工程力学 第三章 空间力系与重心
工程力学第三章-测控

若三轮推车如图所示。已知
z
AH=BH=0.5m,CH=1.5m,
EH=0.3m,ED=0.5m,荷载 G=1.5kN。试求A、B、C三轮所 受到的压力。
解 1)作出受力图 2)并标上直角坐标系 3)列力系的平衡方程求解
B
H E
A x
FA
D FB
G
y C FC
∑Mx(F)=0, FC·HC-G·DE=0 取z轴取为小纵车坐为标研,究平对板象为xy平面, FC=G·DE /HC=1.5kN0.5m/1.5m=B0为.5k坐N标原点,BA为x轴。 ∑My(F)=0, G·EB-FC·HB-FA·AB=0 FA=(G·EB-FC·HB)/AB =(1.5kN0.8m-0.5kN0.5m)/1m=0.95kN ∑F若BF=z重=G0物,-F放C置-FFA过A=+偏F1B.,5+k致FNC-使-0W.F95B=为k0N负-0值.5,kN则=小0.0车5k将N会翻倒。
A x
∑Fy=0 FA-Fcoscos=0
∑Fz=0 Fsin-G=0
DF
B y
FB
O
FA G
解上述方程得
F= G/sin=1.2kN/sin30=2.4kN
FA= Fcoscos=2.4kNcos30cos60=1.04kN FB=Fcossin=2.4kNcos30sin60=1.8kN
第三节 力对轴之矩
一、力对轴之矩的概念 在工程中,常遇到刚体绕定轴转动的情形。 为了度量力对转动刚体的作用效应,必须引入力 对轴之矩的概念。
z
现以关门动作为 例,图中门的一边有 固定轴z。
O
y
x
在A点作用一力F,为度量此力对刚体的转动效应,可将力 F分解为两个互相垂直的分力:一个是与转轴平行的分力 Fz=Fsinβ;另一个是在与转轴z垂直平面上的分力Fxy=Fcosβ。
空间力系和重心.ppt

有各力在任意相互垂直的三个坐标轴的每一个轴上的
投影的代数和等于零,以及力系对于这三个坐标轴的
矩的代数和分别等于零。
Fx 0 Fy 0
Fz 0
Mx F 0 My F 0 Mz F 0
§5.4 空间平行力系的中心和物体的重心
一、空间平行力系的中心
若空间力系各合力的作用线相互平行称为空间平行 力系。若力系为一合力,合力的作用点,即是平行力系 的中心。
式中,Rx、Ry、Rz表示合力在各轴上的投影。
已知各力在坐标轴上的投影,则合力的大小和方 向可按下式求得
R Rx2 Ry2 Rz2
2
2
2
Fx Fy Fz
cos Fx / R cos Fy / R
cos Fz / R
式中,α、β、γ分别表示合力与x、y、z轴正向 的夹角。
二、重心的概念
重力的作用点即是空间平行力系的中心,称为物体 的重心。
三、重心和形心的坐标公式
物体重心C的坐标公式为
xC
x i .Wi W
yC
y i .Wi W
zC
z i.Wi W
四、求重心的方法
几种常用的方法:
1.对称法 2.积分法 3.组合法
(按照右手螺旋法则决定之)
空间力对轴的矩等于零的条件
1、力通过轴线
FLeabharlann Fz2、力与轴线平行
Fy Fx
二、合力矩定理
力对轴的矩的解析表示式为
Mx F Fz.yA Fy.zA My F Fx.zA Fz.xA
Mz F Fy.xA Fx.yA
§ 5.3 空间力系的平衡方程及应用
空间任意力系平衡的必要和充分条件是:力系中所
可求出力F 的大小和方
第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
工程力学:第三章 空间问题的受力分析

