钻孔灌注桩反循环二次清孔工法
气举反循环在钻孔灌注桩二次清孔中的应用

朱 晓建
( 江 省地 质 矿 产 工 程 公 司 , 江 杭 州 浙 浙 31 0 0) 00
摘 要 : 孔 灌 注桩 沉渣 的 清 理 是控 制桩 身质 量 的 关键 , 钻 钻 孔 灌 注桩 气举 反循 环 清孔 工 艺 , 清孔 效 果远 好 于一般 清孔 其 工 艺。本 文介 绍 气举 反 循 环 清 孔 工 艺的 运 用 , 比较 对 工 质量 并 和 经 济 效益 带 来 的 影响 。 关键 词 : 孔 灌 注 桩 气 举反 循 环 二 次 清 孔 钻
一
、
前 言
般 钻 孔 灌 注 桩 多 采 用 回旋 钻 机 成 孔 。钻 机 就 位 后 开 始 钻 孑 , 孔 时 电 机 带 动 钻 杆 、 杆 根 部 钻 头 旋 转 , 坏 土 层 结 L钻 钻 破 构 , 成 钻 渣 。 孔 应 采 用 泥浆 护 壁 措 施 , 形 钻 防止 塌 孔 。 浆 通 过 泥 泥浆 泵被 吸入 钻 杆 . 钻杆 底部 排 出 , 动 钻 渣 向上 从 桩 孔 中 从 带 溢 出 . 排 入 沉 淀 池 。 渣厚 度 的控 制 是 钻 孔 灌 注桩 成 孔 质 量 再 沉 的 重 要指 标 之 一 , 质 量将 直接 影 响 灌 注 桩 的 承 载力 , 其 对 其 尤 以桩 端 阻 力 为 主 的 端 承 桩影 响更 甚 。 钻 孔 灌 注 桩 需 要 两 次 清 孑 , 孔 施 工 至设 计 标 高 时 , 进 L钻 即 行第 一次 清 孔 。第 一 次 清 孔 时 , 一般 采用 循 环 换 浆 法 , 钻 头 让 在 原 位继 续 转 动 , 复 用 泥 浆循 环 清 孔 。孔 中 土颗 粒 、 石 屑 反 岩 等钻 渣 随浆 液 溢 出 孔 外 , 以达 到 第 一 次清 理 沉 渣 目的 。 渣 完 清 成 后 , 钻 并 下放 钢 筋 笼 , 浇 筑 砼 前 再 进 行 最 重 要 的第 二 次 提 在 清孔。 第 一 次 清 孔 属 于 正 循 环 清 孔 方 法 ,本 文 主 要 探 讨 第 二 次 清孔 工 艺— — 气 举 反 循 环 清 孔 工 艺 , 以及 其 在 华 成 大 厦 桩 基 工程 中 的应 用 , 工 艺 取得 了成 功 经 验 。 提 高 钻 孑 灌 注 桩 工 此 对 L
基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法(2)

基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法一、前言超长超大钻孔灌注桩是一种常用的地基处理方法,能够承受较大的垂直和水平荷载,并在一定程度上改善土壤的强度和稳定性。
基于气举反循环的二次清孔施工工法是对传统施工方法的改进和创新,通过利用气举反循环原理,提高了施工效率和质量,同时减少了工程成本。
二、工法特点基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法具有以下特点:1. 施工过程简单高效,不需要复杂的设备和工序。
2. 清孔工艺稳定可靠,能够确保孔壁的稳固性和垂直度。
3. 施工速度快,可以实现连续施工,不受季节和地形条件的限制。
4. 施工质量高,能够达到设计要求,并能够对地基进行有效加固和改良。
5. 施工成本低,相比传统施工方法,节约了大量的时间和人力资源。
三、适应范围基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法适用于以下范围:1. 大型建筑、桥梁、港口码头等深基坑的地基处理。
2. 高速公路、铁路、隧道工程中的桩基处理。
3. 含水层较深的地区,通过气举反循环可以有效清除孔壁水泥浆,提高施工质量。
4. 复杂地质条件下的地基处理,可以应对各种地质问题。
