清华出版社工程力学答案-第2章 力系的等效与简化

合集下载

工程力学(范钦珊-蒋永莉-税国双-著)-清华大学出版社.pdf

工程力学(范钦珊-蒋永莉-税国双-著)-清华大学出版社.pdf

工程力学——课后练习题讲解教师张建平第一章静力学基础课后习题:1. P32习题1-12. P32习题1-23. P33习题1-8图a和b所示分别为正交坐标系Ox解:图():F分力:图与解图,两种情形下受力不同,二者的1-2a解图示压路机的碾子可以在推力或拉力作用下滚过):θ解图第二章力系的简化课后习题:1. P43习题2-12. P43习题2-23. P44习题2-4由作用线处于同一平面内的两个力F和习题图所示一平面力系对A(30),B(0,图示的结构中,各构件的自重都略去不计。

1图2-4解习题)中的梁∑0,F0,1m习题3-3图解:根据习题3-3第三章附加习题课后习题:1. P69习题3-52. P69习题3-63. P70习题3-74. P71习题3-135. P71习题3-143-14 图示为凸轮顶杆机构,在凸轮上作用有力偶,其力偶矩确定下列结构中螺栓的指定截面Ⅰ-Ⅰ上的内力分量,,产生轴向拉伸变形。

,产生剪切变形。

如习题4-2图所示直杆A、C、B在两端A、B处固定,在C解:首先分析知,该问题属于超静定问题,受力图如图所示:试用截面法计算图示杆件各段的轴力,并画轴力图,单解:(a)题题-3一端固定另一端自由的圆轴承受四个外力偶作用,如5-3解:将轴划分为四个截面扭矩平衡方程im m 扭矩平衡方程+m3-3扭矩平衡方程5-5 试写出图中所示各梁的剪力方程、弯矩方程图3建立坐标系并确定两个控制面,如图左侧为研究对象:−=)取根据力平衡方程和弯矩平衡方程得出4ql弯矩方程:1解建立坐标系,并取两个控制面,如图ql ql1Q。

工程力学:第2章 力系的简化

工程力学:第2章  力系的简化

F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr

E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C

《理论力学》第二章力系的简化习题解

《理论力学》第二章力系的简化习题解

第二章力系的简化习题解[习题2-1] 一钢结构节点,在沿OA,OB,OC的方向上受到三个力的作用,已知,,,试求这三个力的合力.解:作用点在O点,方向水平向右.[习题2-2] 计算图中已知,,三个力分别在轴上的投影并求合力. 已知,,.解:合力的大小:方向余弦:作用点:在三力的汇交点A.[习题2-3] 已知,,,,求五个力合成的结果(提示:不必开根号,可使计算简化).解:合力的大小: 方向余弦:作用点:在三力的汇交点A.[习题2-4] 沿正六面体的三棱边作用着三个力,在平面OABC内作用一个力偶. 已知,,,.求力偶与三个力合成的结果.解:把,,向平移,得到:主矢量:的方向由E指向D.主矩:方向余弦:[习题2-5] 一矩形体上作用着三个力偶,,.已知,,,,求三个力偶合成的结果.解:先把在正X面上平行移动到x轴.则应附加力偶矩:把沿轴上分解:主矩:方向余弦:[习题2-6] 试求图诸力合成的结果.解:主矢量:竖向力产生的矩顶面底面斜面-0.76 0.2 0.75 主矩:方向余弦:[习题2-7] 柱子上作有着,,三个铅直力, 已知,,,三力位置如图所示.图中长度单位为,求将该力系向点简化的结果.解:主矢量:竖向力产生的矩3.5 1.7 0主矩:方向余弦:[习题2-8] 求图示平行力系合成的结果(小方格边长为)解:主矢量:ABCD8.4 -4.35主矩:方向余弦:[习题2-9] 平板OABD上作用空间平行力系如图所示,问应等于多少才能使该力系合力作用线通过板中心C.解:主矢量:由合力矩定理可列出如下方程:[习题2-10] 一力系由四个力组成。

