.154C.174D.172变式4-1.若函数f(x),g(x)满足f(x)―=3x―4x,且f(x)+g(x)=2x+6,则f(2)+g(―1)=()A.6B.7C.8D.9变式4-2.已知函数f(x)满足f(x)+2f(2―x)=1x―1,则f(3)的值为()A.―73B.―109C.―415D.―16变式4-3.已知定义在R上的函数f(x),满足f(x)+2f(―x)=2x+12.(1)求f(x)的解析式;(2)若点P(a,b)在y=f(x)图像上自由运动,求4a+2b的最小值.【方法技巧与总结】求函数解析式,可视情况而定,1 若已知函数类型,可用待定系数法;2 若求f(g(x))型函数解析式,可用换元法,此时要注意新自变量的取值范围;3 若求满足某函数方程的函数解析式,则用方程组的方法.【题型三:列表法表示函数】例5.设已知函数f(x),g(x)如下表所示:x12345f(x)54321g(x)43215则不等式f(g(x))>g(f(x))的解集为()A.{1,3}B.{5,3}C.{2,3,4}D.{5}变式5-1.已知函数f(x),g(x)分别由下表给出:则f[g(2)]的值是()x123f(x)131g(x)321A.1B.2C.3D.1和2变式5-2.观察下表:x―3―2―1123f(x)51―1―335g(x)1423―2―4则f[f(―1)―g(3)]=()A.―4B.―3C.3D.5变式5-3.德国数学家狄利克在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个对应的法则是公式、图象,表格或是其它形式.已知函数f(x)由下表给出,则f10f)x x≤11<x<2x≥2y123A.0B.1C.2D.3【方法技巧与总结】表格法表示函数,要注意看清楚变量数值之间的对应关系.【题型四:图象法表示函数】例6.如图所示的4个图象中,与所给3个事件最吻合的顺序为()①我离开家后,心情愉快,缓慢行进,但最后发现快迟到时,加速前进;②我骑着自行车上学,但中途车坏了,我修理好又以原来的速度前进;③我快速的骑着自行车,最后发现时间充足,又减缓了速度.A.③①②B.③④②C.②①③D.②④③变式6-1.小明骑车上学,开始时匀速行驶,中途因车流量大而减速行驶,后为了赶时间加速行驶,与以上事件吻合得最好的图象是()A.B.C.D.变式6-2.俗话说,“一分耕耘,一分收获”.那么,在实际生活中,如果把收获看成付出的函数,它们之间的关系可以怎样描述呢?情境甲:当以匀速的方式驾驶汽车时,行驶的里程与所用的时间之间的关系;情境乙:家长过分宠爱孩子,有时还有可能付出增加会导致收获减少;情境丙:在我们学习新的知识时,可能一开始效率会比较高,单位时间的付出得到的收获会比较大,但随着付出的时间越来越多,单位时间的付出得到的收获会变少.请问依次与下面三个图象所表示的收获与付出的关系相对应的情境正确的一项是()A.甲、乙、丙B.丙、甲、乙C.甲、丙、乙D.乙、丙、甲变式6-3.已知完成某项任务的时间t与参加完成此项任务的人数x之间满足关系式t=ax+bx(a∈R,b∈R),当x=2时,t=100;当x=4时,t=53,且参加此项任务的人数不能超过8.(1)写出t关于x的解析式;(2)用列表法表示此函数;(3)画出此函数的图象.【方法技巧与总结】图象法表示函数,达到“一目了然”的效果,对于函数图象还注意函数的定义域,函数图象的上升下降趋势,增减趋势的缓急等等!一、单选题1.已知定义在[―2,2]上的函数y=f(x)表示为:x[―2,0)0(0,2]y10―2设f(1)=m,f(x)的值域为M,则()A.m=1,M={―2,0,1}B.m=―2,M={―2,0,1}C.m=1,M={y|―2≤y≤1}D.m=1,M={y|―2≤y≤1}2.函数y=g(x)的对应关系如下表所示,函数y=f(x)的图象是如图所示的曲线ABC,则g(f(3)―1)的值为()x123g(x)20230―2023A.2023B.0C.―1D.―20233.设f(x)=xx2+1,则( )A.f(x)B.―f(x)C.1f(x)D.―1f(x)4.如图,公园里有一处扇形花坛,小明同学从A点出发,沿花坛外侧的小路顺时针方向匀速走了一圈(A→B→O→A),则小明到O点的直线距离y与他从A点出发后运动的时间t之间的函数图象大致是()A.B.C.D.5.已知函数f(x)=x3+ax2+bx+c,且0<f(―1)=f(―2)=f(―3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>96.