第四版复变函数第二章精品PPT课件
合集下载
复变函数(第四版)课件--章节2.3

ch( x + iy) = ch x cos y + i sh x sin y, 及 sh( x + iy) = sh x cos y + i ch x sin y.
5 、反三角函数和反双曲函数
1. 反三角函数的定义 设 z = cos w , 那么称 w 为 z 的反余弦函数 ,
记作 w = Arc cos z .
i 2 1 1 1 = − ln + + k π − arctan . 4 5 2 3 2
其中 k = 0, ± 1, ± 2, L.
6 、 小结与思考
复变初等函数是一元实变初等函数在复数范围 内的自然推广, 它既保持了后者的某些基本性质, 又有一些与后者不同的特性. 如: 1. 分成单值解析分支的方法 2.指数函数具有周期性 3. 负数无对数的结论不再成立 作业: 作业:第68页15,18,20题
今后我们应用对数函数Ln z时, 指的都 是它在除去原点及负实轴的平面内的某 一单值分支.
3 、乘幂与幂函数
1.定义
乘幂 设a为不等于0的一个复数, b为任意一个复 数, 定义乘幂ab为ebLna, 即ab = ebLna 由于Ln a=ln|a|+i(arg a+2kiπ)是多值的, 因而ab也 是多值的. 说明: 说明: (1) 当b为整数时, 由于 ab =ebLna=eb[ln|a|+i(arg a+2kπ)] =ea(ln|a|+iarg a)+2kbπi=eblna, 所以这时ab具有单一的值.
e +e cos iy = = ch y 2 −y y e −e sin iy = = i sh y 2i
第四版复变函数第二章市公开课获奖课件省名师示范课获奖课件

例6:反函数的求法:z cos w 1 (e iw e iw ) 2
得到关于e iw的二次方程:e i2w 2ze iw 1 0 (e iw z)2 z 2 1 e iw z z 2 1 w iLn(z z 2 1)
反双曲函数定义:z shw
则:w Arshz
Arshz Ln( z z2 1 )
三角函数性质:(5条)
周期为2的周期函数;
在复平面内处处解析;
sin z cos z, cos z sin z
欧拉公式仍然成立; e iz cos z i sin z 一些三角公式仍然成立 ; cos(z1 z2 ),sin(z1 z2 ) sin 2 z cos2 z 1, 但 sin z 1 & cos z 1不成立
- u y v
x y
定理一:f (z) u( x, y) v( x, y)i
在一点z x iy可导的充分必要条件为 :
u( x, y), v( x, y)在点z( x, y)可导;
满足柯西 黎曼方程:u v , u v x y y x
定理二:f (z) u( x, y) v( x, y)i
则:曲线组u(
x,
y)
c1和v( x,
y)
c
互相正交。
2
证明:f
( z )
1 i uy
vy
0
u y , v y不全为0
u y , v y 都不为0,u( x, y) c1
任一条曲线斜率为:dy dx
k1
ux uy
v(x, y) c2
任一条曲线斜率为:dy dx
k2
vx vy
利用C R方程得:k1k2
模:ez e x 辐角:Arg ez y 2k
工程数学《复变函数》(第四版)课件 1-1,2 西安交大 天津工业大学理学院 赵璐

z1 z2 z2 z1
z1 + ( z2 + z3 ) = ( z1 + z2 ) + z3
z1 ( z2 z3 ) = ( z1 z2 ) z3
分配律
z1 ( z2 + z3 ) = z1 z2 + z2 z3
9
⑤ 设 z x iy, 定义 z的共轭复数z x iy. 共轭复数的性质: i) ii)
x x1 t x 2 x1 y y1 t y 2 y1
t
∴它的复数形式的参数方程为
z x yi z1 t z2 z1 t
由z1 到 z 2 直线段的参数方程为
20
z1 z 2 1 特别地,取 t , 则线段 z1 z2 的中点为 z 2 2
z1 5 5i 3 4i 5 5i 3 4i 3 4i z 2 3 4i
z1 求 与 z2
