第四章 受弯构件的计算原理
《混凝土结构设计原理》第4章 受弯构件斜截面承载力计算

计算剪力值的确定
《公路桥规》规定:取离支点中心线梁高一半处的剪力 设计值 V ;其中不少于60%由混凝土和箍筋共同承担; 不超过40%由弯起钢筋(按45º弯起)承担,并且用水平 线将剪力设计值包络图分割;
箍筋设计 假设箍筋直径和种类,箍筋间距为
箍筋可减小斜裂缝宽度,从而提高斜截面上的骨料咬力。
箍筋限制了纵向钢筋的竖向位移,阻止混凝土沿纵向 钢筋的撕裂,提高了纵向钢筋的销栓作用。
可见,箍筋对提高斜截面受剪承载力的作用是多方面的和 综合性的。
2、剪力传递机理(见下图)——桁架-拱模型:
拱I: 相当于上弦压杆 拱Ⅱ、拱Ⅲ: 相当于受压腹杆
否
是否通过 是
计算结束
§4.3 受弯构件的斜截面抗剪承载力
计算依据:以剪压破坏为基础 一般是采用限制截面最小尺寸防止发生斜压破坏; 限制箍筋最大间距和最小配箍率防止发生斜拉破坏
一、基本公式及适用条件 计算图式:
基本公式:(半经验半理论)
Vu Vc Vsv Vsb Vcs Vsb
抗剪能力:
斜截面受剪承载力主要取决于构件截面尺寸和混凝土抗 压强度,受剪承载力比剪压破坏高。
破坏性质:属脆性破坏
除上述三种主要破坏形态外,有时还可能发生局部挤压 或纵向钢筋锚固等破坏。
四、有腹筋简支梁斜裂缝出现后的受力状态
无腹筋梁斜截面受剪承载力很低,且破坏时呈脆性。 故《公桥规》规定,一般的梁内都需设置腹筋。配置腹筋是 提高梁斜截面受剪承载力的有效方法。在配置腹筋时,一般 首先配置一定数量的箍筋,当箍筋用量较大时,则可同时配 置弯起钢筋。
V fcbh00
0. 0. 0. 0. 0.1
《混凝土结构设计原理》第四章_课堂笔记

《混凝⼟结构设计原理》第四章_课堂笔记《混凝⼟结构设计原理》第四章受弯构件正截⾯承载⼒计算课堂笔记◆知识点掌握:受弯构件是⼟⽊⼯程中⽤得最普遍的构件。
与构件计算轴线垂直的截⾯称为正截⾯,受弯构件正截⾯承载⼒计算就是满⾜要求:M≤Mu。
这⾥M为受弯构件正截⾯的设计弯矩,Mu为受弯构件正截⾯受弯承载⼒,是由正截⾯上的材料所产⽣的抗⼒,其计算及应⽤是本章的中⼼问题。
◆主要内容受弯构件的⼀般构造要求受弯构件正截⾯承载⼒的试验研究受弯构件正截⾯承载⼒的计算理论单筋矩形戴⾯受弯承载⼒计算双筋矩形截⾯受弯承载⼒计算T形截⾯受弯承载⼒计算◆学习要求1.深⼊理解适筋梁的三个受⼒阶段,配筋率对梁正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.熟练掌握单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯设计和复核的握法,包括适⽤条件的验算。
重点难点◆本章的重点:1.适筋梁的受⼒阶段,配筋率对正截⾯破坏形态的影响及正截⾯抗弯承载⼒的截⾯应⼒计算图形。
2.单筋矩形、双筋矩形和T形截⾯受弯构件正截⾯抗弯承载⼒的计算。
本章的难点:重点1也是本章的难点。
⼀、受弯构件的⼀般构造(⼀)受弯构件常见截⾯形式结构中常⽤的梁、板是典型的受弯构件:受弯构件的常见截⾯形式的有矩形、T形、⼯字形、箱形、预制板常见的有空⼼板、槽型板等;为施⼯⽅便和结构整体性,也可采⽤预制和现浇结合,形成叠合梁和叠合板。