已知f+1)=x+3,则f(x)的解析式为f(x)=()A.x2―2x+4B.x2+3C.x2―2x+4(x≥1)D.x2+3(x≥1)7.函数f(x)满足2f(x)―f(1―x)=x,则函数f(x)=()A.x―2B.x+13C.x―13D.―x+28.某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调查结果如下表:表一市场供给量单价(元/kg)2 2.4 2.8 3.2 3.64供给量(1000kg)506070758090表一市场需求量单价(元/kg)4 3.4 2.9 2.6 2.32需求量(1000kg)506065707580根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间( )A.(2.3,2.6)内B.(2.4,2.6)内C.(2.6,2.8)内D.(2.8,2.9)内二、多选题9.某工厂8年来某产品产量y与时间t的函数关系如图,则以下说法中正确的是()A.前2年的产品产量增长速度越来越快B.前2年的产品产量增长速度越来越慢C.第2年后,这种产品停止生产D.第2年后,这种产品产量保持不变10.下列说法正确的是()A.函数f(x+1)的定义域为[―2,2),则函数f(x)的定义域为[―1,3)B.f(x)=x2x和g(x)=x表示同一个函数C.函数y=1x2+3的值域为0D.定义在R上的函数f(x)满足2f(x)―f(―x)=x+1,则f(x)=x3+111.已知f(0)=12,f(x+y)=f(x)f(1―y)+f(y)f(1―x),则()A.f(1)=12B.f(x)=12恒成立C.f(x+y)=2f(x)f(y)D.满足条件的f(x)不止一个三、填空题12.下列表示函数y=f(x),则f(11)=.x0<x<55≤x<1010≤x<1515≤x≤20y234513.已知y=f(x)是二次函数,且f(0)=1,f(x+1)―f(x)=2x,则y=f(x)=.14.若正整数m,n只有1为公约数,则称m,n互质.对于正整数n,φ(n)是小于或等于n的正整数中与n互质的数的个数,函数φ(n)以其首位研究者欧拉命名,称为欧拉函数,例如:φ(3)=2,φ(7)=6,φ(9)=6,则下列说法正确的序号是.①φ(5)=φ(10);②φ(2n―1)=1;③φ(32)=16;④φ(2n+2)>φ(2n),n是正整数.四、解答题15.下图所示为某市一天24小时内的气温变化图,根据图象回答下列问题.(1)全天的最高气温、最低气温分别是多少?(2)大约在什么时刻,气温为0°C?(3)大约在什么时刻内,气温在0°C以上?(4)变量Q是关于变量t的函数吗?16.已知f(x)=1(x∈R,且x≠―1),g(x)=x2+2(x∈R).1+x(1)求f(2),g(2)的值;(2)求f(g(2)),g(f(2))的值;(3)求f(x)和g(x―1)的值域.17.已知二次函数f(x)满足f(x)=f(2―x),且f(0)=―3,f(1)=―4.(1)求函数f(x)的解析式;(2)若g(x)=x+1,比较f(x)与g(x)的大小.18.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)只能同时满足下列三个条件中的两个:①a=2;②不等式f(x)>0的解集为{x|―1<x<3 };③函数f(x)的最大值为4.(1)请写出满足题意的两个条件的序号,并求出函数f(x)的解析式;(2)求关于x的不等式f(x)≥(m―1)x2+2(m∈R)的解集.19.已知函数y=f(x)与y=g(x)的定义域均为D,若对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<|f(x1)―f(x2)|成立,则称函数y=g(x)是函数y=f(x)在D上的“L函数”.(1)若f(x)=3x+1,g(x)=x,D=R,判断函数y=g(x)是否是函数y=f(x)在D上的“L函数”,并说明理由;(2)若f(x)=x2+2,g(x)==[0,+∞),函数y=g(x)是函数y=f(x)在D上的“L函数”,求实数a的取值范围;(3)若f(x)=x,D=[0,2],函数y=g(x)是函数y=f(x)在D上的“L函数”,且g(0)=g(2),求证:对任意的x1、x2∈D(x1≠x2)都有|g(x1)―g(x2)|<1.。