四、工艺原理基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法是通过利用气举反循环原理来清除孔壁水泥浆和碎石淤积物,改善孔壁稳定性和垂直度,并保证桩混凝土灌注质量。
具体工艺原理如下:1. 钻孔阶段:通过钻机进行地下钻孔,同时向孔内注入压缩空气,形成气举效应,清除孔壁水泥浆和碎石淤积物。
2. 清孔阶段:完成钻孔后,保持注入的压缩空气,再次进行清孔,清除残留的水泥浆和碎石淤积物,确保孔壁的清洁。
3. 灌注阶段:在清孔完成后,进行预埋钢筋和灌注桩混凝土。
五、施工工艺基于气举反循环的超长超大钻孔灌注桩二次清孔施工工法的具体施工过程如下:1. 地面准备:准备工作面,设置施工围挡,并对施工区域进行清理和平整。
2. 钻孔准备:安装钻机和钻具,根据设计要求进行定位和设置孔径。
钻孔灌注桩反循环二次清孔工法讲解

钻孔灌注桩反循环二次清孔工法10钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层114.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
气举反循环清孔工艺

钻孔灌注桩气举反循环清孔工艺[摘要]:钻孔灌注桩因机具设备简便、施工方便,成孔质量可靠,施工费用低等原因,被广泛地应用于高层建筑、公路桥梁等工程的基础工程。
钻孔灌注桩沉渣的清理是控制桩身质量的关键,传统的钻孔灌注桩施工为正循环钻进、正或反循环清孔成孔工艺,而近几年在一带出现钻孔灌注桩气举反循环清孔工艺,其清孔效果远好于一般清孔工艺。
本文就此介绍气举反循环清孔工艺的运用,并比较对工程质量以及经济效益带来的影响。
[关键词]:钻孔灌注桩气举反循环二次清孔一、钻孔灌注桩工艺:传统的钻孔灌注桩多采用回转钻成孔灌注桩、潜水电钻成孔灌注桩。
成孔前先安装钢板护筒,以作保护孔口、定位导向、维护泥浆面、防止塌方用。
钻机就位后开始钻孔,钻孔时电机带动导管、导管根部钻头旋转,破坏土层结构,形成钻渣。
钻孔应采用泥浆护壁措施,防止塌孔。
现场须设置泥浆池,泥浆通过泥浆泵吸入导管,从导管底部排出,带动钻渣向上从桩孔中溢出,再排入沉淀池。
钻孔施工至设计标高时,立即进行第一次清孔。
第一次清孔时,一般采用循环换浆法,反复用泥浆循环清孔,清空过程中必须及时补充泥浆,并保持浆面稳定。
孔中土颗粒、岩石屑等钻渣随浆液溢出孔外,以达到第一次清理沉渣目的。
清渣完成后,安装钢筋笼,在浇筑砼前须进行第二次清孔。
第一次清孔属于正循环清孔方法,本文主要探讨第二次清孔工艺。
二、正、反循环清孔工艺介绍:1、正循环清孔工艺第二次正循环清孔采用循环灌浆法,让钻头在原位继续转动,通过导管注入清水,控制泥浆密度在10KN/m3以下;对于孔壁土层性能差、不稳定的则注入泥浆(泥浆密度11.5~12.5KN/M3)。
注入冲洗液携带钻渣后进入钻杆与孔壁形成的环闭空间上返,排出桩孔以外,以达到沉渣清理效果。
简单的说,正循化清孔的定义就是沉渣从导管外溢出的清渣工艺。
2、反循环清孔工艺从前文所述、顾名思义,反循环清孔的定义就是沉渣从导管排出的清渣工艺。
反循环清孔工艺有多种,一般有泵吸法、空气吸泥机法等种。
65钻孔灌注桩反循环二次清孔工法word资料10页

钻孔灌注桩反循环二次清孔工法GGG(鲁)C1065-2019刘深远杨荣泉闫宗山万雨帆张光桥(山东省路桥集团有限公司山东省公路桥梁建设有限公司)1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
钻孔灌注桩桩基正反循环问题及清孔问题

桩基正反循环问题及清孔问题
正循环回转钻孔原理:用泥浆以高压通过钻机的空心钻杆,从钻杆底部射出,底部的钻头(钻锥)在回转时将土层搅松成钻渣,被泥浆浮悬,随着泥浆上升而溢出流到井外泥浆溜槽,经过沉淀池沉淀净化,泥浆再循环使用。
井孔壁依靠水头和泥浆保护.