已知F1=60N,F2=400N,F3=500N,F4=200N,试将该力系向A点简化(图中长度单位为mm)。

解:主矢量计算表0 0 600 200 0300 546.41 -140方向余弦:-110.564 120 0 主矩大小:方向余弦:[习题2-11]一力系由三力组成,各力大小、作用线位置和方向见图。

工程力学(第二版)习题册答案

工程力学(第二版)习题册答案

一、填空题
1. 相 对 滑 动 相 对 滑 动 趋 势 接触面的切线 相反 2. 10N 20N 30N 30N 30N 3. 100N 竖直向上 平衡 4. 平稳无冲击 自锁
阻碍物体相对滑动
相对滑动趋势
二、选择题
1. A
三、简答题
1. ①问题中含有可能发生相对滑动的摩擦面,因此,存在摩擦力; ②受力图中要画出摩擦力,摩擦力总是沿着接触面的切线方向并与物体相对滑
7.
8.
9.
第二章 平面力系
第一节 共线力系的合成与平衡
一、填空题
1. 在同一条直线上
2. FR Fi FR 0
二、计算题
设向右为正方向。 则 FR=120+40-80-200=-120N 方向:水平向左
第二节 平面汇交力系的合成
一、填空题
1. 作用于同一平面内且各力作用线相交于一点的力系 共线力系 力的作用点 2. -F 或 F 0 0 -F 或 F 3. 合力在任一坐标轴上的投影 各分力在同一轴上投影的代数和 4. F4 F3 5. 自行封闭 6. 所有各力在 x 轴上投影的代数和为零 所有各力在 y 轴上投影的代数和为零 Fx 0 Fy 0
3. 后轮:摩擦力向前 前轮:摩擦力向后
4. 不下滑,处于自锁状态
四、计算题
FT 60 18 3N
五、应用题
1. (提示)从摩擦力与 F 对 B 点的力矩大小的比较进行考虑
第三章 空间力系 第一节 力在空间坐标轴上的投影与合成
一、填空题
1. 力的作用线不都在同一平面内呈空间分布的力系 2. 一次投影法 二次投影法
二、选择题
1. A 2.B
它所限制物体
三、简答题
1.柔性体约束只能承受拉力,不能承受压力。 2.被约束物体可以沿约束的水平方向自由滑动,也可以向离开约束的方向运动, 但不能向垂直指向约束的方向运动。 3.剪刀的两半部分可以绕销钉轴线相对转动,但不能在垂直销钉轴线的平面内沿 任意方向做相对移动。 4.木条不能沿圆柱销半径方向移动,但可以绕销轴做相对转动。 5.固定端约束既限制物体在约束处沿任何方向的移动,也限制物体在约束处的转 动。

《工程力学》力系的简化

《工程力学》力系的简化
24/48
2.3 平面力系的简化----平面力系的简化结果
➢主矢、主矩与简化中心的关系: ✓主矢与简化中心的选择无关; ✓主矩与简化中心的选择有关。
➢注意: ✓主矢只有大小和方向两个要素,并不涉及作用点,可 在任意点画出; ✓合力有三要素,大小、方向和作用点。
M Oy
n i 1
M O (Fi ) y
M Oz
n
M O (Fi )
i1
z 5/48
2.1 力系等效与简化的概念----力系的主矢和主矩
力系主矢的特点: ✓对于给定的力系,主矢唯一; ✓主矢只有大小和方向,未涉及作用点。
力系主矩的特点: ✓力系主矩与矩心的位置有关; ✓对于给定的力系,主矩不唯一,同一力系 对不同的点,主矩一般不相同。
10/48
2.2 力系简化的基础——力向一点平移
-F
r F
F F
➢根据加减平衡力系原理,加上平衡力系后,力对刚 体的作用效应不会发生改变; ➢施加平衡力系后,由3个力组成的新力系对刚体的 作用与原来的一个力等效。
11/48
2.2 力系简化的基础——力向一点平移
-F
F
M=Fd
F
F
✓增加平衡力系后,作用在A点的力与作用在B的力组成一
14/48
2.2 力系简化的基础——力向一点平移
z
M -F
F F
Mx
F
F
My
F
15/48
2.3 平面力系的简化
➢平面汇交力系与平面力偶系的合成结果 ➢平面一般力系向一点简化 ➢平面力系的简化结果
16/48
2.3 平面力系的简化
----平面汇交力系与平面力偶系的合成结果
➢汇交力系:力系中所有力的作用线都会交于一点; ➢平面汇交力系:力系中所有力的作用线处于同一平面并且 汇交于一点。 ➢平面汇交力系的合力等于力系中所有力的矢量和。