八年级数学上册第6章一次函数6-1函数第2课时函数的表示方法习题课件新版苏科版

八年级数学上册第6章一次函数6-1函数第2课时函数的表示方法习题课件新版苏科版

x (s)之间的关系式,并写出 x 的取值范围.
1
2
3
4
5
6
7
8
9
10
11
12
解:由(1)可知点 P 运动的速度为

=2(cm/s),∴易得

GF = DE =2×(22-20)=4(cm),∴从点 A 到点 H 的
路程为20+10+20+4+4=58(cm),∴运动时间 x 的
范围为0≤ x ≤
式: y =2 x +20 .

所挂物体的质量x/kg
0
1
2
3
4
5
弹簧长度y/cm
20
22
24
26
28
30
1
2
3
4
5
6
7
8
9
10
11
12
7. 为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油
试验,得到下表数据.
轿车行驶的路程s/km
0
100 200 300 400

油箱剩余油量Q/L
50
42

(1)该轿车油箱的容量为
解:(2)由题图可知,“加速期”结束时,小斌的速
度为10.4 m/s.
1
2
3
4
5
6
7
8
9
10
11
12
(3)根据如图提供的信息,给小斌提一条训练建议.
解:(3)由题图可知,小斌在80
米左右时速度下降明显,建议增
加耐力训练,提高成绩.(答案不
唯一)
1
2
3
4
5
6
7
8

高中数学第三章函数概念和性质3.1函数的概念及其表示3.1.218函数的表示法a高一第一册数学

高中数学第三章函数概念和性质3.1函数的概念及其表示3.1.218函数的表示法a高一第一册数学
课时作业 18 (zuòyè) 函数的表示法
12/7/2021
第一页,共三十一页。
知识对点练
12/7/2021
课前自主学习
课堂合作研究
随堂基础巩固
第二页,共三十一页。
课后课时精练
知识点一 解析法 1.求下列函数的解析式: (1)已知 f(x)=x2+2x,求 f(2x+1); (2)已知 f( x-1)=x+2 x,求 f(x); (3)已知 f(x)-2f1x=3x+2,求 f(x); (4)已知 f(x)是一次函数,且 f[f(x)]=4x+3,求 f(x).
12/7/2021
第十九页,共三十一页。
答案
解析
二、填空题 6.已知 g(x-1)=2x+6,则 g(3)=________.
答案 14
解析 解法一:令 x-1=t,则 x=t+1,有 g(t)=2(t+1)+6=2t+8,∴ g(x)=2x+8,∴g(3)=2×3+8=14.
解法二:令 x=4,则 g(3)=2×4+6=14.
课时(kèshí)作业18 函数的表示法
内容(nèiróng)总结
No
Image
12/7/2021
第三十一页,共三十一页。
答案 D
正解 令 x+1=t(t≥1),则 x=(t-1)2,∴f(t)=(t-1)2+1=t2-2t+2,
∴f(x)=x2-2x+2(x≥1).
12/7/2021
第十一页,共三十一页。
答案
课时综合练
12/7/2021
课前自主学习
课堂合作研究
随堂基础巩固
第十二页,共三十一页。
课后课时精练
一、选择题
12/7/2021
第二十页,共三十一页。