z1 z 2
25 1 3i z , 求 Rez , Im z 与 zz . 例2 设 i 1 i
复 变 函 数
教师: 赵璐 邮箱:zhaolu.nan@
课程介绍
• 研究对象:复变函数(自变量为复数的函数) • 主要任务:研究复变数之间的相互依赖关系,
具体地就是复数域上的微积分。
· 学习方法:复变函数中许多概念、理论、和方
法是实变函数在复数域内的推广和发展,它们之 间有许多相似之处,但又有不同之点,在学习中 要善于比较、区别、特别要注意复数域上特有的 那些性质与结果。
x1 x2 y1 y2 i x2 y1 x1 y2 x1 x2 y1 y2 i x1 y2 x2 y1 2 x1 x2 y1 y2 2 Rez1 z2
z1 + ( z2 + z3 ) = ( z1 + z2 ) + z3
z1 ( z2 z3 ) = ( z1 z2 ) z3
分配律
z1 ( z2 + z3 ) = z1 z2 + z2 z3
9
⑤ 设 z x iy, 定义 z的共轭复数z x iy. 共轭复数的性质: i) ii)
x x1 t x 2 x1 y y1 t y 2 y1
t
∴它的复数形式的参数方程为
z x yi z1 t z2 z1 t
由z1 到 z 2 直线段的参数方程为
20
z1 z 2 1 特别地,取 t , 则线段 z1 z2 的中点为 z 2 2
z1 5 5i 3 4i 5 5i 3 4i 3 4i z 2 3 4i
z1 求 与 z2
z1 z 2
25 1 3i z , 求 Rez , Im z 与 zz . 例2 设 i 1 i
复 变 函 数
教师: 赵璐 邮箱:zhaolu.nan@
课程介绍
• 研究对象:复变函数(自变量为复数的函数) • 主要任务:研究复变数之间的相互依赖关系,
具体地就是复数域上的微积分。
· 学习方法:复变函数中许多概念、理论、和方
法是实变函数在复数域内的推广和发展,它们之 间有许多相似之处,但又有不同之点,在学习中 要善于比较、区别、特别要注意复数域上特有的 那些性质与结果。
x1 x2 y1 y2 i x2 y1 x1 y2 x1 x2 y1 y2 i x1 y2 x2 y1 2 x1 x2 y1 y2 2 Rez1 z2
复变函数第二章

z → z0
该定理将求复变函数 f ( z ) = u( x , y ) + iv ( x , y ) 的极限问题 , 转化为求 两个二元实变函数 u( x , y ) 和 v ( x , y ) 的极限问题 .
x → x0 y → y0
x → x0 y → y0
定理 : 设 lim f ( z ) = A, lim g ( z ) = B , 那末
4
例2 : 求极限 lim cos z
解:因为 cos z = cos( x + yi ) = cos xchy − i sin xshy
z → z0
若取 u(x,y) = cos xchy , v(x,y) = sin xshy , z 0 = x 0 + iy 0 , 则有
( x , y )→ ( x0 , y0 )
0
→ 那末称 A 为 f ( z ) 当 z 趋向于 z0 时的极限 . 记作 lim f ( z ) = A. (或 f ( z ) zz → A) z→ z →
0
注意: 注意: 定义中 z → z0 的方式是任意的 . 几何意义: 几何意义 当变点z一旦进 当变点 一旦进 入z0 的充分小去 心邻域时,它的象 心邻域时 它的象 就落入A的 点f(z)就落入 的 就落入 一个预先给定的 ε邻域中 邻域中
z → z0 z → z0
(1) lim[ f ( z ) ± g ( z )] = A ± B;
z → z0 z → z0
(2) lim[ f ( z ) g ( z )] = AB; f (z) A (3) lim ( B ≠ 0). = z → z0 g ( z ) B
与实变函数的极限运算法则类似. 与实变函数的极限运算法则类似
该定理将求复变函数 f ( z ) = u( x , y ) + iv ( x , y ) 的极限问题 , 转化为求 两个二元实变函数 u( x , y ) 和 v ( x , y ) 的极限问题 .
