第三章力系的平衡条件

合集下载

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

《工程力学:第三章-力系的平衡条件和平衡方程》解析

《工程力学:第三章-力系的平衡条件和平衡方程》解析

工程力学 1. 选择研究对象。以吊车大梁 AB为研究对象,进行受力分析 (如图所示) 2.建立平衡方程
第三章 力系的平衡条件和平衡方程
FAX FTB cos 0 Fy 0
F
x
0
: (1)
M
FAy FQ FP FTB sin 0
A
(F ) 0
工程力学
第三章 力系的平衡条件和平衡方程
§3.3 考虑摩擦时的平衡问题
3.3.1 滑动摩擦定律
概念:
静摩擦力:F 最大静摩擦力:Fmax 滑动摩擦力: Fd
静摩擦因数:
水平拉力: Fp
Fmax f s FN
fs
工程力学
第三章 力系的平衡条件和平衡方程
3.3.2 考虑摩擦时构件的平衡问题
考虑摩擦力时与不考虑摩擦力时的平衡 解题方法和过程基本相同, 但是要注意摩擦力的方向与运动趋势方向相反;且在滑动之前摩擦 力不是一个定值,而是在一定范围内取值。
l l sin 0
(3)
工程力学
第三章 力系的平衡条件和平衡方程
• 联立方程(1)(2)(3)得:
FAX
FQ FP 3 l x 2
(2)由FTB结果可以看出,当x=L时,即当电动机移动到大梁右 端B点时,钢索所受的拉力最大,最大值为
非静定问题:未知数的数目多于等于独立的平衡方程的数目,不能 解出所有未知量。相应的结构为非静定结构或超静定结构。
会判断静定问题和非静定问题
工程力学
第三章 力系的平衡条件和平衡方程
工程力学
第三章 力系的平衡条件和平衡方程
3.2.2 刚体系统平衡问题的特点与解法
1.整体平衡与局部平衡的概念 系统如果整体是平衡的,则组成系统的每一个局部以及每一个 2.研究对象有多种选择 刚体也必然是平衡的。

第三章力系的平衡介绍

第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学

理论力学-3-力系的平衡

理论力学-3-力系的平衡

z
F2
O
F1
F
z
0
M F 0 M F 0
x y
自然满足,且
M F 0
z
M F 0
O
平面力系平衡方程的一般形式
于是,平面力系平衡 方程的一般形式为: z O y
Fx 0 Fy 0 M F 0 o
其中矩心 O 为力系作用面 内的任意点。
静不定次数:静不定问题中,未知量的个数与独立的平 衡方程数目之差。
多余约束:与静不定次数对应的约束,对于结构保持静 定是多余的,因而称为多余约束。 关于静不定问题的基本解法将在材料力学中介绍。
P A m a B q
解:对象:梁 受力:如图 方程:
C
b
F F
0, FAx P cosq 0, FAx P cosq # FAy FB P sin q 0 1 y 0, M A F 0, m FBa Pa bsinq 0 2
B A
FR FR
x
A
B
FR
A、B 连线不垂直于x 轴
B A
FR
x
3.3 平面力系的平衡方程 “三矩式” M A = 0, MB = 0 , MC = 0。
C B A C B A
FR FR
满足第一式? 满足第二式? 满足第三式?
B A
FR
FR
A、B、C 三点不 在同一条直线上
C A
B
M (F ) 0 Fy 0
A
FQ (6 2) FP 2 FB 4 W (12 2) 0
FQ FA FP FB W 0

理论力学:第3 章 力系的平衡

理论力学:第3 章 力系的平衡
第 3 章 力系的平衡
力系平衡是静力学研究的主要内容之一,也是静力学最重要的内容。其中平面力系的平衡又
是重要之重要内容,平面物系的平衡又是重要之重要内容。
事实上我们已经得到力系的平衡条件(充要):
R

0,M O

0 。下面将其写成代数方程即
平衡方程,用其解决具体问题。
3.1 平面力系的平衡条件与平衡方程
受力图如图(c),列解方程:
Y 0, P cos G sin 0
P
使 P 最小,则

G sin cos

G sin cos( )
cos( ) 1,

arctan 3
3652'
Pmin

G sin

20

3 5

12kN
4
另解:(几何法) 画自行封闭的力三角形,如图(d),则
Q

G(b
e) 50b a

Hale Waihona Puke 350.0kN∴ 使起重机正常工作的平衡重为:333.3kN≤Q≤350.0kN 注:也可按临界平衡状态考虑,求 Pmin 和 Pmax。 静力学的应用:
学习静力学有何用处?——上面几个例题有所反映。
例 1:碾子问题——满足工作条件的载荷设计。
例 2:梁平衡问题——结构静态设计(一类重要工程问题)。
分由由由图图图析(((:acb)))汽:::车受平面平行力mmm系EBB(((,FFF))易) 列解000,,,方程。下shl面只给出方程:
例 4 平行力系典型题目,稳定性问题且求范围。 行动式起重机的稳定性极其重要,要求具有很好的稳定裕度,满载时不向右翻倒,空载时不 向左翻倒。已知自重 G = 500kN,最大载荷 Pmax = 210kN,各种尺寸为:轨距 b = 3m,e = 1.5m, l = 10m,a = 6m,试设计平衡重 Q,使起重机能正常工作,且轨道反力不小于 50kN。

