3.1.2(1)函数的表示法
人教版高中数学新教材必修第一册课件:3.1.2 函数表示法

即:f (x) 3 x 7
讲
22
课
人
:
邢
启 强
23
典型例题
解 : 设f (x) kx b,则f ( f (x)) f (kx b) k(kx b) b
k(kx b) b 4x 1,
k 2 (k
4 1)b
1
k b
2
1 3
或
k b
2 1
f (x) 2x 1 或f (x) 2x 1
因为 AD=x 所以 x2= 2 a 2 A 2
E
B
所以 DC=2-x2
讲
课
人
:
邢
启 强
27
典型例题
例5.已知函数f(x)在[-1,2]上的图象如图 所示,求f(x)的解析式.
【分析】由图象特点先确定函数类型,再求解析式.
【解析】当-1≤x≤0时,设y=ax+b,
∵过点(-1,0)和(0,1),∴
(1)求f{f[f(-2)]} (2) 当f (x)=-7时,求x ;
解: (1) f{f[f(-2)]} = f{f[-1]} = f{1} =0
(2)若x<-1 , 2x+3 <1,与f (x)=-7相符,
由2x+3 =-7得x=-5 易知其他二段均不符合f (x)=-7 。
故 x=-5
讲
课
Hale Waihona Puke 人:(2)换元法:已知复合函数 f(g(x))的解析式, 可用换元法,此时要注意新元的取值范围;
(3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x) 改写成关于 g(x)的表达式,然后以 x 替代 g(x),便 得 f(x)的解析式; (4)消去法:已知关于 f(x)与 f1x或 f(-x)的表达式, 可根据已知条件再构造出另外一个等式组成方程
3.1.2 函数的表示法(一)课件- 高一上学期数学人教A版(2019)必修第一册

∴ 2f
消去f
1
x
1
x
+f x
1
x
1
f
x
1
=
x
解得 = −2 + 1 .
= x x ≠ 0 ,求f x 的解析式.
=x x≠0 ,
Байду номын сангаас
x≠0 ,
,解得f x =
2x
3
−
1
,x
3x
≠ 0.
知识梳理·自主探究
师生互动·合作探究
方法总结
当同一个对应关系f 中的两个变量之间有互为相反数
1
(或互为倒数)关系时,可以用−x(或 )代替原式中的x
x
所得方程与原方程联立构造方程组求解.
,
知识梳理·自主探究
师生互动·合作探究
角度3 赋值法求函数解析式
例6:已知对任意实数x,y都有f x + y − 2f y = x 2 + 2xy − y 2 + 3x − 3y,
求函数f x 的解析式.
2
x
x
x
1
2
1
+ +1 −2 +1 +3
x2
x
x
2
1
1
+ 1 − 2 + 1 + 3,
x
x
1
1 2
1
f 1+ = 1+
− 2 1 + + 3,
x
x
x
1
2
f x = x − 2x + 3. 又∵ 1 + ≠ 1,
x
3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册

教学课题:3.1.2 函数的表示法课型:新授课课时:2课时课标要求:1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;2、通过具体实例,了解简单的分段函数,并能简单应用。
学习目标:1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;2、通过具体实例,了解简单的分段函数,并能简单应用;3、发展学生直观想象、逻辑推理核心素养。
重点:了解简单的分段函数,并能简单应用。
难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。
教学方法:启发式、自主探究式相结合教学准备教师:多媒体课件学生:教学过程一、复习旧知、引入新课引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?(生)解析法、列表法和图像法引入2:(师)你能分辨下列函数是用什么方法表示的吗?(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;(生)图象法,就是用图象表示两个变量之间的对应关系.(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;年份y2006200720082009201020112012201320142015恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57(生)列表法,就是列出表格表示两个变量之间的对应关系.(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}∈≤≤t t(生)解析法,就是用数学表达式表示两个变量之间的对应关系.设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。
二、创设情境、提出问题x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})像法表示函数y=f(x).解析:用列表法可将y=f(x)表示为笔记本数x12345钱数y510152025用图象法发可将y=f(x)表示为追问1(师)你发现图象上这些点有什么特征?(生)这些点好像都经过一条直线。