2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1

2022版高中数学第二章函数的表示法映射提升训练含解析北师大版必修1

2022版高中数学北师大版必修1:函数的表示法映射基础过关练题组一函数的表示法1.(2020河北衡水冀州中学高一上第二次月考)已知函数f(x),g(x)由下列表格给出,则f[g(3)]= ()x 1 2 3 4f(x) 2 4 3 1g(x) 3 1 2 4A.4B.3C.2D.12.(2021山东烟台高一上期中)某高三学生于2020年9月第二个周末乘高铁赴济南参加全国高中数学联赛(山东赛区)的比赛活动.早上他乘出租车从家里出发,离开家不久,发现身份证忘在家里了,于是回到家取上身份证,然后乘出租车以更快的速度赶往高铁站,令x(单位:分钟)表示离开家的时间,y(单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是()3.如图,函数f(x)的图像是曲线OAB,其中点O、A、B的坐标分别为(0,0)、(1,2)、(3,1),则f[f(3)]的值等于.4.如图所示,有一块边长为a的正方形铁皮,将其四角各截去一个边长为x的小正方形,然后折成一个无盖的盒子,写出此盒子的体积V以x为自变量的函数解析式,并指明这个函数的定义域.题组二 函数解析式的求法5.(2021北京理工大学附中高一上期中)已知函数f (x )是一次函数,且f (x -1)=4x +3,则f (x )的解析式为( ) A.f (x )=4x -1 B.f (x )=4x +7 C.f (x )=4x +1 D.f (x )=4x +36.已知f (2x +1)=4x 2,则f (-3)= ( ) A.36 B.16 C.4D.-167.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为 ( ) A.f (x )=2x +3 B.f (x )=3x +2 C.f (x )=3x -2 D.f (x )=2x -38.(2019河北辛集中学高一上第一次月考)已知f (x -1)=x 2,则f (x 2)= . 9.已知f (x -1x )=x 2+1x 2,则f (3)= .10.已知函数f (x )满足af (x )+f (-x )=bx ,其中a ≠±1,求函数f (x )的解析式. 题组三 分段函数问题的解法11.(2021四川成都实验外国语学校高一上第二次段考)已知f (x )={x (x +4),x ≥0,x (x -4),x <0,则f [f (-1)]的值为( )A.5B.15C.25D.4512.已知函数f (x )={x +1,x ∈[-1,0],x 2+1,x ∈(0,1],则下列函数图像正确的是( )13.已知函数f (x )={x 2(-1≤x ≤1),1(x >1或x <-1),则函数f (x )的值域为 .14.“水”这个曾经被人认为取之不尽用之不竭的资源,竟然到了严重制约我国经济发展,严重影响人民生活的程度.缺水每年给我国工业造成的损失达2000亿元,给我国农业造成的损失达1500亿元,严重缺水困扰全国三分之二的城市.为了节约用水,某市打算出台一项水费政策,规定当每季度每人用水量不超过5立方米时,每立方米水费1.2元;当超过5立方米而不超过6立方米时,超过部分的水费加收200%;当超过6立方米而不超过7立方米时,超过部分的水费加收400%.如果某人本季度实际用水量为x (x ≤7)立方米,那么本季度他应交的水费y (单位:元)与用水量x (单位:立方米)的函数关系式为 .15.已知函数f (x )=1+x -|x |4.(1)用分段函数的形式表示函数f (x ); (2)在平面直角坐标系中画出函数f (x )的图像;(3)在同一平面直角坐标系中,再画出函数g (x )=1x (x >0)的图像(不用列表),观察图像直接写出当x >0时,不等式f (x )>1x 的解集.16.(2021吉林榆树一中高一上期中)已知函数f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2.(1)求f (-5),f (-√3),f f -52的值;(2)若f (a )=3,求实数a 的值. 题组四 映射17.下列各个对应中,构成映射的是( )18.已知集合A ={1,2,3},B ={4,5,6},f :A →B 为集合A 到集合B 的一个函数,那么该函数的值域的不同情况的种数为 ( ) A.6B.7C.8D.2719.(2021江西南昌六校高一上期中联考)已知映射f :(x ,y )→(x +2y ,x -2y ),在映射f 下(1,-1)的原像是( ) A.0,12 B.(1,1) C.(-1,3) D.12,1能力提升练一、选择题1.(2019广东深圳中学高一上第一次段考,)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油D.甲车以80千米/时的速度行驶1小时,消耗10升汽油 2.()如图所示的图像表示的函数解析式为 ( )A.y =32|x -1|(0≤x ≤2)B.y =32-32|x -1|(0≤x ≤2) C.y =32-|x -1|(0≤x ≤2) D.y =1-|x -1|(0≤x ≤2)3.(2021江西景德镇一中高一上期中,)若f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )= ( )A.x -1B.x +1C.2x +1D.3x +34.(2021辽宁抚顺一中高一上期中,)已知函数f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域与值域相同,则常数a =( ) A.3 B.