。CDB平面与水平
面间的夹角
,物重
。如起重杆的重量不计,试求
起重杆所受的压力和绳子的拉力。
解:取起重杆AB与 重物为研究对象。
取坐标轴如图所示。 由已知条件知:
列平衡方程 解得
§3-3 力对轴的矩 力F对z轴的矩就是分力Fxy 对点O的矩, 即
力对轴的矩是力使刚体绕该 轴转动效果的度量、是一个 代数量。
空间力偶系平衡的必要和充分条件是:该力偶系的合力偶矩等 于零,亦即所有力偶矩矢的矢量和等于零,即
由上式,有 欲使上式成立,必须同时满足
空间力偶系未知量)
空间力偶系平衡的必要和充分条件为:该力偶系中所有各力偶 矩矢在三个坐标轴上投影的代数和分别等于零。
§3-5 空间任意力系的平衡方程
可将上述条件写成空间任意力系的平衡方程
注:1.与平面力系相同,空间力系的平衡方程也有其它的形式。 2.六个独立的平衡方程,求解六个未知量。 3.可以从空间任意力系的普遍平衡规律中导出特殊情况的 平衡规律,例如空间平行力系、空间汇交力系和平面任意 力系等平衡方程。
例:设物体受一空间平行力系作用。 令z轴与这些力平行,则
绝对值: 该力在垂直于该轴的平面上的投影对于 这个平面与该轴的交点的矩的大小。
正负号: 从z轴正端来看,若力的这个投影使物体绕该轴 按逆时针转向转动,则取正号,反之取负号。
也可按右手螺旋规则来确定其正负号,如图所 示,姆指指向与z轴一致为正,反之为负。
当力与轴在同一平面时,力对该轴的矩等于零:
(1)当力与轴相交时 (此时h=0);
(三个方程,可 求解三个未知量)
空间汇交力系平衡的必要和充分条件为:该力系中所有各力 在三个坐标轴上的投影的代数和分别等于零。
工程力学课后习题答案

2-7 已知梁AB上作用一力偶,力偶矩为M,梁长为l,梁重不计。求在图a,b,两三种情况下,支座A和B的约束反力。
(a) (b)
题2-7图
(a) (注意,这里,A与B处约束力为负,表示实际方向与假定方向相反,结果应与你的受力图一致,不同的受力图其结果的表现形式也不同)
(b)
2-8 在题图所示结构中二曲杆自重不计,曲杆AB上作用有主动力偶,其力偶矩为M,试求A和C点处的约束反力。
题3-1图
3-2 图示力系中,F1=100N,F2=300N,F3=200N,各力作用线的位置如图所示。将力向原点O简化
题3-2图
3-3 边长为a的等边三角形板,用六根杆支持在水平面位置如图所示。若在板面内作用一力偶,其矩为M,不计板重,试求各杆的内力。
题3-3图
3-4 如图所示的空间构架由三根杆件组成,在D端用球铰链连接,A、B和C端也用球铰链固定在水平地板上。今在D端挂一重物P=10kN,若各杆自重不计,求各杆的内力。
题6-2图
6-3题6-2图所示圆截面杆,已知载荷 , , 段的直径 ,如欲使 与 段横截面上的正应力相同,试求 段的直径。
6-4设图示结构的1和2两部分皆为刚体,刚拉杆 的横截面直径为 ,试求拉杆内的应力。
题6-4图
1做受力图
2列平衡方程求解
解得F=6kN, FN=3kN, AB杆的应力为:
6-5某受扭圆管,外径 ,内径 ,横截面上的扭矩 ,试计算距轴心21mm处圆管横截面与纵截面上的扭转切应力。
题2-4图
作BD两节点的受力图
联合解得:
2-5在四连杆机构ABCD的铰链B和C上分别作用有力F1和F2,,机构在图示位置平衡。求平衡时力F1和F2的大小间的关系。
工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
3.3.3 重心位置的其他确定方法_工程力学(第2版)_[共3页]
![3.3.3 重心位置的其他确定方法_工程力学(第2版)_[共3页]](https://img.taocdn.com/s3/m/ea1388d1eff9aef8941e06fe.png)
第3章 空间力系
49 i i c i i c i i c L x x L L y y L L z z L ⎧=⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩∑∑∑ (3-8)
用该组公式可计算细长均质杆的重心位置。
图3-8 平板物体受力分析 图3-9 求细长均质杆重心 3.3.3 重心位置的其他确定方法
1.对称法
具有对称面、对称轴线或对称中心的均质物体,其重心必定位于对称面、对称轴线或对称中心上,如图3-10所示。
图3-10 对称法求重心
2.实验法
对于形状复杂、非匀质的物体,可采用实验法来确定其重
心。
方法有悬挂法和称重法。
(1)悬挂法。
如图3-11所示薄板,可采用悬挂法确定其重心。
任选两点
A 、
B 依次悬挂起来,过A 、B 两点铅垂线的交点即为薄板重心
C 的位置。
图3-11 确定薄板重心。
工程力学教学课件模块3空间力系