高中数学 第三章 函数的概念与性质 3.1.2 函数的表示法第一册数学教案

3.1.2 函数的表示法最新课程标准:(1)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数,理解函数图象的作用.(2)通过具体实例,了解简单的分段函数,并能简单应用.知识点一 函数的表示法状元随笔 1.解析法是表示函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了变量之间的数量关系.2.由列表法和图象法的概念可知:函数也可以说就是一张表或一张图,根据这张表或这张图,由自变量x 的值可查找到和它对应的唯一的函数值y.知识点二 分段函数在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.状元随笔 1.分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.2.分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎪⎨⎪⎧1,-2≤x≤0,x ,0<x≤3,其“段”是不等长的.[教材解难]教材P 68思考(1)三种表示方法的优缺点比较适用于所有函数,如D (x )=⎩⎪⎨⎪⎧0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段). [基础自测]1.购买某种饮料x 听,所需钱数为y 元,若每听2元,用解析法将y 表示成x (x ∈{1,2,3,4})的函数为( )A .y =2xB .y =2x (x ∈R )C .y =2x (x ∈{1,2,3,…}) D.y =2x (x ∈{1,2,3,4}) 解析:题中已给出自变量的取值范围,x ∈{1,2,3,4},故选D.答案:D2.已知函数f (x )=⎩⎪⎨⎪⎧1x +1,x <-1,x -1,x >1,则f (2)等于( )A .0 B.13C .1D .2解析:f (2)=2-1=1. 答案:C3.已知函数f (2x +1)=6x +5,则f (x )的解析式是( ) A .3x +2 B .3x +1 C .3x -1 D .3x +4解析:方法一 令2x +1=t ,则x =t -12.∴f (t )=6×t -12+5=3t +2.∴f (x )=3x +2.方法二 ∵f (2x +1)=3(2x +1)+2. ∴f (x )=3x +2. 答案:A4.已知函数f (x ),g (x )分别由下表给出.则f (g (1))的值为 当g (f (x ))=2时,x =________.解析:由于函数关系是用表格形式给出的,知g (1)=3, ∴f (g (1))=f (3)=1.由于g (2)=2,∴f (x )=2,∴x =1. 答案:1 1题型一 函数的表示方法[经典例题]例 1 (1)某学生离家去学校,一开始跑步前进,跑累了再走余下的路程.下列图中纵轴表示离校的距离,横轴表示出发后的时间,则较符合该学生走法的是( )(2)已知函数f(x)按下表给出,满足f(f(x))>f(3)的x的值为________.【解析】(1)所以开始曲线比较陡峭,后来曲线比较平缓,又纵轴表示离校的距离,所以开始时距离最大,最后距离为0.【答案】(1)D由题意找到出发时间与离校距离的关系及变化规律【解析】(2)由表格可知f(3)=1,故f(f(x))>f(3)即为f(f(x))>1.∴f(x)=1或f(x)=2,∴x=3或1.【答案】(2)3或1观察表格,先求出f(1)、f(2)、f(3),进而求出f(f(x))的值,再与f(3)比较.方法归纳理解函数的表示法应关注三点(1)列表法、图象法、解析法均是函数的表示方法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示方法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.跟踪训练1 某商场新进了10台彩电,每台售价3 000元,试求售出台数x (x 为正整数)与收款数y 之间的函数关系,分别用列表法、图象法、解析法表示出来.解析:(1)列表法:(3)解析法:y =3 000x ,x ∈{1,2,3,…,10}.状元随笔 本题中函数的定义域是不连续的,作图时应注意函数图象是一些点,而不是直线.另外,函数的解析式应注明定义域.题型二 求函数的解析式 [经典例题] 例2 根据下列条件,求函数的解析式:(1)已知f ⎝ ⎛⎭⎪⎫1x =x1-x 2,求f (x );(2)f (x )是二次函数,且f (2)=-3,f (-2)=-7,f (0)=-3,求f (x ).【解析】 (1)设t =1x ,则x =1t (t ≠0),代入f ⎝ ⎛⎭⎪⎫1x =x1-x 2,得f (t )=1t1-⎝ ⎛⎭⎪⎫1t 2=tt 2-1,故f (x )=xx 2-1(x ≠0且x ≠±1).(2)设f (x )=ax 2+bx +c (a ≠0).因为f (2)=-3,f (-2)=-7,f (0)=-3.所以⎩⎪⎨⎪⎧4a +2b +c =-3,4a -2b +c =-7,c =-3.