(⼆)受弯构件的截⾯尺⼨为统⼀模板尺⼨,⽅便施⼯,宜按下述采⽤:截⾯宽度b=120, 150 , 180、200、220、250、300以上级差为50mm。
截⾯⾼度h=250, 300,…、750、800mm,每次级差为50mm,800mm以上级差为100mm。
板的厚度与使⽤要求有关,板厚以10mm为模数。
但板的厚度不应过⼩。
(三)受弯构件材料选择与⼀般构造1.受弯构件的混凝⼟等级2.受弯构件的混凝⼟保护层厚度纵向受⼒钢筋的外表⾯到截⾯边缘的最⼩垂直距离,称为混凝⼟保护层厚度,⽤c表⽰。
第四章 受弯构件正截面承载力计算

因此得出
b
1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P
梁的扭转

Mt
tds t ds
(4.3.4)
其中积分是对截面各板件厚度中线的闭路积分
任一点处的剪应力为:
Mt 2 At
A为截面中心线所围面积
(4.3.5)
闭口截面的抗扭能力要比开口截面的抗扭能力更强。
2 开口截面构件的约束扭转
特点:由于支座的阻碍或其 它原因,受扭构件的截面不 能完全自由地翘曲(翘曲受 到约束)。 结果: 截面纤维纵向伸缩受 到约束,产生纵向翘曲正应 力 ,并伴随产生翘曲剪应 力 。翘曲剪应力绕截面剪 心形成抵抗翘曲扭矩M的能 力。总扭距分为自由扭距和 翘曲扭距两部分。构件扭转 平衡方程为:
第四章 受弯构件的计算原理
梁的扭转
1 自由扭转
当作用在梁上的剪力没有通过剪力中心时梁不仅产生弯曲变形,还 将绕剪力中心发生扭转。 如果梁中的各纤维沿纵向伸长 或缩短不受约束,则为自由扭转。
z
y
A M
C
x M
B D
z
图1 工字形截面构件自由扭转
图2 自由扭转剪应力
开口薄壁构件自由扭转时,截面上只有剪应力,其分布情况为 在壁厚范围内组成一个封闭的剪力流,剪应力的方向与壁厚中心线 平行,大小沿壁厚直线变化,中心线处为零,壁内外边缘处为最大 t , t的大小与构件扭转角的变化率 成正比。此剪力流形成抵抗外 扭矩的合力矩GIt 。
板件边缘的最大剪应力t与Mt的关系为:
k I t bi ti3 3
(2)
k的取值: 槽钢: T形钢: I字钢: 角钢: k=1.12 k=1.15 k=1.20 k=1.00
M tt It
(3)
闭口薄壁构件自由扭转时,截面上的剪应力分布与开口截面完 全不同,闭口截面壁厚两侧剪应力方向相同,薄壁截面可认为剪应 力沿厚度均匀分布,方向与截面中线相切,沿构件截面任意处 t为 常数
第四章-受弯构件正截面承载力计算

3. 计算表格的制作和使用 α1fcbh0ξ=Asfy 由公式: M =α1 fcbh02ξ (1-0.5ξ)
或
M = As fy h0(1- 0.5ξ)
令 αs = ξ(1−0.5ξ)
γs = 1−0.5ξ ξ, αs, γs之间存在一一对应的关系, 可预先制
成表待查, 因此对于设计题:
M αs = α1 f cbh0 2
3. 超筋梁:
ρ > ρmax
• 开裂, 裂缝多而细,钢筋应力不高, 最终由于 压区砼压碎而崩溃。 • 裂缝、变形均不太明显, 破坏具有脆性性质。 • 钢材未充分发挥作用。 • 设计不允许。
P
P
P
P
..
(a) P P P P
...
P P (b) P P
..
