表上作业法_图文.ppt.ppt
合集下载
4-02运输问题表上作业法

用最小元素法确定例3-2初始调运方案
调 销地
运 量
B1
B2
B3
产量
产地
100 90
70 100 100 200 100
A1
X11
X12
X13
80 150 65 100 75 250 100
A2
X21
X22
X23
100
150
200
销量
100 450
得到初始调运方案为: x11=100,x13=100,x22=150,x23=100
量为该闭回路的顶点;其中 i1 , i2 ,, is 互不
相同, j1 , j2 ,, js 互不相同。
例 设m=3,n=4,决策变量xij表示从产地Ai 到销地Bj的调运量,列表如下,给出闭回路
{x11, x13 , x33 , x34 , x24 , x21} 在表中的表示法——
用折线连接起来的顶点变量。
最小元素法实施步骤口诀
《运价表》上找最小,《平衡表》上定产销; 满足销量划去“列”,修改“行产”要记
牢; (满足产量划去“行”,修改“列销”要记 牢) 划去列(行)对《运价》, 修改“行产(列销)”在《产销》; 余表再来找最小,方案很快就找到。
用西北角法确定例3-2初始调运方案
调 销地
运 量
B1
(3-6)
位势法计算非基变量xij检验数的公式
σij=cij-(ui+vj)
(3-8)
思考:试解释位势变量的含义(提示:写出运输问 题的对偶问题)
四、方案调整
当至少有一个非基变量的检验数是负值时, 说明作业表上当前的调运方案不是最优的,应 进行调整。
若检验数σij小于零,则首先在作业表上以xij 为起始变量作出闭回路,并求出调整量ε:
物流 表上作业法与图上作业法

1
A13 5
(3)
(1)
1
4
B1
2
(1)
4
B2
3
该是收点数+发点数-1。图上作 1 业法要求在流向图上的箭头数( 有调运量的边数)也应为收点数 +发点数-1。这一要求也可以等 (1) 2 价地表述为:在去线破圈后得到 的不成圈的交通图上,要求每边 都应该有流向。 (2) 3 A2
B3
3
• 因此,某一边无流向时,必须在这一边上添上调运量为0的虚流 向,和其它流向同样对待。按照这一要求,应在A3边上添上虚 流向。于是,再补上去掉的边,得下图:
工地800需求量t2503003504005001800工地800需求量t250300350400500180030025050300运费21001300240022005250420075083006500工地300200400100200250503002131工地300200400100300250502001工地30040020010030025050200运费31001300240022005250430075072006000课后作业销地产地657075销量50455560210无分支不闭合运输回路60303025有分支不闭合运输回路101518022070607590806513011010016017015010080b4b3b2b1a4a2a3a128018031711811816516525234953525520302020有某物资7t由发出点a1a2a3发出发量分别为331t运往收点b1b2b3b4收量分别为2311t收发量平衡交通图如下图问应如何调动才使tkm最小
• 四个销售地,每天的 需求量为:B1:3吨, B2:6吨,B3:5吨, B4:6吨。运价表如 图所示
表上作业法演示课件

把第 i 季度生产的柴油机数目看作第 i 个生产厂的产量;把第 j 季 度交货的柴油机数目看作第 j 个销售点的销量;设cij是第i季度生 产的第j季度交货的每台柴油机的实际成本,应该等于该季度单位 成本加上储存、维护等费用。可构造下列产销平衡问题:
运输问题的应用
Page 19
解: 设 xij为第 i 季度生产的第 j 季度交货的柴油机数目,那 么应满足:
运输问题的应用
Page 17
3. 生产与储存问题
例3.5 某厂按合同规定须于当年每个季度末分别提供10、15、25、 20台同一规格的柴油机。已知该厂各季度的生产能力及生产每台 柴油机的成本如右表。如果生产出来的柴油机当季不交货,每台 每积压一个季度需储存、维护等费用0.15万元。试求在完成合同 的情况下,使该厂全年生产总费用为最小的决策方案。
3
11
3 5 10
1
9
2
8
7
4
10
5
表上作业法
B1 B2 B3 B4
A1
5
A2
×
A3
×
2
5
1
3
Page 9
7 1 1
表上作业法
B1 B2 B3 B4
A1
×
5
A2
3
×
A3
×
×
2
5
3
Page 10
7 7 1
表上作业法
Page 11
B1 B2 B3 B4
A1
×
×
5
2
1
A2
3
×
×
1
1
A3
×
6
×
3
1
5
管理运筹学 第七章 运输问题之表上作业法

最优解的判断与调整
最优解的判断
比较目标函数值,如果当前基础可行解 的目标函数值最优,则该解为最优解。
VS
最优解的调整
如果当前基础可行解不是最优解,需要对 其进行调整。通过比较不同运输路线的运 输费用,对运输量进行优化分配,以降低 总运输费用。