-3 C.13D.-135.(2019福建莆田一中高一上月考,)定义运算:a*b ={x ,x ≥x ,x ,x <x ,则f (x )=x 2*|x |的图像是 ( )二、填空题6.(2021重庆西南大学附中高一上第二次月考,)已知函数g (√x +1)=2x +3,则g (3)= .7.()已知函数f (2x -1)=4x +3,若f (t )=11,则t =.8.(2019山东泰安一中高一上十月检测,)设函数f (x )={23x -1,x ≥0,1x,x <0,若f (a )>a ,则实数a 的取值范围是 . 三、解答题9.(2021河南南阳一中高一上第一次月考,)根据下列条件,求f (x )的解析式.(1)f [f (x )]=4x -3,其中f (x )为一次函数; (2)2f 1x+f (x )=x (x ≠0).10.()已知A ={a ,b ,c },B ={-1,0,1},映射f :A →B 满足f (a )+f (b )=f (c ),求映射f :A →B 的个数.答案全解全析 第二章 函 数 §1 生活中的变量关系 §2 对函数的进一步认识 第2.2 函数的表示法 第2.3 映 射 基础过关练1.A2.C 5.B 6.B 7.C 11.D12.A17.D18.B19.A1.A 由题意,根据题表的对应关系,可得g (3)=2,所以f [g (3)]=f (2)=4,故选A .2.答案 C信息提取 ①y 表示离开家的距离,x 表示离开家的时间;②该学生先乘出租车,中途返回家,再乘出租车以更快的速度前行;③确定与上述事件吻合的图像.数学建模 本题为实际问题中的函数图像识别题,通过构建函数模型,分析两个变量间的变化情况,得出正确的函数图像.由题意可知,该高三学生行动的三个过程均为离开家的距离关于时间的一次函数,结合图像可得答案.解析 由题意,知该高三学生离开家,y 是x 的一次函数,且y 值均匀增加; 返回家的过程中,y 仍然是x 的一次函数,且y 值均匀减少;最后由家乘出租车以更快的速度赶往高铁站,y 仍然是x 的一次函数,且y 值增加的速度比刚开始快, 所以与事件吻合最好的图像为C,故选C . 3.答案 2解析 由题中图像知f (3)=1,∴f [f (3)]=f (1)=2.4.解析 由题意可知该盒子的底面是边长为(a -2x )的正方形,高为x , ∴此盒子的体积V =x (a -2x )2, 其中自变量x 应满足{x -2x >0,x >0,即0<x <x 2,∴此盒子的体积V 以x 为自变量的函数解析式为V =x (a -2x )2,定义域为(0,x2).5.B 因为f (x -1)=4x +3=4(x -1)+7,所以f (x )=4x +7.故选B .6.B 当2x +1=-3时,x =-2,因此f (-3)=4×(-2)2=16.故选B . 7.C 设f (x )=kx +b (k ≠0),由2f (2)-3f (1)=5,2f (0)-f (-1)=1, 得{2(2x +x )-3(x +x )=5,2(0+x )-(-x +x )=1, 解得{x =3,x =-2,所以f (x )=3x -2.故选C .8.答案 (x 2+1)2解析 令t =x -1得x =t +1,由f (x -1)=x 2得f (t )=(t +1)2,即f (x )=(x +1)2,于是f (x 2)=(x 2+1)2. 9.答案 11解析 令t =x -1x ,则x 2+1x 2=(x -1x )2+2=t 2+2,因此f (t )=t 2+2,从而f (3)=32+2=11. 10.解析 在原式中以-x 替换x ,得af (-x )+f (x )=-bx , 于是有{xx (x )+x (-x )=xx ,xx (-x )+x (x )=-xx ,消去f (-x ),得f (x )=xxx -1. 故f (x )的解析式为f (x )=xx -1x. 11.D f (-1)=-(-1-4)=5>0,所以f [f (-1)]=f (5)=5×(5+4)=45,故选D .12.A 当x =-1时,f (x )=0,即图像过点(-1,0),故D 错误;当x =0时,f (x )=1,即图像过点(0,1),故C 错误;当x =1时,f (x )=2,即图像过点(1,2),故B 错误.故选A.13.答案 [0,1]解析 由已知得函数f (x )的定义域为R,大致图像如图所示,由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1];当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1]. 14.答案 y ={1.2x ,x ∈[0,5]3.6x -12,x ∈(5,6]6x -26.4,x ∈(6,7]解析 由题意可知: ①当x ∈[0,5]时,y =1.2x ;②当x ∈(5,6]时,y =1.2×5+(x -5)×1.2×(1+200%)=3.6x -12; ③当x ∈(6,7]时,y =1.2×5+1×1.2×(1+200%)+(x -6)×1.2×(1+400%) =6x -26.4.∴y ={1.2x ,x ∈[0,5],3.6x -12,x ∈(5,6],6x -26.4,x ∈(6,7].15.解析 (1)当x ≥0时,f (x )=1+x -x 4=1;当x <0时,f (x )=1+x +x 4=12x +1.所以f (x )={1,x ≥0,12x +1,x <0.(2)函数f (x )的图像如图所示.