(c)
• 受弯小结
进行受弯构件截面各受力工作阶段的分析, 可 以详细了解截面受力的全过程, 而且为裂缝、变形 及承载力的计算提供依据。 Ia —— 抗裂计算的依据 II —— 正常工作状态, 变形和裂缝宽度计算的依据; IIIa —— 承载能力极限状态;
αs =
′ ′ ′ M − As f y (h0 − as )
α1 f cbh0
2
ξ = 1 − 1 − 2α s
x = ξ h0
当 ξ > ξb 说明As太少, 应加大截面尺寸或按As未知的 情况I分别求As及As′。 当2as′ ≤ ξ ≤ ξb 将上式求的ξ代入求As
As = ′ ′ α1 f cbξh0 + As f y fy
ρ ≤ ρmax ξ ≤ ξ b, x ≤ xb α ≤ αsb
M ≤ Mmax
工程实践表明, 当ρ在适当的比例时, 梁、板 的综合经济指标较好, 故梁、板的经济配筋率: 实心板 矩形板 T形梁
第4章受弯构件的正截面受弯承载力

11
净距30mm 钢筋直径1.5d h h0=h-60
净距25mm 钢筋直径d
b
净距25mm 钢筋直径d
12
《规范》4.2.7 构件中的钢筋可采用并筋的配置形式。直 径28mm 及以下的钢筋并筋数量不应超过3 根;直接32mm 的钢筋并筋数量宜为2 根;直径36mm 及以上的钢筋不应 采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的 等效直径应按截面面积相等的原则换算确定。
应变测点 P
P
1 1 ( ~ )L 3 4
百分表 L
弯矩M图
剪力V图
图4-4试验梁
19
适筋梁跨中弯矩M/Mu~ f的曲线如图
图4-5
M/Mu-f图
20
(4)实验过程分析: A.三阶段的划分原则: 第Ⅰ阶段:弯矩从零到受拉区边缘即将开裂,结束时称为 Ⅰa阶段,其标志为受拉区边缘混凝土达到其极限拉应 0 变 tu;
h
as
As
b
c
f
s
xn
Mcr
阶段 I a
As as
b
h0
h
c
f
s
xn
M
ft
阶段
As as
h0
h
s
22
*第Ⅰ阶段:未裂阶段
从开始加荷到受拉区混凝土开裂,梁的整个截面均参 加受力,由于弯矩很小,沿梁高量测到的梁截面上各个纤 维应变也小,且应变沿梁截面高度为直线变化。虽然受拉 区混凝土在开裂以前有一定的塑性变形,但整个截面的受 力基本接近线弹性,荷载-挠度曲线或弯矩-曲率曲线基本 接近直线。截面抗弯刚度较大,挠度和截面曲率很小,钢 筋的应力也很小,且都与弯矩近似成正比,受压区与受拉 区应力分布图形均为三角形。 在弯矩增加到Mcr时,受拉区边缘纤维的应变值即将 到达混凝土受弯时的极限拉应变实验值ε tu0,截面遂处 于即将开裂状态,称为第I阶段末,用Ia表示,受压区应 力分布图形接近三角形,受拉区应力分布图形则成曲线 23 分布。
第四章-受弯构件正截面承载力计算精选全文

【4.9】解:
h0 h as 500 60 440 mm
M1
f
' y
As'
(h0
as' )
300 226 (440 40)
27.12kN m
M 2 M M1 88 27.12 60.88kN m
s
M2
1 fcbh02
60.88 106 1.0 9.6 200 4402
返回
[4.1] 解:1.基本公式法
h0 h 40 400 40 360 mm
x h0 (1
1 2M ) 360 (1
1 fcbh02
1
2 75106
) 133.12mm
1.0 9.6 200 3602
xb b h0 0.614 360 221 .04mm x 满足
2.79%
300 1.0 14.3
0.585
b
0.55
取 b 0.55
得 s max 0.4
Mu s max 1 fcbh02 0.41.014.3 200 4402 221.48kN m
返回
第四讲作业
设计题 复核题
P75 4.7 P75 4.8 P75 4.9
P75 4.10
态,As f y
l fcbbh0 , 则max
As bh0
b
l fc
fy
。
返回
➢少筋梁与最小配筋率是如何定义的?
