万有引力定律_(更新)
万有引力定律环路定理

万有引力定律与环路定理
一、万有引力定律
1. 定义:万有引力定律是描述物体之间相互作用的物理定律。
它指出任何两个质点都存在引力作用,这个力与它们质量的乘积成正比,与它们距离的平方成反比。
2. 公式:万有引力定律的公式为F = G * (m1 * m2) / r²,其中F 是两个质点之间的引力,G 是万有引力常数,m1 和m2 是两个质点的质量,r 是它们之间的距离。
3. 应用:万有引力定律在许多领域都有应用,如天体运动、地球物理学、材料科学等。
例如,天体之间的引力作用可以用来解释行星运动和宇宙结构的形成。
二、环路定理
1. 定义:环路定理是电磁学中的重要定理,它描述了磁场穿过闭合曲线的磁通量与穿过该曲线的电流之间的关系。
2. 公式:环路定理的公式为∮B·dl = μ₀I,其中B 是磁场强度,dl 是闭合曲线上的微小线段,I 是穿过该曲线的电流,μ₀是真空中的磁导率。
3. 应用:环路定理在电磁学中有广泛的应用,如电磁感应、电磁场计算等。
例如,在电磁感应中,环路定理可以用来计算感应电动势的大小和方向。
总结:万有引力定律和环路定理是物理学中的两个重要定理,它们在不同的领域都有广泛的应用。
通过了解这两个定理,我们可以更好地理解物理现象的本质和规律。
万有引力定律公式大全

万有引力定律公式大全
万有引力定律公式大全
1. 引力公式
万有引力定律公式:F = G(m1m2/r²)
其中,
F:两个物体之间的引力;
G:万有引力常量,约等于6.67×10^-11 N·m²/kg²;
m1、m2:分别为两个物体的质量;
r:为两个物体之间的距离。
2. 圆周运动公式
万有引力定律公式也可以用来描述行星绕太阳的圆周运动,其公式为:
F = m*v²/r = G(m1m2/r²)
其中,
m:为行星的质量;
v:为行星绕太阳的线速度;
r:为行星到太阳的距离;
m1、m2:分别为行星和太阳的质量。
3. 行星运动周期公式
行星绕太阳的运动周期公式为:
T² = (4π²r³)/(GM)
其中,
T:为行星绕太阳一周的时间;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
4. 轨道速度公式
行星绕太阳的轨道速度公式为:v = (GM/r)¹/²
其中,
v:为行星绕太阳的速度;
r:为行星到太阳的距离;
M:为太阳的质量;
G:万有引力常量。
5. 天体自转周期公式
天体自转周期公式为:
T = 2π(r/v)
其中,
T:为天体的自转周期;
r:为天体的半径;
v:为天体表面的线速度。
以上就是万有引力定律公式大全,每一项公式都有其具体的物理含义和数学表达式,对于物理学或天文学研究者或爱好者都有着极高的参考价值。
万有引力定律 完整版课件

所谓质点,即两物体的形状和大小对它们之间 的距离而言,影响很小,可以忽略不计.
⑵对于质量分布均匀的球体,r为两个球心 之间的距离.
m1
m2 r
对万有引力的理解
1.万有引力具有普遍性.它普遍存在于宇宙中任何有质
量的物体之间,是物质之间的四大基本相互作用之一.
2Hale Waihona Puke 万有引力具有相互性. 两物体间的引力,是一对作
万有引力定律
★1.内容:
自然界中任何两个物体都相互吸引,引力的方向 在它们的连线上,引力的大小与物体的质量 和 的乘积成正比,与它们之间距离的二次方成反比.
★2.方向:在两物体的连线上
★3.表达式:
F G m1m2 r2
F=G
m1m2 r2
两物体的距离r指“哪两部分距离”?
★4.r的具体含义:
⑴对于可以看做质点的物体,r为两个质点 之间的距离.
用力和反作用力,符合牛顿第三定律.
3.万有引力具有独立性.两物体间的引力,只与它们的
质量及距离有关,不管它们之间是否还有其它作用力.
4.万有引力具有宏观性.只有质量巨大的天体间,万有引
力的存在才有宏观物理意义.
引力常量
G 是比例系数,叫做引力常量,适用于任何两个物体.
单位:
大小:
100多年后,由英国物理 学家卡文迪许测出
卡文迪许
1.实验结果: G = 6.67×10-11N·m2/kg2
2.卡文迪许扭秤实验的意义:
(1)证明了万有引力的存在,使万有引力定律进 入了真正实用的时代;
(2)开创了微小量测量的先河,使科学放大思想 得到了推广.
思考:我们人与人之间也应该存在万
有引力,可是为什么我们感受不到呢?
万有引力定律高中物理

