直线趋势外推法
第六讲 趋势外推法

yt , t = 0,1,2,L3n −1
S1 = ∑yt , S2 = ∑yt , S3 = ∑yt
t =0 t =n t =2n n−1 2n−1 3n−1
于是得A、B、K的估计式为
1 Λ S3 − S2 n B = S −S 2 1 Λ B−1(S2 − S1 ) Λ A= 2 Λn B −1 Λn Λ Λ B −1 1 1 S − S2 − S1 K = S − A 1 = 1 Λn Λ n n B−1 B −1
修正指数曲线预测模型 1)模型的形式
ˆ yt = K + ab t
2)模型的识别
例4 我国卫生机构人员总数如表4.13所示,试预 测2003年我国卫生机构总人数。 解: 绘制散点图,如图4.13所示。
得:
所以我国卫生机构总人数修正指数曲线模型为:
yt = 615.641 − 205.667 × (0.9172)t
差分法: 利用差分法把数据修匀,使非平稳序列达到平 稳序列。 差分法可分为普通差分法和广义差分法两类。 一阶、二阶、k阶差分 广义差分法就是先计算时间序列的广义差分 (时间序列的倒数或对数的差分,以及相邻项的比率 或差分的比率等),然后,根据算得的时间序列差分 的特点,选择适宜的数学模型。
差分法识别标准:
Λ
Λ
yt = 14.8768e0.1098t
预测1999年的产量 y = 14.8768e0.1098×7 = 32.1 1999
曲线的拟合优度分析
实际的预测对象往往无法通过图形直观确认某种 模型,而是与几种模型接近。这时,一般先初选 几个模型,待对模型的拟合优度分析后再确定究 竟用哪一种模型。 评判拟合优度的好坏一般使用标准误差来作 为 优度好坏的指标:
第3章 趋势外推预测法讲解

年份
利润 额
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 200 300 350 400 500 630 700 750 850 950 1020
第3章 趋势外推预测法
利润额 1200 1000
800 600 400 200
0 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
1189.26万元。
第3章 趋势外推预测法
4.
比较例3.1与例3.2的预测结果,可以发现,由于时间 序列数据的线性趋势比较明显,又由于加权拟合直线法 的加权系数取值比较大(α=0.8),使得加权与不加权两 种拟合直线法的预测结果很接近。但就一般而言,由于 加权拟合直线法按重近轻远的赋权原则,使其预测结果 更接近于实际观察值。而且α取值越小,对近期数据所 赋权数就越大,因此近期预测值就越接近于实际观察值。 但是,要选择一个比较合适的α值也是一个比较困难的 事,一般要经过若干次试探,
xt*yt
1 200 4 600 9 1050 16 1600 25 2500 36 3780 49 4900 64 6000 81 7650 100 9500 121 11220 506 49000
191 273.7 356.4 439.1 521.8 604.5 687.2 769.9 852.6 935.3 1018
yt为时间序列第t期实际观察值(t=1, 2, …, n),
其yˆ预t 测为值趋的势离直差线,的e第t t期yt预 测yˆt 值 ,yett为 a第ˆ t期bˆx实t 际观察值与
第3章 趋势外推预测法
第四讲趋势外推法