x → x0 y → y0
x → x0 y → y0
定理 : 设 lim f ( z ) = A, lim g ( z ) = B , 那末
4
例2 : 求极限 lim cos z
解:因为 cos z = cos( x + yi ) = cos xchy − i sin xshy
z → z0
若取 u(x,y) = cos xchy , v(x,y) = sin xshy , z 0 = x 0 + iy 0 , 则有
( x , y )→ ( x0 , y0 )
0
→ 那末称 A 为 f ( z ) 当 z 趋向于 z0 时的极限 . 记作 lim f ( z ) = A. (或 f ( z ) zz → A) z→ z →
0
注意: 注意: 定义中 z → z0 的方式是任意的 . 几何意义: 几何意义 当变点z一旦进 当变点 一旦进 入z0 的充分小去 心邻域时,它的象 心邻域时 它的象 就落入A的 点f(z)就落入 的 就落入 一个预先给定的 ε邻域中 邻域中
z → z0 z → z0
(1) lim[ f ( z ) ± g ( z )] = A ± B;
z → z0 z → z0
(2) lim[ f ( z ) g ( z )] = AB; f (z) A (3) lim ( B ≠ 0). = z → z0 g ( z ) B
与实变函数的极限运算法则类似. 与实变函数的极限运算法则类似
复变函数课件章节

复变函数(第四版)课件 章节大纲
汇报人:
目录
添加目录标题
01
复变函数的基本概念
02
复变函数的微积分
03
全纯函数与亚纯函数
04
复变函数的积分公式 和全纯函数的性质
05
全纯映射和几何函数 论
06
添加章节标题
复变函数的基本 概念
复数及其几何意义
复数:实数与 虚数的组合
复平面:复数 的几何表示
复数的模:表 示复数的大小
全纯函数的性质
全纯函数是复变函数中的重要概念,具有解析性和连续性
全纯函数在复平面上的解析性,即函数在复平面上的任意点处都可以解析
全纯函数的连续性,即函数在复平面上的任意点处都可以连续
全纯函数的性质还包括其解析性和连续性的关系,即全纯函数在复平面上的解析性和连续性是等价 的
最大模原理和柯西积分公式
亚纯函数的展开 和值分布理论
亚纯函数的展开和米塔-列夫勒理论
展开:将亚纯函数分解为幂 级数的形式
米塔-列夫勒理论:研究亚纯 函数展开的性质和规律
亚纯函数:复变函数中的一 种特殊函数
应用:在解析数论、复动力 系统等领域有广泛应用
值分布理论和皮卡定理
值分布理论:研 究函数在复平面 上的值分布规律
皮卡定理:描述 函数在复平面上 的值分布规律
极值性质:全纯 映射的极值性质, 包括最大值和最 小值
泰勒定理:泰勒 定理的证明和应 用,包括泰勒级 数和泰勒展开式
极值定理:极值 定理的证明和应 用,包括极值点 的存在性和唯一 性
泰勒定理的应用: 泰勒定理在复变 函数中的应用, 包括求解微分方 程和积分方程
几何函数论和单叶函数
几何函数论:研究复变函数在几何上的性质,如解析性、单值性、连续性等 单叶函数:复变函数在某一区域内具有唯一确定的值,且该值与自变量一一对应 单叶函数的性质:解析性、单值性、连续性、可微性等 单叶函数的应用:在工程、物理、化学等领域有广泛应用,如流体力学、电磁学、量子力学等
汇报人:
目录
添加目录标题
01
复变函数的基本概念
02
复变函数的微积分
03
全纯函数与亚纯函数
04
复变函数的积分公式 和全纯函数的性质
05
全纯映射和几何函数 论
06
添加章节标题
复变函数的基本 概念
复数及其几何意义
复数:实数与 虚数的组合
复平面:复数 的几何表示
复数的模:表 示复数的大小
全纯函数的性质
全纯函数是复变函数中的重要概念,具有解析性和连续性
全纯函数在复平面上的解析性,即函数在复平面上的任意点处都可以解析