有关高中物理“万有引力定律”的概念
有关高中物理“万有引力定律”的概念如下:
万有引力定律是描述物体之间相互引力的定律,由艾萨克·牛顿在1687年提出。
它表明任何两个物体之间都存在引力,且这个引力与它们质量的乘积成正比,与它们距离的平方成反比。
在高中物理中,万有引力定律通常表示为:F = G * (m1 * m2) / r^2,其中F 是两个物体之间的引力,m1 和m2 分别是两个物体的质量,r 是它们之间的距离,G 是引力常量,其值约为6.67430 × 10^-11 m^3 kg^-1 s^-2。
万有引力定律在天文学中有着重要的应用,它解释了行星轨道运动和天体运动的规律。
此外,万有引力定律也是研究宇宙学和天体物理学等领域的基础。
在高中物理中,学生通常会学习如何使用万有引力定律计算两个物体之间的引力,以及如何使用它来解释一些天体运动的规律。
同时,学生也会学习到万有引力定律的一些特殊情况,例如在地球表面的物体所受的重力可以看作是地球对该物体的万有引力。
总之,万有引力定律是高中物理中的一个重要概念,它描述了物体之间的引力规律,为我们理解天体运动和宇宙结构提供了基础。
万有引力定律(高中物理教学课件)

提示:割补法
答案:
G
Mm (2R)2
F剩
G
M'm (1.5R)2来自M M'
4 R3
3
4(R
32
M
)3
'
1 8
M
F剩
7 36
G
Mm R2
五.重力与万有引力的关系
1.若不考虑地球自转:
G
Mm R2
mg
2.实际上万有引力的一部分提供物体做圆
周运动的向心力,重力是万有引力的另一
个分力,故:mg
2.大小:
vF= 2mTrv力与的rT2r32太的质 k作阳量F用的mTm太是引2 4成T力相2r2k正3r互也比的应。F,与常太行4量阳星2k 没行沿rmG2 与有星着太关间二FF阳系引者、。力的mrrm太22行太的连星阳方线都与向。FF=Gmmr太r2太m2m
一.行星与太阳间的引力
F=G m太m ,方向在两者连线上。 r2
三.万有引力定律
1.内容:自然界中任何两个物体都相互吸引,引
力的方向在它们的连线上,引力的大小与物体的
质量m1和m2的乘积成正比、与它们之间距离r的
二次方成反比,即:F=G
m1m2 r2
它于1687年发表在牛顿的传世之作《自然哲学 的数学原理》中。
三.万有引力定律
2.对万有引力的理解
①普遍性:任何两个物体之间都存在引力(大到 天体小到微观粒子),万有引力是自然界中物体 间的基本相互作用之一。 ②相互性:万有引力具有相互性,符合牛顿第三 定律。 ③宏观性:只有在质量巨大的天体间或天体与物 体间它的存在才有宏观的物理意义。在微观世界 中,万有引力可以忽略不计。地球表面物体受力 时,也不考虑万有引力。
万有引力定律

万有引力定律编辑本词条由“科普中国”百科科学词条编写与应用工作项目审核。
[1] 万有引力定律是艾萨克·牛顿在1687年于《自然哲学的数学原理》上发表的。
牛顿的普适的万有引力定律表示如下:任意两个质点有通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
中文名万有引力定律外文名Law of universal gravitation 表达式F=(G×M₁×M₂)/R²提出者艾萨克·牛顿提出时间1687年应用学科数学、自然哲学、物理学、自然学等适用领域范围物理学、自然学等推理依据编辑伽利略在1632年实际上已经提出离心力和向心力的初步想法。
布里阿德在1645年提出了引力平方比关系的思想.牛顿在1665~1666年的手稿中,用自己的方式证明了离心力定律,但向心力这个词可能首先出现在《论运动》的第一个手稿中。
一般人认为离心力定律是惠更斯在1673年发表的《摆钟》一书中提出来的。
根据1684年8月~10月的《论回转物体的运动》一文手稿中,牛顿很可能在这个手稿中第一次提出向心力及其定义。
万有引力与相作用的物体的质量乘积成正比,是发现引力平方反比定律过渡到发现万有引力定律的必要阶段.·牛顿从1665年至1685年,花了整整20年的时间,才沿着离心力—向心力—重力—万有引力概念的演化顺序,终于提出“万有引力”这个概念和词汇。
·牛顿在《自然哲学的数学原理》第三卷中写道:“最后,如果由实验和天文学观测,普遍显示出地球周围的一切天体被地球重力所吸引,并且其重力与它们各自含有的物质之量成比例,则月球同样按照物质之量被地球重力所吸引。
另一方面,它显示出,我们的海洋被月球重力所吸引;并且一切行星相互被重力所吸引,彗星同样被太阳的重力所吸引。
由于这个规则,我们必须普遍承认,一切物体,不论是什么,都被赋与了相互的引力(gravitation)的原理。
万有引力知识点总结(必备3篇)