最优解的验证与
要点一
最优解的验证
对求得的最优解进行检验,确保其满足所有约束条件且目 标函数值最优。
01
将智能优化算法(如遗传算法、模拟退火算法等)与表上作业
法相结合,以提高求解效率和精度。
发展混合算法
02
结合多种算法的优势,发展混合算法以处理更复杂的运输问题。
拓展应用范围
03
在保持简单易行的基础上,拓展表上作业法的应用范围,使其
能够处理更多类型的运筹问题。
THANKS FOR WATCHING
果达到最优解,则确定最优解;如果未达到最优解,则确定次优解。
表上作业法的应用范围
总结词
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。
详细描述
表上作业法适用于解决供销平衡的运输问题,即供应量和需求量相等的情况。在这种情况下,可以通过在运输表 格上填入数字来求解最小运输成本。此外,表上作业法还可以用于解决其他类型的线性规划问题,如资源分配问 题、生产计划问题等。
03 表上作业法的求解过程
初始基础可行解的求解
确定初始基础可行解
根据已知的发货地和收货地的供需关系,以及运输能力限制,通 过试算和调整,求得初始的基础可行解。
初始解的检验
检查初始解是否满足非负约束条件,即所有出发地到收货地的运输 量不能为负数。
初始解的调整
如果初始解不满足非负约束条件,需要对运输量进行调整,直到满 足所有约束条件。
北邮运筹学ch33 表上作业法.ppt

Transportation Simplex Method
2020/1/31
Page 12 of 36
【解】 求行差额 ui, i=1,2,3及列差额vj,j=1,2,3,4.计算公式为 ui= i行次小运价—i行最小运价 vj= j列次小运价—j例最小运价
销地
B1
B2
B3
B4
ai ui
产地
A1
5
×
这里λ34<0,说明这组基本可行解不是最优解。
只要求得的基变量是正确的且数目为m+n-1,则某个非基变量的闭 回路存在且唯一,因而检验数唯一。
北京邮电大学 运筹学
§3.3 表上作业法 Ch3 Transportation Problem
Transportation Simplex Method
2020/1/31
Page 5 of 36
产地 销地
A1
A2
A3 未满足
量
B1
B2
B3
可发量
20 8
15 4
25 7
642005
6 30
3
4 30 0
10
7
320 0
5
410 5
8
20 5
100
100
北京邮电大学 运筹学
§3.3 表上作业法 Ch3 Transportation Problem
810 5 10
C
25
115
20
15 15
8 C 215
15
510 10
15
20
15
前一种按最小元素法求得,总运费是Z1=10×8+5×2+15×1=105, 后一种方案考虑到C11与C21之间的差额是8-2=6,如果不先调运x21, 到后来就有可能x11≠0,这样会使总运费增加较大,从而先调运x21, 再是x22,其次是x12这时总运北费京邮Z电2=大1学0×运筹5学+15×2+5×1=85<Z1。
物流表上作业法与图上作业法(PPT63张)

• 有一配送中心P,其配送网络如图所示, A-D为各收货点,括号内的数字为各收 货点的需求量(吨),两点间连线上的 数字为两点间距离(公里)。运输货车 有最大载重量为2吨和4吨两种,试确定 配送路线。
0.8
D
0.6
C
1.7
B
P
A
0.7
• 假设有三个产地A1,A2,A3,产量分 别是200吨,160吨,100吨,四个销地 B1,B2,B3,B4其销售量分别是100吨、 140吨、160吨、60吨。其单价为下表。
B A
C
F
G
E
D
• 例题:在一个区域中,有四个生产厂A1, A2,A3,A4.也有四个用户B1,B2, B3,B4,需求量分别是100,120,160, 140吨。为了方便,在这个区域中将会 建设两个配送中心D1,D2,吞吐量分别 是360吨和260吨。
• 假设物流中心有某中商品的库存750单 位,安全库存300单位。每周的需求量 在120-180单位之间。
表上作业法
• 某公司下属四个储存某种物资的料库, 供应五个工地的需要。四个料库的供应 量和五个工地的需求量以及由各料库到 各工地调运单位物资的运价见下表。试 求运输费用最少的合理调运方案。 • •
× ×
100 ×
×
× ×
× ×
0
300
0
×
×
×
400
200
0
250
200
50
×
300
0
0
0
0
0
0
• 运费 =2×100+1×300+2×400+2×200+5× 250+4×200+7×50+8×300=6500
第一章物资调运方案优化的表上作业法
需求量 30 60 20 40 30 180
(2)
单位 销地 运价
产地
A B C 需求量
供需量数据表
Ⅰ
Ⅱ
Ⅲ
15 18 19 20 14 15 25 16 17 70 60 40
Ⅳ 供应量
13
50
17
40
22
60
30
答: 供不应求, 增加一个虚的产地D, 便可化为平衡运输问题.