清华理论力学课后答案2

清华理论力学课后答案2

kh da
(b)
w.
co
m
4
三角块 V4
V4 = 2 × 3 × 3 ÷ 2 = 9
(1, 7, 1)
2-5 均质折杆及尺寸如图示,求此折杆形心坐标。 解: 将图示折杆简化为折线计算。 折杆有 5 段直线组成, 每一段的长度及形心坐标如表所示。 按形心计算公式,有
xc =
∑iLi xi 200 × (−100) + 100 × (−50) + 100 × 0 + 200 × 100 + 100 × 200 = 200 + 100 + 100 + 200 + 100 ∑iLi = 21.43(mm)
kh da

w.
FRx ' = F1 cos 45� − F2 cos 45� = 0 ,

co
在坐标轴上的投影为
m
解: 各力均在与坐标平面平行的面内, 且与所在平面的棱边成 45°角。 将力系向 A 点简化, 主矢 FR '
a b c + + = 0。 F1 F2 F3
当主矢与主矩平行时,力系能简化为力螺旋,即从 FR '× M O = 0 得,
yc =



(200,100,-50)
ww w.
3
kh da
题 2-5 图
w.
co
m
题 2-6 图
解: 由对称性知,该图形的形心一定在 x 轴上,即 yc = 0 。用负面积法计算其横坐标。此平面图
按形心计算公式,有
xc =
2-7 工字钢截面尺寸如图示,求此截面的形心坐标。
题 2-7 图

工程力学简明教程课后答案(景荣春)-清华大学出版社

工程力学简明教程课后答案(景荣春)-清华大学出版社

FBy
FCy
D FT 2
FT′2 E
FDx FEx
FAy FD′y
FE′ y
FAx
C FC′x
A D FD′x
E
FE′x
B
FBx
FT1 FDy
FEy FT3
FC′y
(c)
(d)
(e)
(f)
7
第 2 章 力系的简化
思考题
2-1 某平面力系向 A,B 两点简化的主矩皆为零,此力系简化的最终结果可能是一个力 吗?可能是一个力偶吗?可能平衡吗?
答 力 F 与轴 z 共面, M z (F ) = 0 。
1-3 图(a),(b)所示,Ox1y1与Ox2y2分别为正交与斜交坐标系。试将同一力F分别对两坐 标系进行分解和投影,并比较其分力与力的投影。
(a)
y
(b)
y2
Fy1
Fy1
F
Fy2 Fy2
F
α
Fx1
x
Fx2
x
Fx1
Fx2
(c)
(d)
答(a)图 c
2-3 平行力(F,2F)间距为 d,求其合力。
A
F
A
F
2F
d
B
x
F' d B
ห้องสมุดไป่ตู้
F′′
FR
C
C
FR
(a)
(b)
(c)
解 图b
∑ MC (F) = 0 , − F (d + x) + 2F ⋅ x = 0
x=d
FR = 2F − F = F 方向如图 c
2-4 已知图a所示一平面力系对A(3,0),B(0,4)和C(–4.5,2)三点的主矩分别为: MA = 20kN·m,MBB = 0,MC =–10kN·m。求该力系合力的大小、方向和作用线。

工程力学02-力系的简化

工程力学02-力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
力系的等效
力系的基本特征
力的平移 力系的简化
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
O Mo x
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力 解: 建立直角坐标系