解得⎩⎪⎨⎪⎧a =-12,b =1,c =-3.所以f (x )=-12x 2+x -3.(1)换元法:设1x=t ,注意新元的范围.(2)待定系数法:设二次函数的一般式f(x)=ax 2+bx +c. 跟踪训练2 (1)已知f (x 2+2)=x 4+4x 2,则f (x )的解析式为________;(2)已知f (x )是一次函数,且f (f (x ))=4x -1,则f (x )=________.解析:(1)因为f (x 2+2)=x 4+4x 2 =(x 2+2)2-4,令t =x 2+2(t ≥2),则f (t )=t 2-4(t ≥2),所以f (x )=x 2-4(x ≥2).(2)因为f (x )是一次函数,设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b . 又因为f (f (x ))=4x -1,所以a 2x +ab +b =4x -1.所以⎩⎪⎨⎪⎧a 2=4,ab +b =-1,解得⎩⎪⎨⎪⎧a =2,b =-13或⎩⎪⎨⎪⎧a =-2,b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:(1)f (x )=x 2-4(x ≥2)(2)2x -13或-2x +1(1)换元法 设x 2+2=t. (2)待定系数法 设f(x)=ax +b.题型三 求分段函数的函数值 [经典例题] 例3 (1)设f (x )=⎩⎪⎨⎪⎧|x -1|-2|x |≤1,11+x 2|x |>1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=( )A.12B.413 C .-95 D.2541(2)已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.【解析】(1)∵f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-2=-32,∴f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-32=11+94=413,故选B. 判断自变量的取值范围,代入相应的解析式求解. (2)因为8<10,所以代入f (n )=f (f (n +5))中, 即f (8)=f (f (13)).因为13>10,所以代入f (n )=n -3中,得f (13)=10, 故f (8)=f (10)=10-3=7. 【答案】 (1)B (2)7 方法归纳(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求得.(2)像本题中含有多层“f ”的问题,要按照“由里到外”的顺序,层层处理.(3)已知函数值求相应的自变量值时,应在各段中分别求解.跟踪训练3 已知f (x )=⎩⎪⎨⎪⎧x +1 x >0,π x =0,0 x <0,求f (-1),f (f (-1)),f (f (f (-1))).解析:∵-1<0,∴f (-1)=0,∴f (f (-1))=f (0)=π, ∴f (f (f (-1)))=f (π)=π+1. 根据不同的取值代入不同的解析式. 题型四 函数图象[教材P 68例6]例4 给定函数f (x )=x +1,g (x )=(x +1)2,x ∈R , (1)在同一直角坐标系中画出函数f (x ),g (x )的图象; (2)∀x ∈R ,用M (x )表示f (x ),g (x )中的较大者,记为M (x )=max{f (x ),g (x )}.例如,当x =2时,M (2)=max{f (2),g (2)}=max{3,9}=9. 请分别用图象法和解析法表示函数M (x ).【解析】 (1)在同一直角坐标系中画出函数f (x ),g (x )的图象(图1).(2)由图1中函数取值的情况,结合函数M (x )的定义,可得函数M (x )的图象(图2).由(x +1)2=x +1,得x (x +1)=0.解得x =-1,或x =0. 结合图2,得出函数M (x )的解析式为M (x )=⎩⎪⎨⎪⎧x +12,x ≤-1,x +1,-1<x ≤0,x +12,x >0.状元随笔 1.先在同一坐标系中画出f(x)、g(x); 2.结合图象,图象在上方的为较大者; 3.写出M(x). 教材反思(1)画一次函数图象时,只需取两点,两点定直线.(2)画二次函数y =ax 2+bx +c 的图象时,先用配方法化成y =a (x -h )2+k的形式⎝ ⎛⎭⎪⎫其中h =-b 2a ,k =4ac -b 24a ,确定抛物线的开口方向(a >0开口向上,a <0开口向下)、对称轴(x =h )和顶点坐标(h ,k ),在对称轴两侧分别取点,按列表、描点、连线的步骤画出抛物线.(3)求两个函数较大者,观察图象,图象在上方的为较大者. 跟踪训练4 作出下列函数的图象: (1)y =-x +1,x ∈Z ; (2)y =2x 2-4x -3,0≤x <3; (3)y =|1-x |.解析:(1)函数y =-x +1,x ∈Z 的图象是直线y =-x +1上所有横坐标为整数的点,如图(a)所示.(2)由于0≤x <3,故函数的图象是抛物线y =2x 2-4x -3介于0≤x <3之间的部分,如图(b).(3)因为y =|1-x |=⎩⎪⎨⎪⎧x -1,x ≥1,1-x ,x <1,故其图象是由两条射线组成的折线,如图(c).