全纯函数的连续性,即函数在复平面上的任意点处都可以连续
全纯函数的性质还包括其解析性和连续性的关系,即全纯函数在复平面上的解析性和连续性是等价 的
最大模原理和柯西积分公式
亚纯函数的展开 和值分布理论
亚纯函数的展开和米塔-列夫勒理论
展开:将亚纯函数分解为幂 级数的形式
米塔-列夫勒理论:研究亚纯 函数展开的性质和规律
亚纯函数:复变函数中的一 种特殊函数
应用:在解析数论、复动力 系统等领域有广泛应用
值分布理论和皮卡定理
值分布理论:研 究函数在复平面 上的值分布规律
皮卡定理:描述 函数在复平面上 的值分布规律
极值性质:全纯 映射的极值性质, 包括最大值和最 小值
泰勒定理:泰勒 定理的证明和应 用,包括泰勒级 数和泰勒展开式
极值定理:极值 定理的证明和应 用,包括极值点 的存在性和唯一 性
泰勒定理的应用: 泰勒定理在复变 函数中的应用, 包括求解微分方 程和积分方程
几何函数论和单叶函数
几何函数论:研究复变函数在几何上的性质,如解析性、单值性、连续性等 单叶函数:复变函数在某一区域内具有唯一确定的值,且该值与自变量一一对应 单叶函数的性质:解析性、单值性、连续性、可微性等 单叶函数的应用:在工程、物理、化学等领域有广泛应用,如流体力学、电磁学、量子力学等
复变函数第四版-第二章_2.5 几种重要的矢量场

u y Q ( x, y, z )
u z R ( x, y, z)
第二章 场论
9
此性质表明: (1) A d l P d x Q d y R d z
u x dx u y dy u z dz du
即表达式A⋅dl = Pdx + Qdy+ Rdz 为函数u 的全微分; (2)函数u 满足A = grad u,所以,矢量场A 为有势场。 一般称旋度恒为零的场为无旋场;具有曲线积分 M
第二章 场论
19
也就是满足
W W P y z W U Q x z W W R x y
(5 .1 2 )
满足(5.11)式的矢量B,称为矢量场A 的矢势量,其存在是 肯定的,例如以
于是
A d l x yz
l
B ( 2 ,3 ,1) A (1, 4 ,1)
12 4 8
第二章 场论
16
2. 管形场
定义:设有矢量场A,若其散度div A ≡ 0,则称此矢量场为管 形场。换言之,管形场就是无源场。 定理2.设管形场A 所在的空间区域为一面单连域,在场中任取一 个矢量管,假定S1与S2是它的任意两个横断面,其法矢n1与n2都 朝向矢量A 所指的一侧。如图(2 − 24)。则有
g ra d v 1 g ra d v 2
或 于是 即
g ra d v 1 v 2) 0 (
v 1 v 2 C (C 为 任 意 常 数 )
v 1 v 2 C
所以,在有势场中任何两个势函数之间,只相差一个常数。
第二章 场论
5
由此,若已知有势场A (M) 的一个势函数v (M) ,则场的所有势 函数的全体可表示为
u z R ( x, y, z)
第二章 场论
9
此性质表明: (1) A d l P d x Q d y R d z
u x dx u y dy u z dz du
即表达式A⋅dl = Pdx + Qdy+ Rdz 为函数u 的全微分; (2)函数u 满足A = grad u,所以,矢量场A 为有势场。 一般称旋度恒为零的场为无旋场;具有曲线积分 M
第二章 场论
19
也就是满足
W W P y z W U Q x z W W R x y
(5 .1 2 )
满足(5.11)式的矢量B,称为矢量场A 的矢势量,其存在是 肯定的,例如以
于是
A d l x yz
l
B ( 2 ,3 ,1) A (1, 4 ,1)
12 4 8
第二章 场论
16
2. 管形场