万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。
(完整版)万有引力定律-知识点

万有引力定律及其应用二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G221r m m ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G221r m m , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r +)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g , 所以m 2g=F 一F 向=G221r m m -m 2R ω自2因地球目转角速度很小G221r m m » m 2R ω自2,所以m 2g= G221r m m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221r m m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多. 四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.G2rmM =m224Tπr ,由此可得:M=2324GT r π;ρ=V M=334R M π=3223R GT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度专题:人造天体的运动基础知识一、卫星的绕行角速度、周期与高度的关系(1)由()()22mMv Gmr h r h =++,得v =h ↑,v ↓ (2)由G()2h r mM+=m ω2(r+h ),得ω=()3h r GM+,∴当h ↑,ω↓(3)由G ()2h r mM+()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 二、三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2 G的含义: 它在数值上等于两个质量都是 1kg的物体相距1m时的相互作用力 3 意义: (1)验证了万有引力定律是正确的; (2)使得万有引力定律有了真正的 实际意义。
引力常量的测定
里地 卡定 比利 文律 较用 迪一 年 准扭 许百 , 确秤 (多 即 地装 年 在 测置 以 牛 出, *后 顿 了第 , 发 引一 英 现 力次 国 万 常在 )物 有 量实 ,理 引 验 巧学 力 室 妙家 1731 1810 1789
.
思考:假设月球停止绕地球公转,月球
做什么运动?为什么? 1.沿直线落向地球; 2.地球对月球的吸引力的吸引。
思考:假设月球绕地球公转的线速度减
小,月球做什么运动?为什么? 1.沿曲线落向地球,相当于平抛运动; 2.地球对月球的吸引力大于需要的向心力而 做向心运动。
本课小结 这节课,我们解决了两个问题: 1.地球与地面物体和月球的引力、太阳与行星 间的引力是否同一种力;使我们认识到地球与地 面物体和月球的引力、太阳与行星间的引力是统 一的并进行了月地检验。 2.任意两个物体之间是否都有这样的引力;使 我们认识到任意两个物体之间都有这样的引力, 在百年之后,卡文迪许在实验里进行了检验。 最终,我们认识了自然界中第一种基本相互作 用——万有引力。
3.万 有 引 力 定 律
月-地检验
月球轨道半径即月-地的距离r为地球半径 R的60倍,地球半径R=6.4×106m,月球的公转周 期T=27天,重力加速度g=9.8m/s2.
①月球受到地球的引力F1是与它同质量的物体在地面附 近受到地球引力F2 的几分乊一?
②月球的向心加速度a是与它同质量的物体在地面附 近重力加速度g的几分乊一?
11
一粒芝麻重的几千分之一!!!
2.已知地球的质量约为 6.0×1024kg,地球半径为 6m,请估算其中一位同 6.4×10 学和地球之间的万有引力又是 多大?
课堂小结
月—地检验,万有引力定律,
万有引力常量
猜想——验证——得出结论
课堂练习
1、要使两物体间万有引力减小到原来的1/4,可采用 的方法是( ) A.使两物体的质量各减少一半,距离保持不变 B.使两物体间距离增至原来的2倍,质量不变 C.使其中一个物体质量减为原来的1/4,距离不变 D.使两物体质量及它们之间的距离都减为原来的1/4
万有引力定律
万有引力定律的内容是:
式中各物理量的含义及单位:
万有引力定律的适用条件是什么? 你认为万有引力定律的发现有何深远意义?
卡文迪许(法国) 1731-1810
能称出地球质量的人
金属丝
平面镜
光源扭 秤 装 置Fra bibliotekT形架
刻度尺
扭秤实验的测量结果
G 6.6710 N m / kg
2、关于万有引力常量G,以下说法正确的是( ) A.在国际单位制中,G的单位是N.m2/kg B.在国际单位制中,G的数值等于两个质量各1kg的 物体,相距1m时的相互吸引力 C.在不同星球上,G的数值不一样 D.在不同的单位制中,G的数值不一样
1 大小:
G 6.6710
11
N m / kg
2
11
2
万有引力常量
尝试说明卡文迪许在测 G值时巧妙在哪里?
引力常量的测定有何实际意义?
联系以往所学知识,测微小量的实验?
对称和谐美
m1m2 F G 2 r
简洁含蓄美 多样的统一美
实践探究
1. 粗略的计算一下两个质量为50kg,相距0.5m的人之 间的引力?
m1 m2 F G 2 r 50 50 6.67 10 N 2 0.5 7 6.67 10 N
地球对月球的力,地球对地面物体 的力真是同一种力。
牛顿在思考使月球做轨道运动的向心力与地面物 体所受的重力是否是同一性质的力时,曾提出过这样 一个理想实验:设想有一个小月球非常接近地球,以 至于几乎触及地球上最高的山顶,那么使这个小月球 保持轨道运动的向心力当然就应该等于它在山顶处所 受的重力.如果小月球突然停止做轨道运动,它就应 该同山顶处的物体一样以相同的速度下落.如果使这 个小月球保持轨道运动的向心力不是重力,那么它就 将在这两种力的共同作用下以更大的速度下落,这是 与我们的经验不符的.可见,重力和使这个小月球保 持轨道运动的向心力是同一性质的力. .