(2)先求对称轴及顶点,再注意x 的取值(部分图象).(3)关键是根据x 的取值去绝对值.解题思想方法 数形结合利用图象求分段函数的最值例 求函数y =|x +1|+|x -1|的最小值.【解析】 y =|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x ≤-1,2,-1<x ≤1,2x ,x >1.作出函数图象如图所示:由图象可知,x ∈[-1,1]时,y min =2.【反思与感悟】 (1)分段函数是一个函数,其定义域是各段“定义域”的并集,其值域是各段“值域”的并集.写定义域时,区间的端点需不重不漏.(2)求分段函数的函数值时,自变量的取值属于哪一段,就用哪一段的解析式.(3)研究分段函数时,应根据“先分后合”的原则,尤其是作分段函数的图象时,可先将各段的图象分别画出来,从而得到整个函数的图象.一、选择题1.如图是反映某市某一天的温度随时间变化情况的图象.由图象可知,下列说法中错误的是( )A .这天15时的温度最高B .这天3时的温度最低C .这天的最高温度与最低温度相差13 ℃D .这天21时的温度是30 ℃解析:这天的最高温度与最低温度相差为36-22=14 ℃,故C 错.答案:C2.已知f (x -1)=1x +1,则f (x )的解析式为( )A .f (x )=11+xB .f (x )=1+xxC .f (x )=1x +2D .f (x )=1+x解析:令x -1=t ,则x =t +1,∴f (t )=1t +1+1=12+t ,∴f (x )=1x +2.答案:C3.函数y =x 2|x |的图象的大致形状是( )解析:因为y =x 2|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,所以函数的图象为选项A.答案:A4.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a等于( )A .-3B .-1C .1D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,符合题意.答案:A 二、填空题5.f (x )=⎩⎪⎨⎪⎧x ,x ∈[0,1]2-x ,x ∈1,2]的定义域为______,值域为______.解析:函数定义域为[0,1]∪(1,2]=[0,2].当x ∈(1,2]时,f (x )∈[0,1),故函数值域为[0,1)∪[0,1]=[0,1].答案:[0,2] [0,1]6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________. 解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若f (x )-12f (-x )=2x (x ∈R ),则f (2)=________.解析:∵f (x )-12f (-x )=2x ,∴⎩⎪⎨⎪⎧f 2-12f-2=4,f-2-12f2=-4,得⎩⎪⎨⎪⎧2f 2-f -2=8,f -2-12f 2=-4,相加得32f (2)=4,f (2)=83.答案:83三、解答题8.某同学购买x (x ∈{1,2,3,4,5})张价格为20元的科技馆门票,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.解析:(1)列表法x /张 1 2 3 4 5 y /元20406080100(2)(3)解析法:y =20x ,x ∈{1,2,3,4,5}. 9.求下列函数解析式:(1)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9,求f (x );(2)已知f (x +1)=x 2+4x +1,求f (x )的解析式. 解析:(1)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9,即2ax +3a +2b =2x +9,由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,∴a =1,b =3.∴所求函数解析式为f (x )=x +3. (2)设x +1=t ,则x =t -1,f (t )=(t -1)2+4(t -1)+1,即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2. [尖子生题库]10.画出下列函数的图象:(1)f (x )=[x ]([x ]表示不大于x 的最大整数); (2)f (x )=|x +2|.解析:(1)f (x )=[x ]=⎩⎪⎪⎨⎪⎪⎧…-2,-2≤x <-1,-1,-1≤x <0,0,0≤x <1,1,1≤x <2,2,2≤x <3,…函数图象如图1所示.图1 图2(2)f (x )=|x +2|=⎩⎪⎨⎪⎧x +2,x ≥-2,-x -2,x <-2.画出y =x +2的图象,取[-2,+∞)上的一段;画出y=-x-2的图象,取(-∞,-2)上的一段,如图2所示.。
3.1.2 函数的表示法课件新教材】人教A版(2019)高一数学必修第一册

解析:选 C.设 y=k,由题意得 1=k,
x
2
解得 k=2,所以 y=2x.
