工程力学第三章-力系的平衡
第三章力系的平衡介绍

工 程 力 学
§3-2
平面力系的平衡条件
F1 Fn F3
1、平面任意力系的平衡方程 F2 平面任意力系平衡的充要条件是: 力系的主矢和对任意点的主矩都等于零。
0 FR
第 三 章 力 系 的 平 衡
Mo 0
平面任意力系
FR ( Fx ) 2 ( Fy ) 2
M O M O (F )
2
0
F
x
0,
F
y
0,
F
z
0
即:汇交力系的平衡条件是力系中所有各力在各个坐
标轴中每一轴上的投影的代数和分别等于零。
工 程 力 学
三、空间平行力系的平衡方程
第 三 章 力 系 的 平 衡
F
z
0,
M (F ) 0, M (F ) 0
x
y
工 程 力 学
四、空间力偶系的平衡方程
第 三 章 力 系 的 平 衡
工 程 力 学
例:如图所示为一种起吊装置的结构简图。图中尺寸d , 载荷F, <FAD =60均为已知。若不计各杆自重,试求杆AF与杆AD在各 自的约束处所受的约束力。
第 三 章 力 系 的 平 衡
工 程 力 学
第 三 章 力 系 的 平 衡
工 程 力 学
例:滑轮支架系统如图所示。已知G,a,r,θ ,其余物体重 量不计,试求A和B的约束力。
工 程 力 学
3、平面汇交力系的平衡方程
F
x
0,
F
y
0
4、平面力偶系的平衡条件
第 三 章 力 系 的 平 衡
M 0
即:力偶系各力偶力偶矩的代数和等于零。
工 程 力 学
工程力学力系平衡

D
FC
l
A B
l
FP
D
第 三 种 情 形
l
C FA A l FCy l B l FP D
FCx
C
FA A
l
B
l
FP
D
第 三 种 情 形
FCy
FCx C
E
MA ( F ) = 0 : FCx l -FP 2l = 0 MC ( F ) = 0 : -FA l - FP 2l = 0 ME ( F ) = 0 : -FCy 2l -FA l = 0
A
F =0
x
l -FQ -FW x FTB lsin=0 2 l FP x+FQ 2 = 2 FW x F FTB= Q lsin l
F =0
y
FAx FTB cos=0 FQ 2 FW x FQl FW FAx= x cos30 = 3 l 2 l FAy-FQ-FP+FTB sin=0
例题
均质方板由六根杆支 撑于水平位臵,直杆 两端各用球铰链与扳 和地面连接。板重为 P,在A 处作用一水 平 力 F , 且 F=2P , 不计杆重。求各杆的 内力。
简单的刚体系统平衡问题
前面实际上已经遇到过一些简单刚体系统 的问题,只不过由于其约束与受力都比较简单, 比较容易分析和处理。 分析刚体系统平衡问题的基本原则与处理 单个刚体的平衡问题是一致的,但有其特点, 其中很重要的是要正确判断刚体系统的静定性 质,并选择合适的研究对象
平衡方程
根据平衡的充要条件
F1 M1 O
z
F2
M2
y Mn
FR =0 , MO=0
工程力学-平面任意力系平衡方程

4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第3章 力系的平衡

工程力学(工程静力学与材料力学)习题与解答第3章 力系的平衡3-1 试求图示两外伸梁的约束反力FRA 、FRB ,其中(a )M = 60kN ·m ,FP = 20 kN ;(b )FP = 10 kN ,FP1 = 20 kN ,q = 20kN/m ,d = 0.8m 。
知识点:固定铰支座、辊轴支座、平面力系、平衡方程 难易程度:一般 解答:图(a-1) 0=∑x F ,FAx = 00=∑A M ,05.34R P =⨯+⨯--B F F M 05.342060R =⨯+⨯--B F FRB = 40 kN (↑)=∑y F ,0P R =-+F F F B Ay20-=Ay F kN (↓)图(b-1),M = FPd 0=∑A M ,03221P R P =⋅-⋅++⋅d F d F d F dqd B即 032211P R P =-++F F F qd B 02032108.02021R =⨯-++⨯⨯B FFRB = 21 kN (↑)=∑y F ,FRA = 15 kN (↑)3-2 直角折杆所受载荷,约束及尺寸均如图示。
试求A 处全部约束力。
A MB Ay F B R F CAx F PF(a) M A B B R F A R F P 1F C qdBD(b)(a )(b ) 习题3-1图FMB习题3-3图sF W A F ABF BF AN F(a)知识点:固定端约束、平面力系、平衡方程 难易程度:一般 解答: 图(a ): 0=∑x F ,0=Ax F=∑y F ,=Ay F (↑)0=∑A M ,0=-+Fd M M AM Fd M A -=3-3 图示拖车重W = 20kN ,汽车对它的牵引力FS = 10 kN 。
试求拖车匀速直线行驶时,车轮A 、B 对地面的正压力。
知识点:固定端约束、平面力系、平衡方程 难易程度:一般解答: 图(a ):0)(=∑F A M 08.214.1NB S =⨯+⨯-⨯-F F W6.13NB =F kN=∑y F ,4.6NA =F kN3-4 图示起重机ABC 具有铅垂转动轴AB ,起重机重W = 3.5kN ,重心在D 。
工程力学 第3章 力系的平衡