反循环回转钻孔原理:泥浆由钻杆外流(注)入井孔,用真空泵或其他方法(如空气吸泥机等)将钻渣从钻杆中吸出。
由于钻杆内径较井孔直径小得多,故钻杆内泥水上升速度较正循环快很多,就是清水也可把钻渣带上钻杆顶端,流到泥浆沉淀池,净化后泥浆可循环使用。
正循环钻成孔施工法是由钻机回转装置带动钻杆和钻头回转切削破碎岩土,钻进时用泥浆护壁、排渣;泥浆由泥浆泵输进钻杆内腔后,经钻头的出浆口射出、带动钻渣沿钻杆与孔壁之间的环状空间上升到孔口溢进沉淀池后返回泥浆池中净化、再供使用。
这样,泥浆在泥浆泵、钻杆、钻孔和泥浆池之间反复循环运行。
反循环钻进时,冲洗液是从钻杆与孔壁间的环状空间中流入孔底,并携带钻渣,经由钻杆内腔返回地面。
由于钻杆内腔断面积比钻杆与孔壁间的环状断面积小得多,故冲洗液在钻杆内腔能获得较大的上返速度。
而正循环钻进时,泥浆运行方向是从泥浆泵输进钻杆内腔,再带动钻渣沿钻杆与孔壁间的环状空间上升到泥浆池的,故冲洗液的上返速度低。
这些都是从一篇论文上看到的,感觉反循环不是这样的,他的意思是泥浆从钻杆内排出,实际当中应该是吸浆泵吸出的吧,真搞晕了!!
第一次清孔是清出孔底的沉渣,那孔内的泥浆要全部清除吗不然怎么放钢筋笼,如何清孔的,听说是稍提起钻头反循环清孔,那泥浆不还在里面吗清孔孔内德泥浆要全部清除吗?。
钻孔灌注桩反循环二次清孔工法

钻孔灌注桩反循环二次清孔工法编制单位:山东省路桥集团有限公司编制时间:2008年7月钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减.根据以往工程对地下桩超声波检测结果分析.在桩基混凝土灌注正常情况下.桩基混凝土边缘部位有缺陷.多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成.即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚.在灌注桩时.沉淀物随着混凝土上升.因有钢筋笼或井壁阻隔.使沉淀物停滞在局部范围内.并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中.通常明确要求沉渣厚度小于30cm.比现行规范要求高许多.且工程地质条件复杂.主要穿越地层为分砂层、亚砂层、粘土层.其间交替夹杂有胶结砾岩薄层.因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼.对于百米深桩来说通常需要12个小时以上.在这个过程中.因为泥浆静置时间过长.会产生一部分的沉淀.钢筋笼下放过程中也会从井壁上挂落部分泥块.这些就构成沉渣.可能会超过设计要求.如果不采取措施就灌注.容易引发各种质量事故。
因此.需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看.如果正循环清孔情况比较好的话.一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内.由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少.材料用量少.制作简单.方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高.水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后.应进行清孔。
清孔的主要目的是清除孔底沉渣.而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
桩基施工二次清孔方案

桩基施工二次清孔方案考虑到主墩钻孔灌注桩桩长深、桩径大,清孔质量要求高以及工期紧等因素。
主桥桩基清孔采用气举反循环清孔,下放钢筋笼后进行二次清孔,以保证成桩质量。
气举反循环冲携带钻渣后迅速进入导管,可以获得比正循环高出数倍的上返速度,由于返浆速度快,清渣效果较好,沉渣层较薄,清渣速度快,缩短工期,降低施工成本。