3.1 函 数 的 概 念
随堂练习
3、已知f(x+1)=x2+2x+2,求f(x)
解: 法一:配凑法 f(x+1)=x2+2x+2=(x+1)2+1, ∴f(x)=x2+1.
法二:换元法 令t=x+1 则x=t-1 f(t)=(t-1)²+2(t-1) =t²-2t+1+2t-2 =t²-1 ∴f(x)=x2+1
3.1 函 数 的 概 念
随堂练习
1、函数的基本表示法(列表法、图象法、解析法) 2、描点法画一些简单函数的图象。 3、求函数解析式 4、求函数解析式的配凑法、换元法
谢谢您的聆听
y
4
•
2
2 1 O 1 2
x
2
• 4
f(x)=2x,x∈R,且|x|≤2
3.1 函 数 的 概 念
典型例题
例2. 画出下列函数的图象: (2)f(x)=x+2,(x∈N,且|x|≤3)
f(x)=x+2,(x∈N,且|x|≤3)
3.1 函 数 的 概 念
变式训练
1、画出下列函数的图象:(1)y=x+1(x≤0);(2)y =x2-2x(x>1,或x<-1)
3
3.1 函 数 的 概 念
温故知新
知识点一 区间的概念及表示
1.一般区间的表示:设a,b是两个实数,而且a<b,我们规定:
定义 {x|a≤x≤b} {x|a<x<b} {x|a≤x<b} {x|a<x≤b}
新教材人教版高中数学必修1 第三章 3.1.2 函数的表示法(一)

集合B { x, y | x R, y R}
对应关系f : 平面直角坐标系中的点与它的坐标对应; (3)集合A={x|x是三角形},集合B={x|x是圆} 对应关系f : 每一个三角形都对应它的内切圆; (4)集合A {x | x是新华中学的班级}, 集合B {x | x是新华中学的学生}, 对应关系f : 每一个班级都对应班里的学生.
f’:平面直角坐标系内的点跟它的坐标对应
f’ : E F
➢映射概念
非空集合、唯一确定的对应关系、任意x、唯一确定的y
1、下列对应中,能构成映射的有(
)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(1)
A
B
a1
b1 b2
a2
b3 b4
(4)
A
B
a1
b1
a2
b2
a3
b3
a4
b4
(2)
A
B
a1
b1
a2
b2
(5)
(3) f ( x) 2x2 3x 5
[0, )
(, 2) U(2, ) [ 31 , )
8
一、复习回顾
实例1:炮弹距地面的高度h(单位:m)随时间t(单位:s)
变化的规律是 : h=130t-5t2
解析法
实例2:南极上空臭氧空洞的面积从1979~2001年的变
化情况:
图象法
实例3:
列表法
二、基础知识讲解
A
B
a1
b1
a2
3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
教学设计3:3.1.2 函数的表示法
20分钟2、学以致用定义域:t∈{0≤t≤24}(2)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.如3.1.1 问题4所说的恩格尔系数变化情况表:上表中r是y的函数,所以自变量y的定义域:y∈{2006,2007,2008,2009,2010,2011,2012,2013,2014,2015},可知,定义域也可以是离散型的.(3)解析法:用数学表达式表示两个变量之间的函数关系.如3.1.1问题1:某“复兴号”高速列车加速到350km/h后保持匀速运行半小时.这段时间内,列车行进的路程S(单位:km)与运行时间t(单位:h)的关系可以表示为:S=350t.(对应法则)其中,定义域:t∈{0≤t≤0.5},值域S∈{0≤S≤175}.因为有定义域和对应法则就可以求出值域,所以,我们一般用解析法表示函数时只要写出对应法则和定义域.