6
解 :1. 受力分析, 确定平衡对象 圆弧杆两端 A 、 B 均为铰链,中间无外力作用,因此圆弧杆为二力杆。 A 、 B 二处的 约束力 FA 和 FB 大小相等、 方向相反并且作用线与 AB 连线重合。 其受力图如图 3-6b 所示。 若 以圆弧杆作为平衡对象,不能确定未知力的数值。所以,只能以折杆 BCD 作为平衡对象。 ' 折杆 BCD , 在 B 处的约束力 FB 与圆弧杆上 B 处的约束力 FB 互为作用与反作用力, 故 二者方向相反; C 处为固定铰支座,本有一个方向待定的约束力,但由于作用在折杆上的 ' 只有一个外加力偶,因此,为保持折杆平衡,约束力 FC 和 FB 必须组成一力偶,与外加力 偶平衡。于是折杆的受力如图 3-6c 所示。 2.应用平衡方程确定约束力 根据平面力偶系平衡方程(3-10) ,对于折杆有 M + M BC = 0 (a) 其中 M BC 为力偶( FB , FC )的力偶矩代数值
图 3-8 例 3-3 图
解 :1. 选择平衡对象 本例中只有平面刚架 ABCD 一个刚体(折杆) ,因而是唯一的平衡对象。 2 受力分析 刚架 A 处为固定端约束, 又因为是平面受力, 故有 3 个同处于刚架平面内的约束力 FAx、 FAy 和 MA 。 刚架的隔离体受力图如图 3-8b 所示。 其中作用在 CD 部分的均布荷载已简化为一集中 力 ql 作用在 CD 杆的中点。 3. 建立平衡方程求解未
习 题
本章正文 返回总目录
2
第 3 章 力系的平衡
§3-1 平衡与平衡条件
3-1-1 平衡的概念
物体静止或作等速直线运动,这种状态称为平衡。平衡是运动的一种特殊情形。
平衡是相对于确定的参考系而言的。例如,地球上平衡的物体是相对于地球上固定参 考系的, 相对于太阳系的参考系则是不平衡的。 本章所讨论的平衡问题都是以地球作为固定 参考系的。 工程静力学所讨论的平衡问题,可以是单个刚体,也可能是由若干个刚体组成的系统, 这种系统称为刚体系统。 刚体或刚体系统的平衡与否,取决于作用在其上的力系。
工程力学第3章

1第三章力系的平衡§3–1 平面力系的平衡方程§3–2 空间力系的平衡方程§3–3 物体系统的平衡方程§3–4 静定与静不定的基本概念§3-1 平面力系的平衡方程由于=0 为力平衡M O =0 为力偶也平衡所以平面任意力系平衡的充要条件为:力系的主矢F R 和主矩M O 都等于零,即:)()(22=+=∑∑Y X F R 0)(==∑i O O F m M 1、平面任意力系的平衡方程R F=∑X 0)(=∑i A F m 0)(=∑i B F m ②二矩式条件:x 轴不AB连线⊥0)(=∑i A F m 0)(=∑i B F m 0)(=∑i C F m ③三矩式条件:A ,B ,C 不在同一直线上上式有三个独立方程,只能求出三个未知数。
=∑X 0=∑Y 0)(=∑i O F m ①一矩式①平面汇交力系=∑xF 0=∑yF2、平面特殊力系的平衡方程②平面力偶系=∑M ③平面平行力系=∑y F 0)(=∑F M O 0)(=∑F MB0)(=∑F M A AB 不x 轴⊥[例] 已知:P , a , 求:A 、B 两点的支座反力?解:①选AB 梁研究②画受力图(以后注明解除约束,可把支反力直接画在整体结构的原图上))(=∑i A F m 由32 ,032PN a N a P B B =∴=⋅+⋅-0=∑X 0=A X 0=∑Y 3,0PY P N Y A B B =∴=-+解除约束,0==∑A X X 由022;0)(=⋅-+⋅⋅+⋅=∑a P m aa q a R F m B A 0=∑Y 0=--+∴P qa R Y B A )kN (122028.01628.02022=⨯+-⨯-=+--=P a m qa R B )kN (24128.02020=-⨯+=-+=B A R qa P Y [例] 已知:P =20kN, m =16kN·m, q =20kN/m, a =0.8m求:A 、B 的支反力。
工程力学3—力系的平衡条件和平衡方程