于是得A、B、K的估计式为
B
S3 S2
S2 S1
n
A
B
1
S
2
S1
B
n
1
2
K
1 n
S1
A
n
B
1
B 1
1 n
S
1
S 2 S 1 n B 1
其中,参数L、a、b为正数。
修正指数曲线预测模型 指数曲线预测模型:
发展、成熟、衰落的过程。
一次(线性)预测模型:
这种方法是通过绘制散点图来进行的,即将时间序列的数据绘制成以时间t为横轴,时序观察值为纵轴的图形,观察并将其变化曲线与
1999 73.2 0.4
一阶差分 _ 比率
_ 0.8 0.2 0.94 0.4 1.0 0.83 0.8
解:描散点图,初步确定模型;
计算一阶差分比率,进一步验证选用修正指数曲线模型是否合适; 估计模型参数。
所求修正指数曲线预测模型:
yt 7.3 17328.2710.5 95t56
预测2000年的社会总需求量:
差分特性使用模型一阶差分相等或大致相等一次线性模型二阶差分相等或大致相等二次线性模型三阶差分相等或大致相等三次线性模型环比相等或大致相等指数曲线模型一阶差分比率相等或大致相等修正指数曲线模型多项式趋势预测模型及应用特别模型参数估计的简捷算法套用参数估计公式注意到y一般都是等间隔的时期或时点指标值它与时间t并无严格的因果关系
例5:某商品1991年投放市场以来,社会总需求量统计资料如下表
所列,试预测2000年的社会总需求量。
年份 总需求量 一阶差分
1991 50.0
_
1992 1993 60.0 68.0 10 8
趋势外推法法

第四节 趋势外推法趋势外推法,也称趋势延伸法,是根据预测目标的历史时间序列所揭示的变动趋势外推到未来以确定预测值的时序预测法。
可分为随手作图法,拟合直线方程法、拟合曲线方程法。
一、随手作图法这种方法是选定时间作为横轴,预测目标量作为纵轴,先按时间序列数据作出散点图。
然后根据备散在点所显示的趋势走向图形(直线或某种曲线),运用直尺或曲线板随手画出一条沿各个点拟合度最佳的直线或曲线,并加以延伸,得出待预测时间对应的预测值。
该方法简便易行,不用建立数学模型,预测效果良好。
但这种方法全凭预测者的观察力和作图技巧,它直接影响到预测的精度。
二、拟合直线方程法这种方法是根据呈线性变动趋势的时间序列,拟合出直线方程bx a Y +=∧,再利用方程进行预测外推,得出预测结果。
直线方程bx a Y +=中,x 为按整数序编号的时间序列,Y 为预测目标量,a 、b 为参数。
设时刻为i x 时,对应的观察值为i Y ,n i ,,2,1 =。
根据这些数据我们要利用最小二乘法拟合出一条直线方程bx a Y +=∧即确定参数a 、b ,使拟合偏差i i Y Y ∧-的平方和∑∧-=22)(i i Y Y S 最小。
由微分法,令02=∂∂a S ,02=∂∂bS ,解之可得到∑∑---=-=x b Y x nb Y n a i i 11 (4-13) ∑∑∑∑∑--=22)())((i i i i i i x x n Y x Y x n b (4-14)当时间序列是整数项时,我们取i x 的中间项为0,其余按下列取值 …,-5,-4,-3,-2,-1,0,1,2,3,4,5,… (中间项)例如 n=7时,i x 分别取为-3,-2,-l ,0,1,2,3七个数值。
这样规定i x 取值后,n 为奇数时有∑=0i x ,则计算参数a 、b 的公式可以简化为∑==-i Y nY a 1(4-15)∑∑=2ii i xY x b (4-16) 例8 某市五金公司1978年到l984年销售额资料为 年份 l978 1979 1980 1981 1982 1983 1984 销售额 4923 5811 7171 8248 8902 9860 l0800(万元)试预测l985、1986两年的销售额。
3.1直线趋势外推预测法