二、学以致用接下来我们通过三道例题来进一步掌握函数的三种表示法及其特点.例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).提问1:审题是理清思路的前提,也是成功解题的关键,所以仔细审题,题中有哪些关键点?如何准确又快速地把这道题数学化?讨论后回答:因为x∈{1,2,3,4,5},属于离散型,有限集,学生最直观的想法就是用列对应值表的方法表示函数y=f(x).(若x有1000个取值呢?)如下表所示:其中定义域:x∈{1,2,3,4,5}追问:通过列表的过程,我们发现,一方面,表格一目了然地把x和y的对应关系表示出来;另一方面,在得到表中第二行钱数y的值的时候,也是需要通过题意简单计算的.所以,我们思考一下,得到这个表格之后,我们如何进一步阐发这一道题呢?回答追问1:从表格两行的结构看,我们不妨以x为横轴,y为纵轴,建立直角坐标系,这样,上述表格中的每一列的(x,y)的值就可以表示为x−o−y坐标系中的点.如下图所示:这就是图象法表示函数y=f(x).(定义域:x∈{1,2,3,4,5})研究图象可知,和列表法相比,图象法虽然能直观反映x和y的对应关系,但是其横纵坐标不够精准,另一方面,图象法还能反映x和y的变化趋势,如图,反映了x越大,y越大,也就是买的笔记本越多,花的钱越多。
最新人教A版高中数学必修一课件:3.1.2 第一课时 函数的表示法
【对点练清】 1.已知函数f(x)的图象如图所示,则此函数的定义域是________,
值域是________. 解析:结合图象,知函数f(x)的定义域为[-3,3],值域为[-2,2]. 答案:[-3,3] [-2,2]
2.画出下列函数的图象: (1)y=x+1(x≤0); (2)y=x2-2x(x>1或x<-1). 解:(1)y=x+1(x≤0)表示一条射线,图象如图1. (2)y=x2-2x=(x-1)2-1(x>1或x<-1)是抛物线y=x2-2x去掉-1≤x≤1 之间的部分后剩余曲线.如图2.
3.1.2 函数的表示法
明确目标
发展素养
1.掌握函数的三种表示方法:解 1.通过用图象法表示函数,培养直观想
析法、图象法、列表法. 象素养.
2.会根据不同的需要选择恰当的 2.通过求函数解析式及分段函数求值,
方法表示函数.理解函数图象 培养数学运算素养.
的作用. 3.利用分段函数解决实际问题,培养数
【学透用活】 [典例 3] 求下列函数的解析式: (1)已知函数 f( x+1)=x+2 x,求 f(x); (2)已知函数 f(x)是二次函数,且 f(0)=1,f(x+1)-f(x)=2x,求 f(x); (3)已知函数 f(x)对于任意的 x 都有 f(x)-2f(-x)=1+2x,求 f(x).
题型三 函数解析式的求法 [探究发现] (1)什么是函数解析式? (2)一次函数、二次函数、反比例函数的解析式各是什么? 提示:(1)用数学表达式表示两个变量 x,y 之间的对应关系. (2)一次函数的解析式是 y=kx+b(k≠0),二次函数解析式是 y=ax2+bx+
c(a≠0),反比例函数的解析式是 y=kx(k≠0).
()
第三章-3.1.2 函数的表示法高中数学必修第一册人教A版
1, 为有理数,
分别定义如下:对任意的 ∈ ,函数 = ቊ
称为狄利克雷函数;记
0, 为无理数,
[]为不超过的最大整数,则称 = []为高斯函数.下列关于狄利克雷函数与高斯
函数的结论,错误的是( C
A.
=1
C. + − = 0
)
B. + 1 =
(1)写出函数的解析式;
【解析】由题设条件知,当 = 2时, = 100,当 = 14时, = 28,代入关系式得
2
2 + = 100,
= 1,
൞
解得ቊ
= 196.