1 清孔原理空气压缩机将压缩空气输进风管,空气经风管底部排出和泥浆形成气液混合物。
由于管内、外液体的密度差,孔内泥浆、空气、沉渣的三相流沿导管向上运行,被排出孔口,通过过滤网进入沉淀池。
过滤出泥浆中的沉渣后,过滤后的泥浆又重新进入孔内,反复循环直至孔底沉渣厚度达到规范要求。
2 机械设备表4.10-1 气举反循环清孔主要设备3 施工工艺清孔前准备工作:测量并记录孔深,和终孔深度相对比,计算沉渣厚度;检查导管、塑料风压管、空压机、水泵等各种设备是否完好。
工艺流程:①钢筋笼下放完毕后,下入灌注导管至孔底10cm处。
②将风管从灌注导管内下放至导管底口20cm处。
③并将风压管的另一端从中引出与空压机组连接。
④将接渣篮放在出渣口下,并保证孔内泥浆高度,以防塌孔。
⑤开动空压机清孔,风量、风压由小到大,正常风量为13m3/min,风压为0.4~1.0MPa。
⑥测量孔内沉渣厚度(<15cm)和泥浆比重(1.03g/cm3~1.1g/cm3),确认达到质量标准后,先关空压机,卸下导管帽,拔出风压管,进行正常灌注。
4 二次清孔需要注意的问题(1)灌注导管要密封不漏气。
将导管下放至距孔底10cm处清孔效果最佳,这样能保证沉渣顺利的进入导管。
当沉渣过多时(≥1.0米)可以先拆除一节导管,确保导管口在沉渣面以上10cm。
当沉渣减少再将导管长度按孔深配置。
上下活动导管,可以提高清孔效率。
(2)塑料风管不能插入过深,也不宜插入过浅。
如果风管超过导管口,压缩空气会在导管口外冒出不会形成反循环;如果插入过浅对孔底的沉渣扰动较小,清孔效果不好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻孔灌注桩反循环二次清孔工法钻孔灌注桩反循环二次清孔工法1.前言钻孔灌注桩因孔底沉渣过厚往往会导致承载力折减,根据以往工程对地下桩超声波检测结果分析,在桩基混凝土灌注正常情况下,桩基混凝土边缘部位有缺陷,多数是混凝土内局部有夹块造成的。
经分析认为:夹块由两部分组成,即泥浆中的砂砾沉淀物以及钢筋笼下放过程从井壁上刮落的粘泥块过厚,在灌注桩时,沉淀物随着混凝土上升,因有钢筋笼或井壁阻隔,使沉淀物停滞在局部范围内,并最终造成成桩中局部缺陷。
在黄河中下游的钻孔灌注桩的设计文件中,通常明确要求沉渣厚度小于30cm,比现行规范要求高许多,且工程地质条件复杂,主要穿越地层为分砂层、亚砂层、粘土层,其间交替夹杂有胶结砾岩薄层,因此沉渣厚度控制是成孔质量控制的难点和重点。
因为从提钻到灌注砼,对于百米深桩来说通常需要12个小时以上,在这个过程中,因为泥浆静置时间过长,会产生一部分的沉淀,钢筋笼下放过程中也会从井壁上挂落部分泥块,这些就构成沉渣,可能会超过设计要求,如果不采取措施就灌注,容易引发各种质量事故。
因此,需要在灌注前二次清孔。
2.工法特点2.1清孔彻底:能满足孔底沉淀厚度≤30cm的要求;2.2清孔速度快:从黄河三桥的实践情况看,如果正循环清孔情况比较好的话,一般采用气举反循环清孔50分钟左右就可以达到要求;2.3转换迅速:可以在10分钟内,由清孔状态转换到混凝土灌注状态;2.4经济便捷:本工法需用的机械设备少,材料用量少,制作简单,方便灵活;3.适用范围3.1、本工法适用范围:孔深150m 以内的孔径、对沉渣厚度要求较高,水上(陆地)钻孔灌注桩的施工。
3.2、适用地层:粘土层、砂层、砾石层、卵石层、岩层等地层4.施工工艺4.1清孔的意义钻孔深度达到设计要求并符合终孔条件后,应进行清孔。
清孔的主要目的是清除孔底沉渣,而孔底沉渣则是影响灌注桩承载能力的主要因素之一。
清孔则是利用泥浆在流动时所具有的动能冲击桩孔底部的沉渣,使沉渣中的岩粒、砂粒等处于悬浮状态,再利用泥浆胶体的粘结力使悬浮着的沉渣随着泥浆的循环流动被带出桩孔,最终将桩孔内的沉渣清干净,这就是泥浆的排渣和清孔作用。
钻孔灌注桩灌注前,由于从提钻到导管陈放完毕这个过程很长,对于钻孔灌注桩来说,必然会使第一次清孔后的沉渣增加,如果不采取措施,沉渣过多,容易引起灌注事故,直接影响桩基的承载力,危及结构安全。
因此,必须高度重视灌注前的二次清孔工作。