(3)函数g (x )=1x (x >0)的图像如图所示,当f (x )>1x 时,f (x )的图像在g (x )的图像的上方,所以由图像可知f (x )>1x 的解集是{x |x >1}.16.解析 (1)因为f (x )={x +1,x ≤-2,x 2+2x ,-2<x <2,2x -1,x ≥2,所以f (-5)=-5+1=-4,f (-√3)=(-√3)2+2×(-√3)=3-2√3,f -52=-52+1=-32,f [x (-52)]=f -32=(-32)2+2×-32=94-3=-34.(2)当a ≤-2时,f (a )=a +1=3,解得a =2,不符合题意,舍去; 当-2<a <2时,f (a )=a 2+2a =3, 即(a -1)(a +3)=0,解得a =1或a =-3(舍去),此时a =1; 当a ≥2时,f (a )=2a -1=3,即a =2. 综上所述,a =1或a =2. 思想方法对于分段函数的求值或求参问题,常常需要针对自变量的取值分类进行求解,即分段函数分段求,这体现了分类讨论思想.17.D 选项A 中,元素2没有像,不构成映射;选项B 中,元素2没有像,不构成映射;选项C 中,元素1有两个像,不构成映射;选项D 中,满足映射的定义,构成映射.18.B 由函数的定义知,此函数可以分为三类来进行研究:若函数是三对一的对应,则值域有{4},{5},{6}三种情况;若函数是二对一的对应,则值域有{4,5},{5,6},{4,6}三种情况;若函数是一对一的对应,则值域有{4,5,6}一种情况.综上可知,函数的值域的不同情况有7种.19.A 由{x +2x =1,x -2x =-1,解得{x =0,x =12,所以在映射f 下(1,-1)的原像是0,12.故选A . 能力提升练1.C2.B3.B4.A5.B一、选择题1.C 对于A 选项,由题图可知,当乙车速度大于40千米/时时,乙车每消耗1升汽油,行驶里程都超过5千米,故A 错误;对于B 选项,由题意可知,以相同速度行驶相同路程,燃油效率越高,耗油越少,故三辆车中甲车耗油最少,故B 错误;对于C 选项,当行驶速度不超过80千米/时时,在相同条件下,丙车的燃油效率高于乙车,则在该市用丙车比用乙车更省油,故C 正确;对于D 选项,甲车以80千米/时的速度行驶时,燃油效率为10千米/升,则行驶1小时,消耗了汽油80×1÷10=8(升),故D 错误. 故选C .2.B 当0≤x ≤1时,y =32x ,当1<x ≤2时,y =3-32x ,所以y =32-32|x -1|(0≤x ≤2). 3.B ∵f (x )对任意实数x 恒有2f (x )-f (-x )=3x +1①,∴2f (-x )-f (x )=-3x +1②, 由①②得,f (x )=x +1.故选B .4.A 显然f (x )={3x -1x +3(x ≠-3),x (x =-3)的定义域为R,故值域为R,y =3x -1x +3=3-10x +3的值域为{y ∈R|y ≠3},∴a =3,故选A .5.B 依题意得f (x )={x 2,x 2≥|x |,|x |,x 2<|x |.在同一平面直角坐标系中作出y =x 2与y =|x |的图像,如图所示.由图像知,当x ≤-1时,x 2≥|x |,f (x )=x 2; 当-1<x <1,且x ≠0时,x 2<|x |,f (x )=|x |; 当x =0时,x 2=|x |,f (x )=0; 当x ≥1时,x 2≥|x |,f (x )=x 2.因此,当x ≤-1或x ≥1时,图像为抛物线的一部分,当-1<x <1时,图像为折线段,故选B .二、填空题 6.答案 11解析 令√x +1=t ≥1,则x =(t -1)2,所以g (t )=2(t -1)2+3=2t 2-4t +5(t ≥1),所以g (x )=2x 2-4x +5(x ≥1),所以g (3)=2×32-4×3+5=11.7.答案 3解析 设2x -1=t ,则x =x +12,∴f (t )=2(t +1)+3=2t +5.∵f (t )=11,∴2t +5=11,解得t =3.8.答案 (-∞,-1)解析 当a ≥0时,由f (a )>a ,得f (a )=23a -1>a ,解得a <-3,与a ≥0矛盾,舍去;当a <0时,由f (a )>a ,得f (a )=1x >a ,由a <0去分母、移项,得a 2-1>0,即(a +1)(a -1)>0,解得a >1或a <-1,又因为a <0,所以a <-1.综上所述,实数a 的取值范围是(-∞,-1).三、解答题9.解析 (1)由题意,设f (x )=ax +b (a ≠0), 则f [f (x )]=af (x )+b =a (ax +b )+b =a 2x +ab +b =4x -3,由恒等式性质,得{x 2=4,xx +x =-3,解得{x =2,x =-1或{x =-2,x =3,∴函数f (x )的解析式为f (x )=2x -1或f (x )=-2x +3. (2)f (x )+2f1x=x ,将上式中的x 与1x互换,得f1x+2f (x )=1x ,于是得关于f (x )的方程组{x (x )+2x (1x )=x ,x (1x )+2x (x )=1x ,∴f (x )=23x -x3(x ≠0).10.解析 当A 中的三个元素都对应0时,f (a )+f (b )=0+0=0=f (c ),有1个映射;当A 中的三个元素对应B 中的两个元素时,满足f (a )+f (b )=f (c )的映射有4个,分别为1+0=1,0+1=1,(-1)+0=-1,0+(-1)=-1;当A 中的三个元素对应B 中的三个元素时,满足f (a )+f (b )=f (c )的映射有2个,分别是(-1)+1=0,1+(-1)=0.因此满足题设条件的映射有7个.。