➢答:当钢筋混凝土梁的极限抗弯承载能力Mu。(按III 阶段计算)等于同截面素混凝土梁抗裂抵抗弯矩 M cr 时, 此钢筋混凝土梁定义为少筋梁。少筋梁与适筋梁的界限 配筋率即为最小配筋率 min 。
答案
目录
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算

◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 各截面上大小不同的翘曲正应力,为与之平衡,产生剪应力 (shear stress),称为翘曲剪应力或扇性剪应力(curl shear stress)。
扭转平衡方程(torsion balanced equation):
M z M t M
(4.3.6)
③ 约束扭转时,截面上各纵向纤维有不同伸长或缩短,因而纵 向纤维必有弯曲变形,弯曲扭转。
(postbuckling strength of beam web plate)
§4.1 概述(introduction)
受弯构件(members in bending)——承受横向荷载(lateral load)和弯矩(bending moment)构件,称之为梁(beam)。 梁——凡以弯曲(bending)为主要变形(deformation)的杆件通常 均称为梁。《材料力学》(material mechanics)
§4.2 受弯构件的强度和刚度 (strength and stiffness of flexural members)
Vmax
Mmax
σ
x x
fy
弹性阶段的最大弯矩:
M xe M y f yWnx
M xe Wnx
Wnx :净截面模量(跟强度有关)
σ
x x
M e W nx
M y f yWnx
截面塑性发展系数,对于工字形截面梁:
x 1.05; y 1.2 其他截面见表4.2.1。
(a) =1.2——适用于所考虑边缘纤维处没有加宽翼缘的截面 (如矩形截面、工字形截面绕弱轴弯曲等),这些截面都较 大的塑性发展潜力。 (b)=1.05——适用 于所考虑 边缘纤维 为 加宽翼 缘 的截 面 (如矩形截面、工字形截面),这些截面发展塑性变形增大, 抵抗弯矩的潜力较小。 (c) =1.15——适用于圆管形截面,其塑性发展潜力在以上两 条之间。
l z a 2.5hy b
a--集中荷载沿梁跨度方向的支承长度,对吊车轮压可 取为50mm;
hy--自梁承载边缘到腹板计算高度边缘的距离;
hr--轨道的高度,计算处无轨道时取0;
b --梁端到支座板外边缘的距离,按实际取,但不得 大于2.5hy。
ho
t1
b 腹板的计算高度ho的规定: 1.轧制型钢(rolling section),两内孤起点间距; 2.焊接组合截面,为腹板高度(web plate height); 3.铆接时为铆钉(rivet)间最近距离。 b
强度(strength) (屈曲后强度)
承载能力极限状态 (limit state of carrying capacity)
整体稳定 (overall buckling) 局部稳定 (local buckling)
抗弯强度(flexural strength) 抗剪强度(shear strength) 局部压应力(local compression) 折算应力(reduced stress)
第 四 章
第四章 受弯构件的计算原理
§4-1 概述 (introduction)
§4-2 受弯构件的强度和刚度
(strength and stiffness of beam members)
§4-3 梁的扭转(torsion) §4-4 梁的整体稳定(overall buckling) §4-5 梁板件的局部稳定(local buckling) §4-6 梁腹板的屈曲后强度
梁设计时只是有限制地利用截面的塑性(plasticity),如
工字形截面塑性发展深度取a≤h/8。(h/8 ~ h/4)
fy
x x
a
(1)单向弯曲梁
Mx f xWnx
a
(4.2.2)
(2)双向弯曲梁
My Mx f xWnx yWny
(4.2.3)
式中:
x , y
《规范》规定:
[T ], [ Q ]
其挠度的算法可用材料力学算法解出,也可用简便算法。 等截面简支梁(simply supported beam):
v 5 M xkl M xkl [v] l 48 EI x 10 EI x l
翼缘截面改变的简支梁(simply supported beam):
b
(d)当翼缘外伸宽度b与其厚度t之比满足:
Y
X X