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示
《工程力学》
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen

求此三力的合力

y x F1=732N
30° F3=2000N
例: 吊钩受有三个力,其数值和方向如图所示 Fx = -1000N Fy = - 1732N 求合力和方向 F = Fx2+Fy2 = (-1000)2+(-1732)2 = 2000N = 2kN Fy tana= F = -1732 = 1.732 -1000 x
Bengbu college . The Department of Mechanical and Electronical Engineering .w.p_chen
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
范钦珊教育教学工作室
FAN Qin-Shan ,s Education & Teaching Studio
eBook
工程力学习题详细解答
教师用书
(第 2 章)
2011-10-1
1
习题 2-1 习题 2-2 习题 2-3 习题 2-4 习题 2-5 习题 2-6 习题 2-7 习题 2-8 习题 2-9 习题 2-10
FN (a1)
M
O
FO
(a2)
解:AB 为二力杆 图(a1):ΣFx = 0,
图(a2):ΣMi = 0, 由(1)、(2),得 M = Fd
FAB cosθ = F FA′B ⋅ d cosθ = M
(1) (2)
2-10 图示三铰拱结构的两半拱上,作用有数值相等、方向相反的两力偶 M。试求: A、B 两处的约束力。
由(1)、(2),得 M1 = M2
FD
=
M1 d
FD′ ⋅ d = M 2
FD′
=
M2 d
(1) (2)
2-9 承受一个力 F 和一个力偶矩为 M 的力偶同时作用的机构,在图示位置时保持平 衡。试求:机构在平衡时力 F 和力偶矩 M 之间的关系式。
A
M O
l
θ
(a)
F'AB
θ
A
FAB
BB
B

F
习题 2-9 图
=
FB′
=
M BD
=
269.4
N
∴ FC = 269.4 N
5
2-5 图示提升机构中,物体放在小台车 C 上,小台车上装有 A、B 轮,可沿垂直导轨 ED 上下运动。已知,物体重 F=2 kN,图中长度单位为 mm。试求:导轨对 A、B 轮的约束 力。
E A
T
FA
A
d 800
d 800
C B
F 300
2
工程力学习题详细解答之二
第 2 章 力系的等效与简化
2-1 由作用线处于同一平面内的两个力 F 和 2F 所组成平行力系如图所示。二力作用 线之间的距离为 d。试问:这一力系向哪一点简化,所得结果是合力;确定这一合力的大小 和方向;说明这一合力矢量属于哪一类矢量。
FF
A
FF
dd
dd
22FF
22FF
C
C
FC
C
M A
d
M B
d
A FAx
M d
M B
FBx d
FAy
FBy
(a)
(a1)
习题 2-10 图
解:图(a1):ΣMi = 0, FBy = FAy = 0
图(a2):ΣMi = 0,
FBx
=
M d

FRB
=
M d
(←)
由对称性可知
FRA
=
M d
(→)
8
M B
FBx
d
d
(a2)
上一章 返回总目录 下一章
d
d
E
E
B
C
B
C
①②
M
①②
M


A
D
A
D
FA
F3
(a)
(b)
解:3 杆为二力杆
图(b):ΣMi = 0, F3 ⋅ d − M = 0
F A= F3 图(c):ΣFx = 0, ∴F2 = 0
ΣFy = 0, F1 = FA =
M d
(拉)
习题 2-6 图
∴ F3
=
M d
(压)