新人教版高中数学必修第一册函数的表示法ppt课件及课时作业

新人教版高中数学必修第一册函数的表示法ppt课件及课时作业

内容索引
一、函数的表示法 二、函数的图象 三、求简单函数的值域
随堂演练 课时对点练

函数的表示法
问题 结合初中所学以及上节课的几个问题,你能总结出几种函数的表 示方法? 提示 解析法:就是用数学表达式表示两个变量之间的对应关系;列表 法:就是列出表格来表示两个变量之间的对应关系;图象法:就是用图 象表示两个变量之间的对应关系.
C.{y|-1≤y≤3}
B.{0,1,2,3} D.{y|0≤y≤3}
由对应关系y=x2-2x得, 0→0,1→-1,2→0,3→3, 所以值域为{-1,0,3}.
1234
3.函数f(x)=x2+21x+2 (x∈R)的值域是
A.[0,1]
B.[0,1)
√C.(0,1]
D.(0,1)
因为x2+2x+2=(x+1)2+1≥1, 所以 0<x+112+1≤1, 所以函数的值域为(0,1].
10.某问答游戏的规则是:共5道选择题,基础分为50分,每答错一道题 扣10分,答对不扣分.试分别用列表法、图象法、解析法表示一个参与者 的得分y与答错题目道数x(x∈{0,1,2,3,4,5})之间的函数关系.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
(1)列表法,列出参赛者得分y与答错题目道数x(x∈{0,1,2,3,4,5})之间 的函数关系为
6.(多选)下列命题中是假命题的是
√A.函数 f(x)= x-2+ 1-x有意义 √B.函数y=2x(x∈N)的图象是一条直线
C.函数是其定义域到值域的对应关系 D.函数y=x2(x≥0)的图象是一条曲线
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2025年中考数学总复习第一部分考点梳理第11课时一次函数的图象和性质

2025年中考数学总复习第一部分考点梳理第11课时一次函数的图象和性质

考点1
考点2
考点3
考点4
考点5
考点6
(2)若点C的坐标为(1,1),求证:A,B,C三点共线. 证明:∵当x=1时,y=2×1-1=1,∴点C在该一次函数的图 象上, 又∵该一次函数的图象过点A,B,∴A,B,C三点共线.
考点1
考点2
考点3
考点4
考点3 一次函数图象的平移 例5:如图,已知A(1,0)、B(3,0)、M(4,3), 动点P从点A出发,沿x轴以每秒2个单位长度 的速度向右移动,且过点P的直线l:y=-x+b 也随之平移,设移动的时间为t秒,若直线l与线段BM有公共 点,则t的取值范围为_1_≤__t_≤__3_.[2024厦门外国语学校模拟4分]
(一)
(二)
(三)
(四)
(5)方程组ቊyy12==x-+24x,-2的解是_൜yx_==__2-__2__,___;
(6)不等式x+4>-2x-2的解集是_x_>__-__2__.
(一)
(二)
(三)
(四)
考点1 一次函数的概念、图象与性质[8年1考]
例1:已知一次函数y=(k-3)x+1,函数值y随自变量x的增大
(一)
(二)
(三)
(四)
2.一次函数y=kx+b(k≠0)的图象与性质:
k>0
k<0
y随x的增大而增大
y随x的增大而减小
(一)
(二)
(三)
(四)
k决定直线的倾斜方向和倾斜程度,b决定直线与y轴的交点情况.
(一)
(二)
(三)
(四)
3.解析式与图象: y=kx(k≠0),图象是经过原点的一条直线.
而减小,则k的取值范围是( D )[2024泉州一检4分]

新人教版高中数学必修第一册函数的概念ppt课件及课时作业

新人教版高中数学必修第一册函数的概念ppt课件及课时作业
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.下列图形中不是函数图象的是