4.2清孔方式选择的理论依据沉淀物主要由泥块和沉淀砂砾组成。
泥块主要是由钢筋笼下放刮落的井壁泥皮造成的;而砂砾沉淀物主要由泥浆中的悬浮颗粒造成的。
确定沉渣颗粒在泥浆处于悬浮状态的临界沉降速度v0的思路是:假定颗粒为球形,其重力为G,颗粒在液体中的浮力为P,球形颗粒在液体中的沉降阻力为R。
当G>P时,岩屑下降,速度逐渐增大,R值也随之增大。
当R值达到足以使作用在岩屑上的三种力保持平衡时, 即R=G-P时,岩屑将以恒速v0下降。
通过推导可得出沉降速度(即雷廷格尔公式)为式中:δ--球形颗粒的直径,m;ρs—颗粒的密度,kg/m3;ρ—泥浆的密度,kg/m3;k—颗粒的形状系数,圆形颗粒k为4~4.5,不规则形状的颗粒k为2.5~4。
泥质孔的颗粒的最大尺寸与钻具和地质条件有关。
根据最大颗粒直径可求出v0,从而求得泥浆流量。
假设球形颗粒的直径δ=0.01m;颗粒的密度ρs=2.3×103kg/m3;泥浆的密度ρ=1.1×103kg/m3;颗粒形状系数k=4;求的v0=0.29m/s。
4. 3传统正循环清孔法的弊端正循环清孔是泥浆由钻杆或导管注入孔底,带动沉淀物上浮,在重力作用下泥浆中砂砾等沉淀物有下沉的趋势,如果泥浆泵流量偏小,将出现大颗粒砂砾悬浮在一定高度以下;如果想把大的沉渣颗粒排出孔外,一方面是加大泥浆的循环速度,另一方面是加大泥浆的密度,但是,受现有泥浆泵排量的限制,泥浆的循环速度不可能提高很多,加大泥浆比重的方法也不可行。
另外因为井壁处泥浆比井中心部位流速慢,造成泥浆含砂率不均匀,最终不能将泥浆中大颗粒完全置换到井外去,因此本工法不采用这种方法。
如果用正循环清孔,φ2.0m的孔的断面积为3.14m2,常用6PNL 砂石泵额定排量为280m3/h,假定采用2台并联送水,泥浆携带钻渣后进入钻杆与孔壁形成的环闭空间后上返速度是很低的,满排量时浆液的上返速度仅达到0.05m/s。
根据上述公式可见正循环钻进只有依靠高浓度高密度泥浆来悬浮钻渣,最终端沉渣厚度不能保证符合设计要求,从而容易引发质量隐患。
4.4反循环清孔4.4.1反循环清孔通常采用两种方式,一种是泵吸反循环,另一种是气举反循环。
泵吸反循环是通过砂石泵的抽吸作用,在钻杆内腔形成负压,在孔内液柱和大气压的作用下,孔壁与环状空间的泥浆流向孔底,将沉渣带进钻杆(导管)内腔,再经过砂石泵排至地面沉淀池内;沉淀钻渣后,泥浆流向孔内,形成反循环。
采用泵吸反循环法进行二次清孔,目前常用8BS砂石泵额定排量为400m3/h,假定采用φ0.3m的导管进行清孔,满负荷时泥浆上返流速可以达到 1.58m/s ,可以看出该速度远大于钻渣上返所需流速0.29m/s 的要求,因此进入导管内的钻渣能够被有效的抽吸上来。
由于现有的离心泵的泵压较小,无法满足直径2m ,深达120多米的钻孔灌注桩清孔的需要,因此,本工法推荐对于直径1.8m,设计深度90m 以下的桩,采用泵吸反循环法进行二次清孔;对于直径2.0m ,设计深度120m 的桩采用气举反循环法进行二次清孔。
4.4.2 气举反循环4.4.2.1气举反循环的原理气举反循环的原理是:压缩空气经风管向导管(排渣管)内送风,风管内的空气与泥浆混合物密度(约为0.6)小于导管(排渣管)内泥浆密度(约为1.1),形成负压区,在大气压的作用下,汽水混合物排出管外;孔底泥浆及沉淀物的混合物沿着导管上升,补充到负压区;为防止孔中泥浆水头过小,及时用泥浆泵将优质(含砂率低)泥浆补充到孔内,并形成循环系统。
4.4.2.2气举反循环的设备气举反循环的设备非常简单,主要的构造见图2所示。
除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h 空压机就可完成整套施工工艺。
图2给出了两种形式的气举反循环设备。
形式1是直接利用导管作为排渣管,优点是操作简便、工序转换速度快,现场只要沉放风管即可,缺点是需要的风量较大,需要大型的空压机。
形式2是在导管内增加了一根金属排渣管,其缺点是现场操作量比形式1复杂,其优点是现场需要一个较小的空压机就可实现。