工程力学3-力系的平衡条件和平衡方程

工程力学3-力系的平衡条件和平衡方程

例1 例1 求图示刚架的约束反力。
解:以刚架为研究对象,受力如图。
F x0:F A xq b0
P a A
q
b
F y0:F A yP0
P
MA(F)0:
MA
MAPa12q b2 0
FAx
A
FAy
q
解之得:
FAx qb
FAy P
MAPa 1 2qb 2
例2 例2 求图示梁的支座反力。
解:以梁为研究对象,受力如图。
坐标,则∑Fx=0自然满足。于是平面 平行力系的平衡方程为:
O
F2
x
F y 0 ; M O ( F ) 0
平面平行力系的平衡方程也可表示为二矩式:
M A ( F ) 0 ; M B ( F ) 0
其中AB连线不能与各力的作用线平行。
[例5] 已知:塔式起重机 P=700kN, W=200kN (最大起重量), 尺寸如图。求:①保证满载和空载时不致翻倒,平衡块
解: 1.分析受力
建立Oxy坐标系。 A处约束力分量为FAx和FAy ;钢 索的拉力为FTB。
解: 2.建立平衡方程
Fx=0
MAF= 0
- F Q 2 l- F W xF T Blsi= n0
FTB= FPlxs+ iF nQ2 l= 2FlWxFQ
FAx F TBco = s0
Fy=0
F A = x 2 F W x l F Q l co= s3 3 F lW 0xF 2 Q
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
解: ①选碾子为研究对象 ②取分离体画受力图

工程力学第三章-力系的平衡

工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。

工力C第三章力系的平衡方程及应用

工力C第三章力系的平衡方程及应用


M
静力学
第三章 力系的平衡方程及其应用
静力学
例3-3 伸臂式起重机,已知匀质梁AB 重P =4kN,吊车连 同吊起重物重P1=10kN。有关尺寸如图。
y
试求:拉索BD 的拉力及铰链 A 的约束力。
D
解:取AB梁连同重物为研究对象,
FAy
FT
C 30°
A
FAx
画受力图。 取坐标,列平衡方程。
B
x由: X 0
• 空间任意力系平衡方程:基本形式、四矩式、五矩式 和六矩式。
• 应当注意:每一种形式最多只能列6个独立平衡方程, 解6个未知数,任何多于6个的方程都是这些方程的线性 组合。
• 空间任意力系平衡方程是平衡方程的一般形式。汇交 力系、平行力系、力偶系及平面力系是其特殊形式。
第三章 力系的平衡方程及其应用
对图(d):
FT1
由 M B (F ) 0 0.4FT cos 1YH 0
(d)
X H
H
由 X 0
FT sin X H X B 0
(e)
YH
FT2 由 Y 0
FT cos YH YB 0
(f )
(c)
YB E X B
B
F'T
但若系统的n物体中,有n1个物体为二力构件或受平面 力偶系, n2个受平面汇交力系或平面平行力系、n3个受平 面任意力系作用,则最多可列的独立平衡方程的数目m为
m n1 2n2 3n3
可解m个未知数。
第三章 力系的平衡方程及其应用
静力学
设k为物体系统的未知量数目
若k = m,未知量数目等于可列独立平衡方程的数
FB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 力系的平衡条件与构 架的组成规律
二、空间任意力系的平衡条件
空间任意力系简化 {F1, F2, , Fn} {FR, MO}
FR 0, MO 0
平衡
n
n
FR Fi ' Fi
i1
i1
n
n
MO Mi ri Fi
i1
i1
FR ( Fx )2 ( Fy )2 ( Fz )2
L
例3-20
已知:P1,P2,P3,尺寸如图。
求: 1,2,3杆所受力。 解: 求支座约束力
M A 0 FAy
Fiy 0 FBy
从1,2,3杆处截取左边部分
Fiy 0
F2
MC 0
Fix 0
F1 F3
若再求4,5杆受力
取节点D
Fix 0 F5 Fiy 0 F4
Fix 0 FAx FT cos 300 0
Fiy 0
FAy P1 P2 FT sin 300 0
(1)
MA 0
FT sin 300 6 4P2 3P1 0
解得 FT 17.33kN FAy 5.33kN
例3-16 已知:P , a ,各杆重不计; 求:B 铰处约束反力。
得 FAy 20kN
Fiy 0 FAy FBy 40 0
得 FBy 20kN
求各杆内力
取节点A
Fiy 0 FAD
Fix 0 FAC
取节点C
Fiy 0 FCF Fix 0 FCD 0
取节点D
Fiy Fix
0 0
FDF , FDE
取节点E
L
Fiy 0 FEG Fix 0 FEF
M A 0 M A M 2ql 2l FB sin 600 3l F cos300 4l 0
解得
M A 10.37kN
例3-5 已知:P 100kN, M 20kN m,
q 20kN m, l 1m; F 400kN,
求: 固定端A处约束力。 解:取T型刚架,画受力图。
解: 取AB梁,画受力图。
Fx 0 FAx Fc cos 450 0
F y
0
FAy Fc sin 450 F 0
M A 0 Fc cos 450 l F 2l 0
解得 FC 28.28kN, FAx 20kN, FAy 10kN
例3-8 已知: F=20kN, q=10kN/m,M 20kNm, L=1m; 求: A,B处的约束力. 解: 取CD梁,画受力图.
解得 F3 9.81kN (拉)
例 3-14 已知:P1 4kN, P2 10kN, 尺寸如图;
求:BC杆受力及铰链A受力。
解: 取AB 梁,画受力图。
Fix 0 FAx FT cos 300 0
Fiy 0 FAy P1 P2 FT sin 300 0
M A 0 FT sin 300 6 4P2 3P1 0
F x
0
FAx 0 解得 FAm 0
M A 0 FB 4a M P 2a q 2a a 0
解得
FB
3 4
P
1 2
qa
Fy 0
解得
FAy q 2a P FB 0
FAy
P 4
3 2
qa
例3-2(例2-1)
已知:AC=CB=l, P=10kN; 求:铰链A和DC杆受力。(用平面任意力系方法求解)
汇交力系平衡的充分必要条件:
空间问题
Fx 0 Fy 0, Fz 0
平面问题
力偶系平衡的充分必要条件:
Fx Fy
0 ,
0
空间问题
M x (F ) 0 M y (F ) 0, M z (F ) 0
平面问题
M 0
例:已知AB梁长为l,其上受有均布载荷q, 求:梁A端的约束力。
解: 取整体,画受力图 MC 0 FBy 2a 0
解得 FBy 0
取ADB杆,画受力图 取DEF杆,画受力图
MD 0 FE sin 45o a F 2a 0
得 FE sin 45o 2F
Fix 0 FE cos 45o FD' x 0
得 FD' x FE cos 45o 2F
例3-12 已知: P=10kN,尺寸如图;
求: 桁架各杆件受力。
解: 取整体,画受力图。
Fix 0 FBx 0
M B 0 2P 4FAy 0 FAy 5kN
Fiy 0 FAy FBy P 0 FBy 5kN
取节点A,画受力图。
Fiy 0 FAy F1 sin 300 0
Fiy 0
解得
FAy FBy P1 P2 0 FBy 8kN
用截面法,取桁架左边部分。
ME 0 F1 1 cos300 FAy 1 0
解得 F1 10.4kN(压)