第3章趋势外推预测法一定的外界随机条件对应系统状态的一定表象,把一系列随机条件和对应的表象联接起来的长链条,既体现了系统运动变化的随机性,又体现了系统运动变化的约束性。
因此,可以沿着这一链条,由系统的历史和现实的发展趋势推测其未来的发展趋势,即由已知推测未来。
趋势外推法就是在大量历史的和现实的随机现象中,寻求它们的“平静的反映”,从而得到系统运动变化的规律,并据此规律推测出该系统未来的状况。
这就是应用趋势外推法可以对事物的未来状况进行预测的理论根据。
广义地讲,任何预测方法都是某种推测或推断,而对时间序列而言,推测与推断都是一种外推(由现在推测未来,如移动平均法、指数平滑法等时间序列方法)。
“趋势外推法”是根据事物发展的特有规律,推测并着重研究其可能的发展趋势,故由此而得名。
趋势外推法是根据变量(预测目标)的时间序列数据资料,提示其发展变化规律,并通过建立适当的预测模型,推断其未来变化的趋势。
很多变量的发展变化与时间之间都存在一定的规律性,若能发现其规律,并用函数的形式加以量化,就可运用该函数关系去预测未来的变化趋势。
大量事实证明,事物的发展过程,虽然有时可能出现某种跳跃,但主要还是渐进发展的。
在这种情况下,趋势外推法就能为某些技术或经济的未来发展趋势与状况做出科学的预测。
实际上,趋势外推法已成为科学技术发展渐进过程的一种主要预测方法,尤其是在技术预测领域中,其应用最为广泛。
据统计,约有80%的技术预测使用这种方法。
这种方法的主要优点是,可以揭示技术发展的未来趋势,并能够定量地估价某些功能特性。
利用趋势外推法进行预测,在国外的工业公司和科研机构已经得到了广泛的应用,我国的某些技术和经济部门也已开始应用。
趋势外推法的两个前提假设是:1.技术(或经济)发展的因素,不但决定了过去的技术发展,而且在很大程度上也决定着该技术的未来发展。
这一前提假设实质上指的是在研究某项技术的过去、现在和未来的整个发展过程中,它保持相对不变,亦即内、外因保持相对不变。
第三章趋势外推预测法

❖ 初始平滑值的确定:
(1)当原数列的数值个数较多时 (n>15),由于经过多次平滑运算,初 始值对指数平滑值影响逐步减弱到极小 的程度,可以忽略不计,所以可以选用 第一期观察值作为初始平滑值S0=Y1
❖ (2)当原序列的数值个数较少时, n<15,可以选用最初几期的平均数作为 初始平滑值,一般是前3-5个数据的算术 平均数。
Ft+T=at+btT
T为预测的长度。 N为移动项数。
注意:输出区域此时的选择
❖ 建立预测方程: F11+T=202.75+8.5T
3、指数平滑预测法
指数平滑法是用过去的时间序列的加权平均数 作为预测值,是加权移动平均法的一种特殊 形式,由美国经济学家布朗(Robert G.Brown)于1959年在其著作《库存管理的 统计预测》中提出来的。
❖ 例:假定1993-2008年产品C销售情况如表所 示,试用指数平滑法预测2009年的产品销售 量。
❖ 方法1: ❖ 直接计算:先计算指数平滑再进行预测。
❖ 假定初始平滑值S0=97,以平滑系数=0.3为例。
❖ 方法2: ❖ Excel实现: ❖ 工具—数据分析——指数平滑
注意: (1)默认的初始平滑值是原始数据的第一项。 (2)阻尼系数=1-a (3)最后一期平滑值需要再重新计算一下。 (4)注意输出区域的选择。
指数平滑公式:St(1) =aYt+(1-a)St-1
St(1) :t时期的一次指数平滑值。a平滑系数
(0< a<1);Yt为t时期的观察值。 ❖ 预测公式: St=Ft+1:第t 期的指数平滑值作
为第t+1期的预测值。
因此,上式可写成:Ft+1= aYt+(1-a)Ft T=1,2,3,4….n。
第三章_趋势外推法