F1

F2 A
FA (c)
6
2-7 同样的结构,受力分别如图 a 和 b 所示。试求:两种情形下 A、C 两处的约束力。
习题 2-7 图
解:图(பைடு நூலகம்): CD 为二力杆,受力图见图(a1),为力偶系
ΣMi = 0, 图(b):AB 为二力杆
FRA = FRC =
M 2
=
2M d
d
2
由图(b1): ΣMi = 0,
FR C
=
FD
设 OH = d,则 d = 4 cotθ
(d + 3) sinθ = AG = 2CD
CD = CE sinθ = (4.5 − d ) sinθ 2
将式(2)代入式(1)得 (d + 3)sinθ = 2(4.5 − d ) sinθ
2
即 d +3=9−d
∴d =3
∴ H 点的坐标为(-3, 0)
1200
1200
B
FB
1200
B
C
45° C
1200
45° B 45°
F'B
3000 1200 1200
3000
M A
(a)
(a1)
习题 2-4 图
FC D
M
90° A
45° FA (a2)
解:BC 为二力杆,受力如图(a1): FB = FC 由图(a2),力偶只能与力偶平衡:
ΣMi = 0,
FA
B
xx
FFRR
C
(a)
(b)
习题 2-1 图
解:设点 C 为合力作用点:
∑MC (F) = 0 : −F(d + x) + 2F ⋅ x = 0
∴x = d
∴ FR = 2F − F = F 方向如图(b)所示。
2-2 已知一平面力系对 A(3,0),B(0,4)和 C(-4.5,2)三点的主矩分别为:MA、MB 和 MC。若已知:MA=20 kN·m、MB=0 和 MC=–10kN·m,试求:这一力系最后简化所得合 力的大小、方向和作用线。
9
(1) (2)
2-3 图 a、b、c 中所示之结构中的折杆 AB 以三种不同的方式支承。假设三种情形下, 作用在折杆 AB 上的力偶的位置和方向都相同,力偶矩数值均为 M。试求三种情形下支承处 的约束力。
习题 2-3 图
a题
解:图(a1):
FA
=
FB
=
M 2l
b题
解:图(b1):
FA
=
FB
=
M l
c题
y/m
y/m
B(0,4)
B
G4
C(-4.5,2)
A(3,0)
x/m
C θE 2

A
x/m
O
-4.5 H O
3
FFRR
(a)
(b)
习题 2-2 图
解:由已知 MB = 0 知合力 FR 过 B 点; 由 MA = 20kN·m,MC = –10kN·m 知 FR 位于 A、C 间,且
3
AG = 2CD (图(b)) 在图(b)中:
=
M d
由图(b2):
FRA
=
FD′
=
M d
2-8 承受两个力偶作用的机构在图示位置时保持平衡,试求:这时两力偶之间关系的 数学表达式。
d
A C
d
d
D
M2 (a)
B
A
M1 FA
F'D
d
d
B
D
M1 FD
(a1)
D
C
M2
FC (a2)
习题 2-8 图
7
d d d
d d
解:图(a1):ΣMi = 0, 图(a2):ΣMi = 0,
D
FB
C
B
F 300
(b)
(a) 习题 2-5 图
解:受力图如图(b), F = 2kN, T = F
ΣFx = 0, FA = FB ΣMi = 0, F × 300 − FA × 800 = 0

FA
=
3 8
F
=
0.75kN
(→)
FB = 0.75 kN (←)。
2-6 结构的尺寸和受力如图所示,试求:结构中杆 1、2、3 所受的力。
合力方向如图(b)所示,作用线过 B、H 点;
tanθ = 4 3
AG = 6sinθ = 6 × 4 = 4.8 5
M A = FR × AG = FR × 4.8

FR
=
20 4.8
=
25 kN 6

FR
= ( 5 , 10 )kN 23
作用线方程: y = 4 x + 4
3
讨论:本题由于已知数值的特殊性,实际 G 点与 E 点重合。
解:因为绳索只能承受拉力,不能承受压力,所以本题无解。
4
2l
2l
FB
l
l/2
B M C
A
(a)
l
B M C
l/2
A
FA
(a1)
2l
B
2l
B
FB
M C
l
M C
A
FA
(b)
(b1)
习题 2-3 解图
l
2-4 图示结构中,折杆 AB 和 BC 在 B 处用铰链连接,在折杆 AB 上作用一力偶,其 力偶矩 M=800 N·m。若不计二折杆的自重,图中长度单位为 mm。试求:支承 A 和 C 处的 约束力。
相关文档
最新文档