235 b 235 13 15 fy t fy
时, x
t
1.0
Y
需要计算疲劳强度的梁 (fatigue strength) :
x y 1.0
4.2.2 抗剪强度(shear strength)
1. 薄壁构件的剪力流理论和剪力中心(shear center)
v M xkl 3 I x Ix1 [v] (1 ) l 10 EI x 25 I x l
I I
x
跨中毛截面抵抗矩
支座附近毛截面抵抗矩
x1
I
x1
I
x
§4.3 梁的扭转(beam’s torsion)
翘曲变形(warping deformation)—当构件发生扭转时,构件截 面上纤维沿纵向发生的位移(displacement),使截面不再保持平 面。
原因:
受压翼缘(compressive flange plate) 应力达临应力,其弱轴为 1 -1轴,但
1 Y
X
1
X
由于有腹板作连续支承,(下翼缘和
腹板下部均受拉,可以提供稳定的支 承),只有绕y轴屈曲,侧向屈曲后, 弯矩平面不再和截面的剪切中心 (shear center)重合,必然产生扭转。 梁维持其稳定平衡状态所承担的最大荷载或最大弯矩,称为 临界荷载或临界弯矩(critical moment)。 Y
§4.4 受弯构件的整体稳定
(overall buckling of beam members ) 4.4.1 梁整体稳定的概念(concept)
整体稳定(overall buckling)—构件突然发生侧向弯曲(lateral bend)(绕弱轴弯曲)和扭转(torsion),并丧失承载力的现象, 称为梁的弯曲扭转屈曲(弯扭屈曲)或梁的整体稳定。 侧向弯曲,伴随扭转——出平面弯扭屈曲 。
纯弯曲梁的临界弯矩Mcr(critical moment)
M M Z Y Y
u
X X
z
Y M Z Y’
v
dv dz
Z
v
M
M
Y
Z’
图 1
u
du du dz M
dz
Z
图 3
X X’
M
Z’
图 2
z
M Y Y’
v
M
dv dz
图1
Z
X
Z’
Y
在y’z’平面内为梁在最大刚度平面内弯曲,其弯矩的
平衡方程(equilibrium equation)为:
t1
4.2.4 折算应力(reduced stress)
2 2 c c 3t 2 1 f
(4.2.10)
My 其中: I nx
, c
1
应带各自符号,拉为正。 计算折算应力的设计值增大系数。
, c 异号时, 1 1.2 ; , c 同号时或 c 0, 1 1.1
d v EIx 2 M dz
2
(4.4.5)
M
z
u
M
du dz
——集中荷载增大系数,重级工作制吊车(heavyduty crane) 为1.35,其他为1.0;
c
F
t w lz
f
lz --集中荷载(concentrated load)在腹板(web plate)计算高度边缘 的假定分布长度: 跨中集中荷载: 梁端支座反力:
l z a 5hy 2hR
4.3.1 自由扭转(圣维南扭转、均匀扭转、纯扭转)
(pure torsion)
① 纵向位移(longitudinal displacement)不受约束,截面能自由 翘曲; ② 截面上的剪力流的特征: ③ 剪力流形成的扭矩(torque)为: M t
GI t (4.3.1)
4.3.2 约束扭转(开口薄壁构件)
x
x
t
max
Vmax
Mmax
t
max
Vy S x Ix t
fv
(4.2.4)
4.2.3 局部压应力(local compression stress)
当梁的翼缘(flange plate)受有沿腹板(web plate)平面作用的固
定集中荷载(concentrated load)且荷载处又未设置支承加劲肋时,
a
M p f yW pnx
(2)弹塑性阶段(elasto-plastic stage)
(3)塑性工作阶段(plastic stage)
弹性区消失,形成塑性铰(pastic hinge) 。
a
fy
fy
fy
σ
x x
M x Wnx M y f yWnx
式中:
a
M p f yW pnx
Wpnx
或有移动的集中荷载时,应验算腹板高度边缘的局部承压强度 (local bearing strength)。
c
F
t w lz
f
(4.2.7)
F ——集中力(concentrated force),对动力荷载(dynamic load) 应考虑动力系数(dynamic coefficient);
剪力流理论: 薄壁构件弯曲剪应力分布规律(剪力流理论): ①截面各点剪应力(shear stress)均为顺着薄壁截面的中轴线