Fiy 0 FAy F2 sin 600 P1 0
解得
F2 1.15kN (拉)
Fix 0 F1 F3 F2 cos 600 0
解得 F1 10kN (压)
Fix 0 F2 F1 cos 300 0
解得 F2 8.66kN(拉)
取节点C,画受力图.
Fix 0 F4 cos 300 F1' cos 300 0
解得 F4 10kN (压)
Fiy 0 F3 F1' F4 sin 300 0
解得 F3 10kN(拉)
A
FAy MA
A FAx
解:研究AB梁,画受力图。
Fx 0, FAx 0
B
Fy 0,
l
FAy qdx 0, FAy ql
0
M A 0,
B
M
A
l 0
xqdx
0,
M
A
1 2
ql2
例3-4
已知: P, q, a, M pa; 求: 支座A、B处的约束力。
解:取AB梁,画受力图。
取节点D,画受力图。
Fix 0 F5 F2' 0
解得 F5 8.66kN (拉)
例3-13
已知: P1 10kN, P2 7kN, 各杆长度均为1m;
求: 1,2,3杆受力。
解: 取整体,求支座约束力。
Fix 0 FAx 0
M B 0 2P1 P2 3FAy 0
解得
FAy 9kN
MB o
FD' x a F 2a 0
得 FD' x 2F
对ADB杆受力图
M A 0 FBx 2a FDx a 0
得 FBx F
例3-19 已知: 荷载与尺寸如图;
求: 每根杆所受力。 解: 取整体,画受力图。
Fix 0 FAx 0
M B 0 8FAy 5*8 10*6 10*4 10*2 0
MO ( MOx )2 ( MOy )2 ( MOz )2
空间任意力系平衡的充分必要条件:
FR
0
Fx 0
Fy 0
MO
0
MOx(F ) 0
MOy(F ) 0
M x(F) 0 M y (F ) 0,
Fz 0
MOz(F ) 0
M z(F) 0
三、其它力系的平衡条件
Mc 0
FB
sin
600
l
ql
l 2
F
cos
300
2l
0
解得 FB=45.77kN
取整体,画受力图.
Fix 0
FAx FB cos 600 F sin 300 0
解得 FAx 32.89kN
Fiy 0 FAy FB sin 600 2ql F cos300 0
解得
FAy 2.32kN
其中
1
F1
F x
q 3l 30kN 2
0 FAx F1
F
sin 600
0
解得 FAx 316.4kN
Fy 0 FAy P F cos 60 0
解得 FAy 300kN
MA 0
MA M F1l F cos 60 l F sin 60 3l 0
解得 MA 1188kN m
相关文档
最新文档