定义:设有矢量场A,若其散度div A ≡ 0,则称此矢量场为管 形场。换言之,管形场就是无源场。 定理2.设管形场A 所在的空间区域为一面单连域,在场中任取一 个矢量管,假定S1与S2是它的任意两个横断面,其法矢n1与n2都 朝向矢量A 所指的一侧。如图(2 − 24)。则有
g ra d v 1 g ra d v 2
或 于是 即
g ra d v 1 v 2) 0 (
v 1 v 2 C (C 为 任 意 常 数 )
v 1 v 2 C
所以,在有势场中任何两个势函数之间,只相差一个常数。
第二章 场论
5
由此,若已知有势场A (M) 的一个势函数v (M) ,则场的所有势 函数的全体可表示为
复变函数(第四版余家荣)ppt课件

h '( z ) [ g ( f ( z ) g ) '( f ( ] z ) f '' ( z ) )
完整编辑ppt
17
反函数求导法则
设w 函 f(z) 数 在D 区 内域 解 f'(析 z) 0 , , 又 且 反
zf1(w)(w)
存在且为连续, 则有:
'(w) 1
1
f'(z)z(w) f'((w))
在 D 内 ? 解析 完整编辑ppt 吗
19
设
可微,则
首先设 h 为实数,得
令
得
再令
t 为实数,得
完整编辑ppt
20
令
得
由
得
完整编辑ppt
Cauchy-Riemann方程
21
定设 理函 f(z) u 数 (x ,y ) i(v x ,y )在D 区 内域 有 定义 z , x i yD 在 可点 导,则
要求复 z变 xiy的 量函 f(z数 )满足下列条
(1) x R , f(x)ex;
(2) f (z)在C上解析;
( 3 ) z 1 ,z 2 C ,f( z 1 z 2 ) f( z 1 ) f( z 2 );
首先
f(z)f(xi)yexf(i)y,
设
f(i)yA (y)iB (y),
则
则得到一个单值函此数函,数称作幅角函一数个单的值分支.
如果此单值函数连则续称,其为幅角函数个的 连续一单值分支.
完整编辑ppt
53
设
则主值幅角函数 argz是
D上的一个连续单值分支 . 对每一个整数 k,
也是D上的一个连续单值分支 .
完整编辑ppt
17
反函数求导法则
设w 函 f(z) 数 在D 区 内域 解 f'(析 z) 0 , , 又 且 反
zf1(w)(w)
存在且为连续, 则有:
'(w) 1
1
f'(z)z(w) f'((w))
在 D 内 ? 解析 完整编辑ppt 吗
19
设
可微,则
首先设 h 为实数,得
令
得
再令
t 为实数,得
完整编辑ppt
20
令
得
由
得
完整编辑ppt
Cauchy-Riemann方程
21
定设 理函 f(z) u 数 (x ,y ) i(v x ,y )在D 区 内域 有 定义 z , x i yD 在 可点 导,则
要求复 z变 xiy的 量函 f(z数 )满足下列条
(1) x R , f(x)ex;
(2) f (z)在C上解析;
( 3 ) z 1 ,z 2 C ,f( z 1 z 2 ) f( z 1 ) f( z 2 );
首先
f(z)f(xi)yexf(i)y,
设
f(i)yA (y)iB (y),
则
则得到一个单值函此数函,数称作幅角函一数个单的值分支.
如果此单值函数连则续称,其为幅角函数个的 连续一单值分支.
完整编辑ppt
53
设
则主值幅角函数 argz是
D上的一个连续单值分支 . 对每一个整数 k,
也是D上的一个连续单值分支 .
复变函数第二章课件

9
例 判断下列函数的解析性.
1) w z ;2) f ( z ) e x (cos y i sin y );3)w z Re( z )
例 设函数
f ( z ) x 2 axy by 2 i (cx 2 dxy y 2 ).
问:常数 a, b, c, d 取何值时, ( z ) 在复平面 f 内处处解析?
注
Lnz n nLnz n 1 Ln z n Lnz
不成立!!