由理论计算和工程实践,以120m钻孔灌注桩为例,在此给出气举反循环系统的几个参考数据:风管的入水深度在30~40m,要求制作的风管长度为36m,分为3节,每节12m,中间用法兰盘连接;风压(mpa)可按公式H/100+0.05计算,H为风管口入水深度(m),考虑到风管接头密实性等因素,需要0.6~0.8mpa风压;风量可以根据《桥涵》(上册)(人民交通出版社1999.11)空气吸泥机一章的有关公式计算;5.质量标准及质量控制清孔完成后,孔底沉渣应严格控制在30cm以内,泥浆指标合格(泥浆相对密度:1.03~1.10;粘度:17~20s;含沙率:<2﹪),并应立即进行检查验收。
检查验收合格后,应立即灌注水下混凝土,以免渣土重新沉淀,造成沉渣过厚而影响桩的承载力。
因为泵吸反循环比较简单,运用较多,在此只提出气举反循环的操作注意事项:①出浆管底口距离井口深度不宜小于30m,以形成足够的备压,但也不能小于5m,否则不能形成有效的反循环体系;②出浆管及高压进气管的法兰盘连接紧密,确保不漏气;③气举反循环过程中,保证有足够的优质泥浆补充到井孔内,并且要在开启反循环前先送浆,时刻观察护筒内泥浆面的变化情况,防止泥浆补充不足,水头下降过大造成塌孔;④为防止孔内沉淀物堵塞出浆管,在气举反循环前,要把导管提离孔底一段距离,待反循环形成后,视出浆清孔逐步下沉;⑤由于桩孔较大,要左、右移动导管及前后移动平台,使清孔比较彻底。
6.机具设备6.1泵吸反循环清孔设备:排渣软管、8BS砂石泵。
6.2气举反循环清孔设备:除了风管、排渣金属管、排渣软管、法兰盘接头外,现场只需要一台9~20m3/h空压机就可完成整套施工工艺。
7.安全措施7.1、起重安全:本工法用到的主要的施工机械是汽车吊,因此要注意起重安全,严格执行起重操作规程,不能因为起重点重量不大而掉以轻心。
7.2、用电安全:、严格用电管理,施工现场的一切电源电路的安装和拆除,必须由持证电工操作,电器必须严格接地、接零和漏电保护器,场地电缆应架空,严禁拖地和埋压土中。
8.环保措施1)施工机械注意保养,维修时防止油料洒落污染河水;2)废弃砼,清洗罐车、导管的废水必须集中处理。
3)经常对施工机械进行保养,尽量减少噪音污染。
4)施工过程中的废弃物、边角料、包装袋等及时收集、清理、集中处理。
9.效益分析9.1反循环法二次清孔技术给我们带来的第一个效益就是质量安全:灌注混凝土是保证成桩质量的关键工序,“断桩”、“夹泥”、“堵管”等常见的灌注质量事故都与孔内混凝土上部压力过大有一定关系。
正循环为了有效的排渣,选用的泥浆(泥浆)密度高、浓度大,势必造成孔内压力大,这样混凝土人导管排出的阻力增大,浇注困难;另外正循环钻孔过程中因泥浆浓度高、密度大所形成的孔底沉渣,很难从孔中完全清除,所以其中一部分在浇注过程中卷入泥浆中更加大混凝土抬升的阻力,这种阻力在灌注临近结束时更加明显(可以观察此时孔内排出的泥浆密度、浓度明显加大,流淌缓慢,偶尔有大块的絮状泥块出现),若处理不当,很容易使临近桩顶10m左右混凝土质量差、强度低,而该部分又是桩受力的关键位置。
反循环二次清孔技术的运用使钻渣清理较为彻底,因此灌注较为顺畅,桩顶沉渣少,桩身混凝土质量明显提高。
9.2 反循环法二次清孔技术大大缩短了百米深桩的清孔时间,提高了成孔效率。
通常,对于百米深桩而言,采用正循环法进行清孔,要达到沉渣厚度小于30cm的要求,大约需要10个小时的时间,而采用反循环法进行二次清孔,一般只要1个小时就可以达到浇注状态。
9.3 经济效益明显。
对于黄河中下游这种地质条件而言,如采用反循环法成孔,一个设计钻深120m,直径2.0m的钻孔灌注桩的成孔时间大约为5天;采用正循环法成孔,反循环清孔的工艺,成孔时间在7天左右;但是反循环施工工艺的设备功率大约是正循环工艺设备的2倍,这样算下来,每一个孔大约可以节约30%的费用。
综上所述,反循环本身所具有的特点,给提高成孔效率、成桩质量和综合经济效益等方面带来一系列的好处。
10.工程实例从施工经济性、安全性出发,济南黄河三桥项目对全部的钻孔灌注桩工程采用正循环钻孔,反循环清孔的施工方案,成功的把沉渣厚度控制在设计要求以内,取得了满意的效果。