14 + = 28,
14
所以 =
196
+ .
又 ≤ 20,且为正整数,所以函数的定义域是{|0 < ≤ 20, ∈ + }.
围,否则易出错),则 = − 1 2 ,所以
= −1
2
+ 2 − 1 = 2 − 1 ≥ 1 ,
所以函数 的解析式为 = 2 − 1 ≥ 1 .
方法2 (配凑法)
+ 1 = + 2 = + 2 + 1 − 1 = ( + 1)2 − 1.
= ( + ) = ( + ) + = 2 + + = 4 + 6,
= 2, = −2,
2 = 4,
于是有ቊ
解得ቊ
或ቊ
= −6,
=2
+ = 6,
所以 = 2 + 2或 = −2 − 6.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 函数的表示法
函数的三种表示方法:
1、解析法:就是用数表达式表示两个变量之间的对应关系
优点: 函数关系清楚,便于研究函数性质
2、图像法:就是用图象表示两个变量之间的对应关系
优点: 易知自变量与函数的对应性.
3、列表法:就是列出表格来表示两个变量之间的对应关系
优点:直观形象。
解:由绝对值概念可知,f
(
x)
x, x, x
x
0
0,
图像为
这样的函数叫分段函数,在生
ቤተ መጻሕፍቲ ባይዱ
活中,有很多可以用分段函数
描述的实际问题,比如出租车
计费,个人所得税等
练习:P69 T2
分段函数的解析式和图像
例6 给定函数 f (x) x 1,g(x) (x 1)2, x∈ R, : (1)在同一直角坐标系中画 出f (x)和g(x)的图像
(2)∀x∈ R,用M (x)表示f (x), g(x)中的较大者 , 记为:M (x) max{ f (x), g(x)}, 请分别用图像法和解析 法表示函数 M (x)。
练习:P69 T3
函数的实际应用
例7:下表某校高一(1)班三名同学在高一学年度6次数学测试的成绩及班级平均分表
请你对这三位同学在初三学年的历史学习情况做一个分析.
(2)小王全年应纳税所得额为 t=189600-60000-189600(8%+2%+1%+9%)-52800-4560 =0.8×189600-117360 =34320. 将t的值代入③,得 y=0.03×34320=1029.6. 所以,小王应缴纳的综合所得个税税额为1029.6元.
包括工 资、薪金,劳务报 酬,稿 酬,特许
权使用费
“基本减除费用” (免征额)为每年
60000元.
包括居民个人按 照国家规定的范围和标 准缴纳的基本养老保险、 基本医疗保险、失业保 险等社会保险费和住房
公积金等;
包括子女教育、 继续教育、 大病 医疗、住房贷款 利息或者住房租
金、赡养老人 等支出;
(1)设全年应纳税所得额为t,应缴纳个税税额为y, 求y=f(t),并画出图象; (2)小王全年综合所得收入额为189600元,假定缴纳的基本养老保险、基本医疗保险、 失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%, 1%,9%, 专项附加扣除是52800元,依法确定其他扣除是4560元,那么他全年应缴纳多少综合所 得个税?
例4 : 某种笔记本的单价是5元,买 x(x∈{1,2,3, 4,5})个笔记本需要 y 元,请用函数的三种表示法表示函数 y=f(x).
用列表法可将函数 y=f(x)表示为
用图象法可将函数 y=f(x)表示为图3.1-2.
分段函数的解析式和图像
例5:画出函数 f(x)=|x| 的图像,并根据图像求函数 f(x)值域
【分析】从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情 况.如果将每位同学的成绩和测试序号之间的函数关系分别用图像表示出来,就可以直观的看到他 们成绩变化的情况.
例8: 依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人民共和国个人所得税法》向国
家缴纳个人所得税 (简称个税).2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣 除数确定,计算公式为 个税税额=应纳税所得额×税率-速算扣除数. 应纳税所得额的计算公式为 应纳税所得额=综合所得收入额-基本减除费用-专项扣除 -专项附加扣除-依法确定的其他扣除.