基本思想 拟合直线法 曲线趋势外推法
1
某家用电器厂1993~2003年利润额数据资料 某家用电器厂1993~2003年利润额数据资料 1993
年份 利润额 yt
1200 1000 800 600 400 200 0
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
某家用电器厂1993 2003年利润额数据资料如 1993~ 例3.1 某家用电器厂1993~2003年利润额数据资料如 所示。试预测2004 2005年该企业的利润 2004、 年该企业的利润。 表3.1所示。试预测2004、2005年该企业的利润。
年份 利润额
利润额 1 20 0 1 00 0 80 0 60 0 40 0 20 0 0 1 99 3 19 94 19 95 1 996 1 99 7 1 99 8 19 99 20 00 2 001 2 00 2 2 00 3 20 04 20 05
xt 1 2 3 4 5 6 7 8 9
xt2 1 4 9 16 25 36 49 64 81
xt*yt 200
预测 值y 191
1 n 1 n a = ∑ yt − b ∑ xt n t =1 n t =1 b= n∑ xt yt − (∑ xi )(∑ yt )
t =1 t =1 t =1 n n n
年份 利润额 yt 1993 1994 200 300 1995 1996 350 400 1997 1998 1999 2000 2001 2002 2003 500 630 700 750 850 950 1020
1200 1000 800 600 400 200 0
趋势外推法

趋势外推法
趋势外推法(Trendextrapolation)是根据过去和现在的发展趋势推断未来的一类方法的总称,用于 科技、经济和社会发展的预测,是情报研究法体系的重要部分。 趋势外推的基本假设是未来系过去和现在连续发展的结果。当预测对象依时间变化呈现某种上升或下 降趋势,没有明显的季节波动,且能找到一个合适的函数曲线反映这种变化趋势时,就可以用趋势外推法 进行预测。 趋势外推法的基本理论是:决定事物过去发展的因素,在很大程度上也决定该事物未来的发展,其变 化,不会太大;事物发展过程一般都是渐进式的变化,而不是跳跃式的变化掌握事物的发展规律,依据这 种规律推导,就可以预测出它的未来趋势和状态。
运用一:预测未来的销售量或需求量等 【例 4-2】品种销售量如表 1 所示 表1 产品销售量资料(单位:万件) 2003 10 2004 18 2005 25 2006 30.5 2007 15 2008 38 2009 40 2010 39.5 2011 38
试预测 2012 年的销售量,并要求在 90%的概率保证程度下给出预测的置信区间。 【实验步骤】 : 1.确定预测模型; 2.模型参数估计; 3.预测结果的置信区间估计。 注:Matlab 软件在数据计算方面比较容易,而 SAS 软件更体现在数据的整理和统计方面 第一步,确定预测模型,利用 Matlab 软件画出产品销售量与年份之间的关系图,结果 见图 1。 >> t=[2003 2004 2005 2006 2007 2008 2009 2010 2011]' >> y=[10 18 25 30.5 35 38 40 39.5 38]' >> plot(t,y)
SE
( y yi^)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线趋势外推法预测报告
某超市1995——2014年销售额如表,用直线趋势外推法预测2015年销售额(利用EXCEL软件预测)。
表一某超市1995——2014年销售额
年份销售额
1995 80
1996 81
1997 85
1998 84
1999 90
2000 92
2001 95
2002 89
2003 92
2004 99
2005 102
2006 110
2007 120
2008 140
2009 150
2010 155
2011 180
2012 175
2013 180
2014 200
一、将表1数据,按年份序号录入EXCEL工作表,形如表2
表2 年份序号及销售额表
年份销售额
-19 80
-17 81
-15 85
-13 84
-11 90
-9 92
-7 95
-5 89
-3 92
-1 99
1 102
3 110
5 120
7 140
9 150
11 155
13 180
15 175
17 180
19 200
二、使用“图表向导”绘制散点图,判断数列趋势
图1 销售额散点图
如图1所示,该公司九个年份的利润值基本围绕一条直线上下波动,可以认为数列呈直线趋势变动,因此配合直线趋势模型。
三、估算两个参数值
利用EXCEL软件中的“工具——数据分析——回归”求得两个参数值如表3所示。
表3 系数表
将的值带入理论模型:,得直线趋势模型:
Y = 119.95 + 3.13*X
四、预测
依时间数列推算,到2015年,年份序号为21,即t=21,则2015年该公司利润预测值为:
Y = 119.95 + 3.13*21
即该公司2015年利润预测值为189.46。