答: 供不应求, 增加一个虚的产地D, 便可化为平衡运输问题.
例2: 如例1中, 假设产地B的供应量为60吨(其它情况不变), 则总供应量大于总需求量, 即该商品供过于求.
单位 销地
运价
Ⅰ
Ⅱ
Ⅲ
Ⅳ 供应量
产地
A
15 18 19 13
50
B
20 14 15 17
60
C
25 16 17 22
70
需求量
30
60
20
40
问题: 供过于求运输问题如何转化为平衡运输问题?
问题: 供过于求运输问题如何转化为平衡运输问题? 此时可增设一个虚的销地Ⅴ(即就地库存), 将供过于求的 运输问题转化为供求平衡运输问题. 具体情况如表1- 2所示:
0
0
15
需求量 30 60 35 40
165
练习1(P6练习1.1): 将下列某物资的不平衡运输问题(供 应量、需求量单位: 吨, 运价单位: 吨)化为平衡运输问题.
(1)
供需量数据表
单位 销地
运价
Ⅰ
Ⅱ
Ⅲ
Ⅳ 供应量
产地
A
15 18 19 13 50
B
20 14 15 17 40
管理运筹学运输问题之表上作业法课件
扩展适用范围
进一步扩展表上作业法的适用范 围,使其能够处理更多类型的运 输问题,包括带有特殊约束条件 的运输问题。
引入现代信息技术
利用现代信息技术,如大数据和 云计算等,提高表上作业法的计 算效率和精度,以满足实际应用 的需求。
THANKS
感谢您的观看
的优化配置。
应用实例二:农产品运输问题
总结词
多约束优化问题
详细描述
农产品运输问题需要考虑时间、保鲜度、运 输量等多种约束条件,要求在满足需求的前 提下,实现运输成本和损耗的最小化。表上 作业法可以通过多目标优化算法,综合考虑 各种约束条件,制定最优的农产品运输方案
。
应用实例三:城市物流配送问题
要点一
在迭代过程中,需要有一个判断准则来确定何时停止迭代并输出最优解。常用的判断准则包括最大最 小准则和最小最大准则。
迭代求解
根据判断准则,通过不断调整运输方案,使目标函数(通常是总运输费用最小)逐渐逼近最优解。在 每次迭代中,需要检查运输方案的可行性,并更新基可行解。
终止阶段:确定最优解并输出结果
确定最优解
03
表上作业法原理
表上作业法的定义与步骤
在此添加您的文本17字
定义:表上作业法是一种求解运输问题的线性规划方法, 通过在运输表上逐行计算和调整,最终找到最优解。
在此添加您的文本16字
步骤
在此添加您的文本16字
1. 建立初始运输方案;
在此添加您的文本16字
2. 检查运输方案的可行性;
在此添加您的文本16字
确定单位运输成本
根据运输距离、运输方式等因素确定单位运输成本。
建立数学模型
根据供求关系、运输能力限制等因素建立线性规划模型。
运输问题模型和表上作业法步骤 PPT课件
s.t. x11 x12 x13 x14
14
供 应
x21 x 22 x 23 x24
27 地
约
x 31 x 32 x 33 x 34 19 束
x11
x21
x31
x12
x22
x32
x13
x23
x33
x14
x24
x34
22 需
13 求
12
地 约
13 束
x11 x12 x13 x14 x 21 x 22 x 23 x 24 x31 x32 x33 x34
表2—2
销地
产地
B1
B2
B3
B4
A1
x11
x12
A2
x21
x24
A3
x32
x34
x11、 x12、 x32、 x34、 x24、 x21 构成一个闭回路. 这里有: i1 = 1, i2 = 3, i3 = 2;j1 = 1, j2 = 2, j3 = 4. 若把闭回路 的顶点在表中画出, 并且把相邻两个变量用一条直线相连