18
对数函数的解析性 y z
z e
w
v
i
O
w
O
x
w ln z
u
i
arg z v
ln z 在除去原点和负实轴的平面内解析,且有
d ln z 1 1 w de dz z dw (Lnz )k (k Z) 在除去原点和负实轴的平面内解析.
19
3.3 幂函数
对 z 0, ; C
w z e Lnz e (ln z 2k i ) w0e2k i (k Z), 其中 w0 e ln z 是 z 的一个主值.
(sin z )' cos z, (cos z )' sin z
iz
(3)遵从通常的三角恒等式;
22
(4)周期为 2 ; (5) sin z 0 z n , n Z; ; 1 ; ; cos z 0 z (n ) , n Z; ; 2 (6) sin z 1 和 cos z 1不成立; (7) cos( z ) cos z , sin( z ) sin z ; (8) e cos z i sin z.
例 判断下列函数的解析性.
1) w z ;2) f ( z ) e x (cos y i sin y );3)w z Re( z )
例 设函数
f ( z ) x 2 axy by 2 i (cx 2 dxy y 2 ).
问:常数 a, b, c, d 取何值时, ( z ) 在复平面 f 内处处解析?
注
Lnz n nLnz n 1 Ln z n Lnz
不成立!!
18
对数函数的解析性 y z
z e
w
v
i
O
w
O
x
w ln z
u
i
arg z v
ln z 在除去原点和负实轴的平面内解析,且有
d ln z 1 1 w de dz z dw (Lnz )k (k Z) 在除去原点和负实轴的平面内解析.
19
3.3 幂函数
对 z 0, ; C
w z e Lnz e (ln z 2k i ) w0e2k i (k Z), 其中 w0 e ln z 是 z 的一个主值.
(sin z )' cos z, (cos z )' sin z
iz
(3)遵从通常的三角恒等式;
22
(4)周期为 2 ; (5) sin z 0 z n , n Z; ; 1 ; ; cos z 0 z (n ) , n Z; ; 2 (6) sin z 1 和 cos z 1不成立; (7) cos( z ) cos z , sin( z ) sin z ; (8) e cos z i sin z.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定 理一 : f (z) u(x, y) v(x, y)i
x
y
在 一点z x iy可 导的 充 分必 要 条:件 为
u(x, y),v(x, y)在 点z(x, y)可 导;
满 足柯 西 黎 曼方 程u: v , u v x y y x
定理二f(: z)u(x, y)v(x, y)i 在 区D域内 解 析 的 充 分 必为要:条 件 u(x, y),v(x, y)在D内可导; 在D内 ( CR方 程 ): u v, u v x y y x
g ( z )2
6、 f [ g ( z )] f ( w ) g ( z ) w g ( z )
2、解析函数
w f (z)在点z0解析: f (z)在z0及z0的邻域内处处可导
在区D 域 内解析f(: z)在D内每一点解析。
f(z)在z0不解 析 z0为奇点。
定理: 1) 如果f (z),g(z)在区域D内解析,有 :
a,b,c,d?可f使 (z)处 处 解 析 。
例 3 、 f'(z)0 在 D 内 f(z)常数
例 4、如f果 (z): uiv为解析函 f(z)数 0 , 则曲 :线 u(x组 ,y)c1和 v(x,y)c2互 相 正
证明:
f (z)
1 i uy
vy
0
u y ,v y不全为
0
uy,v
都不为
f (z) g(z), f (z) g(z), f (z) , 在D内都解析。 g(z)
2) h=g(z)在D内解析,w=f(h)在G内解析, 如果函数h=g(z)的函数值集合落在G内,则 复合函数w=f[g(z)]在D内解析
有 理 函 数 ( 多 项整式个)复在平 面 上 解 析 。 wP(z)a0 a1zanzn 有理分w式 P(z)(两个多项式的分商母)不除 0的 为