A中至少存在一处如x=0,一个横坐标对应两个纵坐标,这相当于集 合A中至少有一个元素在集合B中对应的元素不唯一,故A不是函数 图象,B,C,D均符合函数定义.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
例2 (1) 已知函数y=f(x)的图象如图所示,则该函数的定义域为 {_x_|_-__2_≤_ _x_≤__4_或__5_≤__x_≤__8_}__,值域为_{_y_|-__4_≤__y_≤__3_}_.
根 据 y = f(x) 的 函 数 图 象 可 看 出 , f(x) 的 定 义域为{x|-2≤x≤4或5≤x≤8},值域为 {y|-4≤y≤3}.
1234
3.函数y=f(x)的图象与直线x=2 022的公共点有
A.0个
√C.0个或1个
B.1个 D.以上答案都不对
1234
4.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为_{_-__2_,0_,_4_}_.
1234
课时对点练
基础巩固
1.(多选)对于函数y=f(x),以下说法正确的有
注意点: (1)A,B是非空的实数集. (2)定义域是非空的实数集A,但函数的值域不一定是非空实数集B, 而是集合B的子集. (3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非 空实数集A中的任意一个(任意性)元素x,在非空实数集B中都有(存在 性)唯一(唯一性)的元素y与之对应. (4)函数符号“y=f(x)”是数学符号之一,不表示y等于f与x的乘积, f(x)也不一定是解析式,还可以是图象或表格,或其他的对应关系. (5)除f(x)外,有时还用g(x),u(x),F(x),G(x)等符号表示函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再 小组内集中讨论。 (3)没解决的问题组长记录好,准备质疑。
高效展示(约5分钟)
展示问题 例1(1) 例1(2) 例2 例2 例3 例3
展示方式 及位置
前黑板 前黑板 后黑板 后黑板 后黑板 后黑板
表示方法
1. 函数y=f(x)常用的表示方法有三种, 分别是: 列表法, 图像法,解析法
2. 通过列出自变量与对应函数值的表来表示函数 关系的方法叫列表法。 3.用图像表示函数的方法叫做图像法 4.如果在函数y=f(x), 中, f ( x) 是用代数式(或 解析式)来表达的 ,则这种表示方法叫做解析法。
1、点评人员:点评人要声 音洪亮,语言清晰;先点评 书写、对错,再点评思路; 最后点评规律方法并能拓展 (用彩笔补充) 2、其它同学:认真倾听、 积极思考,重点内容记好笔 记。有不明白或有补充的要
大胆提出
3、力争全部达成目标,且A 层多拓展质疑,B层注重总结 ,C层全部掌握,科研小组 成员首先要质疑拓展
图1-3
2.分段函数的定义域是各段定义域 的 并集 ,其值域是各段值域的 并集
.
分段函数不能误认为是几个函数,它是一个 整体。对于分段函数,必须分段处理,最后 还要写成一个函数表达式。
合作探究(约5分钟)
内容: 1.函数表示方法的运用,如何做出函数图象; 2.分段函数的概念及简单应用; 3.导学案中自己遇到的问题。 要求:
7组 8组 9组 4组 5组 6组
要求
1.展示人书写认真快 速;总结规律方法( 用彩笔) 2.其他同学讨论完毕 总结整理完善,并迅 速浏览展示同学的答 案,准备点评。 3.提高效率,不浪费 一分钟。
展示自我,提高自信,我是最棒的!
精彩点评(约10分钟)
展示问题 展示位置 展示小组 例1(1) 例1(2) 例2 例2 例3 例3 前黑板 前黑板 后黑板 后黑板 后黑板 后黑板 7组 8组 9组 4组 5组 6组 2组 1组 10组 点评 小组 3组 要求
f { f [ f (1)]} 0
【分析】求分段函数的函数值时,一般先确定自变量的取值在定义域 的哪个子区间,然后用与这个区间相对应的对应关系来求函数值.
整理巩固
要求:整理巩固探究问题
落实基础知识 完成知识结构图
课堂评价
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
课后完成训练学案并整理巩固
5. 这三种表示方法各有什么优、缺点?
列表法 图像法 解析法
定 义
用表格的形式 把两个变量间 的函数关系表 示出来的方法 不必通过计算 就能知道两个 变量之间的对 应关系,比较 直观 只能表示有限 个元素的函数 关系
用图像把两个 变量间的函数 关系表示出来 的方法 可以直观地表 示函数的局部 变化规律,进 而可以预测它 的整体趋势 有些函数的图 像难以精确作 出
优秀个人
方琪、马秀丽、 张德民 王德坤、李静
陈瑶瑶、顾祥玉 赵治国、陈嘉昊 郭炳琦、韩丽梅、齐瑜佳
孙琳、瑛杰、毛源敏
存在问题
• 1、求函数解析式时,换元法不会运用; • 2、作图不规范; • 3、分段函数看不明白,解题出错。
学习目标
• 1.熟练掌握函数的三种表示方法,提高求解函数解析式、分析 函数图象的能力; • 2.自主学习、合作探究,了解简单的分段函数,并能简单应用 ; • 3.激情投入,高效学习,培养严谨的数学思维品质,体会函数 的抽象美。
展示自我,提高自信,我是最棒的!
总结升华
【课堂小结】
1.知识方面: (1)分段函数的定义 . (2)求简单分段函数的解析式. (3)画简单分段图像. (4)求函数解析式. 2.数学思想方面: (1)换元法 (2)分类讨论的思想 (3)数形结合的思 想.
当堂检测
ì ï 1 - x 2 , (- 1 ? x 0) ï ï 已知函数y = f ( x) = í 0, (0 ? x 1) ,求f { f [ f (1)]}的值 ï 3 ï ï x - , (1 #x 2) î 2
一个函数的对应 关系可以用自变 量的代数式表示 出来的方法 能较便利地通过 计算等手段研究 函数性质
优 点
缺 点
一些实际问题难 以找到它的解析 式
(二)分段函数 在函数的定义域内,对于自变量的不同取值区 间,对应法则不同,这样的函数称为分段函数.
ì x - 1( x < 0) ï ï 例如:函数y = f ( x) = í 0( x = 0) ï ï x +1( x > 0) î 是定义在 ( - ? , ) 上的分段函数, 图像如图所示:
1、课本、导学案、练习本、双色笔 2、分析错因,自纠学案 3、标记疑难,以备讨论
三案导学· 高中数学必修一(人教B 版)
第二章 函数
2.1.2函数的表示方法
预习反馈
组别
1组 ★★★★ 2组 ★★★ 3组 ★★★★ 4组 ★★ 5组 ★★ 6组 ★★★★ 7组 ★★ 8组 ★★★★★ 9组 ★★
10组★★★★★
相关文档
最新文档