∑ Fx = 0 B ∑ M A ( F ) = 0 A x ∑ M ( F ) = 0 B 其中A、B两点的连线AB不能垂直于投影轴x。
′ FR
由后面两式知:力系不可能简化为一力偶,只能简化 为过A、B两点的一合力或处于平衡。再加第一条件, 若AB连线不垂直于x 轴 (或y 轴),则力系必平衡。
∴N B =
60 =300N 0.2
[例4] 图示结构,已知M=800N.m,求A、C两点的约束反力。 例 图示结构,已知Байду номын сангаас, 、 两点的约束反力。 两点的约束反力
M AC = R C ⋅ d = 0.255 R C ( N .m )
∑M
i
=0
M AC − M = 0
RC = 3137 N
3 平面任意力系的平衡条件和平衡方程
M =m1 +m2 +m3 +m4 =4×(−15)=−60N⋅m
由力偶只能与力偶平衡的性质, 由力偶只能与力偶平衡的性质, 与力N 组成一力偶。 力NA与力 B组成一力偶。 根据平面力偶系平衡方程有: 根据平面力偶系平衡方程有
NB ×0.2 − m1 − m2 − m3 − m4 = 0
∴N A = N B =300 N
1,3,4;
有效的方程组合是:1,2,3;1,2,4;1,2,5;1,4,5; 2,4,5 ;2,3,5; 3,4,5
第3章 力系的平衡条件与平衡方程 章
1 平面汇交力系的平衡条件与平衡方程 2 平面力偶系的平衡条件与平衡方程 3 平面任意力系的平衡条件与平衡方程 4 简单的刚体系统平衡问题 5 考虑摩擦时的平衡问题 6 结论与讨论
1 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题
水平梁AB中点C作用着力F,其大小等于2 kN,方向与梁 的轴线成60º 角,支承情况如图a 所示,试求固定铰链支座 A和活动铰链支座B的约束力。梁的自重不计。
A C
a a
B
30º
(a)
例题
解:
1.取梁AB作为研究对象。
60º
2.画出受力图。
30º
(b)
3.作出相应的力多边形。
60º
30º
4.由力多边形解出:
l A C B
l
FP D A
l
B
l D
M=FP2 l
C
例题
例:
简支梁受力如图,已知F=300N, q=100N/m, 求A ,B处的约束反力。
解:简支梁受力如图所示:
FAx
F
FAy A
q D
2m 4m B
FB
F F
x y
0 FAx 0 0
C
2m
FAy FB F q 4 0
⑤两物体间的相互作用力应该符合作用与反作用定律。
列平衡方程,求出全部未知力
返回首页
[例]已知:图示梁,求:A、B、C处约束力。
mA XA YA 分析: 整体: 四个反力
NB
→不可直接解出 拆开: AC杆五个反力 →不可解
mA XA YA
XC YC
XC YC
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。
NB
BC杆三个反力
→可解
故先分析BC杆,再分析整体或AC杆,可解。
解:1、取BC杆为研究对象源自 0 XC YC NB
mC
XC 0
0 N B 2a Pa 0
Pa P NB 2a 2 Y 0 YC N B 0
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
解得
Fix 0
FAx FT cos300 0
(1)
FT 17.33kN FAy 5.33kN
例题
可否列下面的方程:
Fix 0 FAx FT cos 30 0 FT sin 30 6 4 P2 3P 0 M A 0 1 M 0 6 FAy 3P 2 P2 0 B 1 又可否列下面的方程?
600 150 300
B B T E
300 150 0 BC 15 300
C D
x TBD=G
A
TBD
FAB
G
E
解二:
X = 0 - TBC - TBD cos150 + FAB cos300-Gcos600= 0 Y= 0
TBC = 9.65 kN - TBD sin150+ FAB sin300-Gsin600= 0
A
24
P
P
A
C O B D
(a)
E
6
O
B
SB
J
P
I
ND
ND
K
D
(b)
SB
(c)
解: (1) 取制动蹬ABD 作为研究对象。 (2) 画出受力图。 (3) 应用平衡条件画出P、SB 和ND 的闭和力三角形。