的单位为N•m或kN•m。
由上述结论可知,力的作用线与轴相交或平
行时,力对轴之矩等于零。
提
示
3.2.2 合力矩定理
在平面力系中推导出来的合力矩定理对空间力系也同样适用,即空间力系中的合力对某轴之
矩等于力系中各分力对同一轴之矩的代数和,其表达式为
在计算力对轴之矩时,有时应用合力矩定理会使计算变得简单:先将力F沿空间直角坐标轴
Fz=Fsin 60°=600×0.866=520(N)
19
3.2.2 合力矩定理
20
3.2.2 合力矩定理
(2)计算力对轴之矩。先将力F在作用点处沿x、y、z方向分解,得到
三个分量Fx、Fy、Fz,它们的大小分别等于投影Fx、Fy、Fz的大小。
根据合力矩定理,可求得力F对指定的x、y、z轴之矩。
(b)所示。
先将力F向Axy平面和Az轴投影,得到Fxy和Fz;再将Fxy向x、y轴
投影,得到Fx和Fy。于是,有
Fx=Fxycos 45°=Fcos 60°cos 45°=600×0.5×0.707=212(N)
Fy=Fxysin 45°=Fcos 60°sin 45°=600×0.5×0.707=212(N)
力FNA、FNB、FNC的作用下保持平衡,各力的作
用线相互平行,构成空间平行力系。
3.3 空间力系的平衡方程
30
3.3 空间力系的平衡方程
(2)根据各力的作用线方向与几何位置,建立空间直角
坐标系Hxyz(点H为坐标原点)。
(3)列平衡方程并求解。
∑Fz=0,FNA+FNB+FNC-G=0
∑Mx(F)=0,FNC-G=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时授课计划
X=cosα
cos
cos
与坐标轴间的夹角不易确定时,可把力上,得到力
在三个坐标轴上的投影分别为
sin
sin
cos
、、
=+
在坐标轴上的投影和力沿坐标轴的正交分矢量间的关系可表示为=X,
=
,
,
,
沿
向
sin
=
向
sin
cos
沿各轴的分力为
=-,称为轴向力,
对点。
即力矩的大小为
h=2
的模等于三角形
一致。
因此可得
=
分别为
=X
=
的大小和方向都与矩心
,轴的分力(在垂直于
不能使静止的门绕
表示力对
作用线的距离。
因此,力==±
=0)
==+
=zX-xZ
对
两个分力,其中=Fsin
==-(AB+CD)=-F(l+a)cos
==-BC=-Flcos
==-
?=yZ-zY=(l+a)(-Fcos
=zX-xZ=0-(-l)(-Fcos
=xY-yX=0-(l+a)(Fsin
在三个坐标轴上的投影,即=yZ-zY
=zX-xz
=xY-yX
=
=
=
表示该力对点。
将力投影到通过
对
==2
在轴上的投影,可用
=
与
+=
i+
、、
(4-8)
,四个力汇交于点
=O, sin45°=0
=O, cos45°cos30°cos45°cos30°=0
=0, cos45°sin30°+oos30°
==3.54kN
=8.66kN
为正值,说明图中所设。