Transportation Problem 运输问题
运输问题的表示 网络图、线性规划模型、运输表 初始基础可行解 西北角法、最小元素法 非基变量的检验数 闭回路法、对偶变量法 确定进基变量,调整运量,确定离基 变量
运输问题
人们在从事生产活动中,不可避免地要进 行物资调运工作。如某时期内将生产基 地的煤、钢铁、粮食等各类物资,分别 运到需要这些物资的地区,根据各地的 生产量和需要量及各地之间的运输费用, 如何制定一个运输方案,使总的运输费 用最小。这样的问题称为运输问题。
A 0 0 0 0 1 1
1 0 1 0 1 0
10.表上作业法初始可行解的确定-优化[12页]
表上作业法初始 可行解的确定
《现代物流运筹学》
主讲教师:王东辉
西北角法
最小元素法
伏格尔法
01
02
03
初始方案的确定
A1 A2 A3
销量
B1 B2 3 11 19 74
36
B3 B4 3 10 28 10 5
56
产量 7 4 9
总产=总销
先给作业表中左上角运输格安排最大运量,然后划去该格所在的行或列, 重复进行,直到求出初始方案为止。
10
1
6
9
20 10
5
49 64 77
35
84
A1 A2 A3 销量
B1 B2 B3
B4 产量
5 53
10 4 4 9
31
6 19
64
20
10 7 5
77
35
84
只有5个有数格, 不是基本可行解吗?
感谢观看
《现代物流运筹学》
主讲教师:王东辉
步骤
首先从调运表中左上角点(1,1)开始,先选X11为基变量,并令X11 等于对应产量和销量中的最小值,即,给该调运格最大可能运输量;
第二步, 若a1- X11=0,则划去a1所在行,否则,划去bl,所在列; 第三在调运表余下表格中选取左上角上的点,重复上述步骤,直 到最后必选取Xmn为基变量,这时同时划去最后一行和最后列。
有何疑问?
B1 B2 B3 B4 产量
A1
34
7
A2
22
4
A3
3
6
9
销量 3 6
5
6
34
Z
cij xij 3 3 11 4 9 2 2 2 103 5 6 108
《现代物流运筹学》
主讲教师:王东辉
西北角法
最小元素法
伏格尔法
01
02
03
初始方案的确定
A1 A2 A3
销量
B1 B2 3 11 19 74
36
B3 B4 3 10 28 10 5
56
产量 7 4 9
总产=总销
先给作业表中左上角运输格安排最大运量,然后划去该格所在的行或列, 重复进行,直到求出初始方案为止。
10
1
6
9
20 10
5
49 64 77
35
84
A1 A2 A3 销量
B1 B2 B3
B4 产量
5 53
10 4 4 9
31
6 19
64
20
10 7 5
77
35
84
只有5个有数格, 不是基本可行解吗?
感谢观看
《现代物流运筹学》
主讲教师:王东辉
步骤
首先从调运表中左上角点(1,1)开始,先选X11为基变量,并令X11 等于对应产量和销量中的最小值,即,给该调运格最大可能运输量;
第二步, 若a1- X11=0,则划去a1所在行,否则,划去bl,所在列; 第三在调运表余下表格中选取左上角上的点,重复上述步骤,直 到最后必选取Xmn为基变量,这时同时划去最后一行和最后列。
有何疑问?
B1 B2 B3 B4 产量
A1
34
7
A2
22
4
A3
3
6
9
销量 3 6
5
6
34
Z
cij xij 3 3 11 4 9 2 2 2 103 5 6 108