例题
(4)由几何关系得:OE EA 24 P A
24
cm
P
A
tg
4、对力的方向判定不准的,一般用解析法。 5、解析法解题时,力的方向可以任意设,如果求出负值,说
明力方向与假设相反。对于二力构件,一般先设为拉力,如
果求出负值,说明物体受压力。
独立平衡方程数
单个物体
平面一般力系 平面平行力系 平面汇交力系 平面力偶系 3 2 2 1
n个物体组成的物 体系统
3n 2n 2n n
G 2L G1e G1(b e) G3 ab a
力系的平衡
3.4.1 单个物体平衡方程的应用
(1)根据物体平衡问题正确选定研究对象。 单个物体平衡问题的研究,可按以下步骤进行: (要画出研究对象的形状) (2)分析研究对象的受力情况,正确画出其受力图。 (研究对象本身对周围的作用力不要画出.) (3)选择恰当的平衡方程、投影轴和力矩中心, 求解未知力。
例题
均质杆AB和BC在B端固结成60°角,A端用绳悬挂,已知 BC=2AB,求当刚杆ABC平衡时,BC与水平面的倾角ɑ。
塔式起重机
已知: G1, G2, a,b,e,L 求:起重机满载时不向右和空 载时不向左翻倒时,平衡重的 重量G3所应满足的条件。 解:以起重机为研究对象
(1)满载时 不翻倒条件:FNA≥0 (1) 由 mB 0 得:
工程力学
第三章 力系的平衡
力系的平衡
• 汇交力系的平衡方程 • 1.空间汇交力系
平衡的充要条件
FR F 0
将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
• 二力矩的形式
F 0 M (F ) 0 M (F ) 0
x A B
限制条件:力矩中心A、B 两点的连线不能与投影轴x轴垂 直 y
F2 Fi
o x F1 Fn B A o x
力系的平衡
• 三力矩的形式
M M M
(F ) 0 (F ) 0 B (F ) 0 C
力系的平衡
• 3.4.2 物体平衡方程的应用
(1)静定问题与静不定问题的概念 1.静定问题 未知量的个数≤独立平衡方程数 2.超静定问题(或静不定问题) 未知量的个数>独立平衡方程数 • 超静定次数=未知量的个数-独立平衡方程数
力系的平衡
判断下面结构是否静定?
判断下面结构是否静定?
力系的平衡
M M
x y
(F ) 0 (F ) 0
O z
y
平面任意力系的平衡方程(一般形式):
F 0 F 0 F 0 F 0 M (F ) 0 M (F ) 0
x x y y z 0
可以求解3个未知量
力系的平衡
G3 a e
G 3a FNBb G1(b e) 0 G1(b e) G 3a FNB 5 b 由(4)、(5)式 得:
G1
G1(b e) G3 a
A FN A b
B FN B
6
由式(3)和(6)可得,起重机满载和空载均不致 翻倒时, 平衡重的重量G3所应满足的条件为:
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
2、取汇交点B为坐标原点,建立坐标系: X= 0 3、列平衡方程并求解: Y= 0
- TBC cos300 - TBD cos450 + FAB cos600= 0 - TBC cos600 - TBD cos450 + FAB cos300-G= 0 FAB = 45 kN TBC = 9.65 kN y
力系的平衡
• 平面平行力系 选y轴或者x轴与力系的作用线平行,则
有 X 0或者Y 0, 只有两个独立的平衡方程.
一般式,
二力矩式
M M
( F ) 0 或 B ( F ) 0
A
F 0 M (F ) 0
y O
条件:AB连线不能平行 于力的作用线
z Fi F2
F 0 F 0 m (F ) 0
x y z
o x
Fn
F1
y
空间平行力系的平衡方程
F 0 M (F ) 0 M (F ) 0
z x y
可以求解3个未知量
力系的平衡
• 平面任意力系 如果取平面任意力系的作用平面为oxy平面, 则 Fz 0
1
FB 8 4 q 6 F 2 0
代入(1)式 FB 375N
M
A
0
FAy 325 N
例题
求图示伸出梁的支座反力。
F1 =5KN F2 =20KN 2m m o =8KN· m q =2KN/m q 1 =4KN/m
A 2m 3m 2m
B 2m
例题
求如图所示悬臂梁的支座反力.