提 供 了 判 断 函 数 是导否的可方 法 ;
给 出 了 求 导 公 式 。 f ( z ) u i v v i u x x y y
u - u
x
y
v
v
x
y
目标 2:由柯西 黎曼方程判断函 析数 性的 。解
u
u
例 1: f(z)z,z2,zRez)的 ( 解析性 xv -
y v
x
y
例 2: f(z)x2axyb2yi(cx 2dxyy2)
1、( c ) 0
2、( z n ) nz n 1 n 正 整 数
3、 f ( z ) g ( z ) f ( z ) g ( z )
4、 f ( z ) g ( z ) f ( z ) g ( z ) f ( z ) g ( z )
5、
f (z) g(z)
f (z )g(z ) f (z )g (z )
§3 初 等 函 数
实变函数中有五个初基等本函数:
ex,l ogax, xn,si nx, Arcsi nx 用初等函数的四则合和运复算得到一般函数。
推 广 到 复 数 域 ,初 有等 五函 种数 : 性质、解析性
ez ,Lnz,za ,sinz,Arcsinz
1、指数函数 e( z :周期)
定义 f ( z)满足 3个条件为 e z: f (z)在复平面内处处解析; f (z) f (z) Im( z) 0时有 e z e x ;
Q(z) 点外,处处解析。
目标1:由定义或定理判 数断 的函 解析点。
例 3、 (1)f(z)z2 (2)f(z)x2yi (3)f(z)z2 (4)f(z)1的解析性?
z
§2 函数解析的条件
复变可导比实变严多格;的 复变可导不但实部部和必虚须可导, u
x 而且它们之间还要殊有的特关系。 v
- u y v
y
0,
u( x ,
y)
c1
任一条曲线斜率为:
dy dx
k1
ux uy
v(x, y) c2
任一条曲线斜率为:
dy dx
k2
vx vy
利用 C R方程得:
k1k2
ux uy
vx vy
1 两曲线正交。
uy 0 vx,vy 0 ux
k1
ux uy
ux 0
平行与
y轴, k 2
vx vy
f(z 0) d dz w z z 0 lz i0f m (z 0 zz ) f(z 0)
注意 z : 0的方式是 ,比任 实意 变的 严
例1:f z2 连 续 、 处 处 导 数 存 在 例2: 函 数 : w f (z) x 2yi
连续、处处不可导
求导法则: 导数定义形式与 同实 ,变 求相 导法则与 同实 。
0
vy
0平行与
x轴
高 层
f ( z )在D内解析
f ( zห้องสมุดไป่ตู้)在D内可导
中 层
f(z)在z0解 析
f(z)在z0可 导
低
层
f(z)在z0连 续
连续、点解析、区域解 析关系图
目标1:由定义或定理判 数断 的函 解析点。 目标 2:由柯西 黎曼方程判断函 析数 性的 。解
作业 1:第二章习 (p6题6) 2, 3
f(z) e z e x iy e x (cy o issiy)n
模 ez : ex 辐A 角 e rz g : y2 k
ez的性质(: 4条)
f ( z ) ez 0
ez ez 处处解析
满足加法定理:ez1ez2 ez1z2
周期性:周期为2 i
Rez()excoys Imez()exsiny
第二章 解析函数
• 基本要求:
• 1、掌握复变函数求导数; • 2、掌握解析函数的判断及柯西.黎曼方程。 • 3、初等函数的定义及性质。
1、导数:
§1 解 析 函 数
定义 w: f(z)定义在 D 内 ,区 z0 域 D 如 l果 z i0m f(z0 zz)f(z0)存在, f(z则 )在 z0可 :导 称
Vargzarc(tyg) x
[x,y]=meshgrid(-4:0.1:4); v=atan(y./x); surf(x,y,v)
ez ex
2、对数函L数 nz( :多值)
定义 ew: z成 使 立w 的 L函 zn 数
Lznln ziAzrg ln ziarz gi2k
主值对数函数:
lnz lnz iargz argz
多值对数函数:
Lnz lnz2k i k 1,2
Ulnzlnxiy
[x,y]=meshgrid(-4:0.1:4); u=log(sqrt(x.^2+y.^2)); surf(x,y,u)