时间序列趋势外推法
第六讲 趋势外推法

yt , t = 0,1,2,L3n −1
S1 = ∑yt , S2 = ∑yt , S3 = ∑yt
t =0 t =n t =2n n−1 2n−1 3n−1
于是得A、B、K的估计式为
1 Λ S3 − S2 n B = S −S 2 1 Λ B−1(S2 − S1 ) Λ A= 2 Λn B −1 Λn Λ Λ B −1 1 1 S − S2 − S1 K = S − A 1 = 1 Λn Λ n n B−1 B −1
修正指数曲线预测模型 1)模型的形式
ˆ yt = K + ab t
2)模型的识别
例4 我国卫生机构人员总数如表4.13所示,试预 测2003年我国卫生机构总人数。 解: 绘制散点图,如图4.13所示。
得:
所以我国卫生机构总人数修正指数曲线模型为:
yt = 615.641 − 205.667 × (0.9172)t
差分法: 利用差分法把数据修匀,使非平稳序列达到平 稳序列。 差分法可分为普通差分法和广义差分法两类。 一阶、二阶、k阶差分 广义差分法就是先计算时间序列的广义差分 (时间序列的倒数或对数的差分,以及相邻项的比率 或差分的比率等),然后,根据算得的时间序列差分 的特点,选择适宜的数学模型。
差分法识别标准:
Λ
Λ
yt = 14.8768e0.1098t
预测1999年的产量 y = 14.8768e0.1098×7 = 32.1 1999
曲线的拟合优度分析
实际的预测对象往往无法通过图形直观确认某种 模型,而是与几种模型接近。这时,一般先初选 几个模型,待对模型的拟合优度分析后再确定究 竟用哪一种模型。 评判拟合优度的好坏一般使用标准误差来作 为 优度好坏的指标:
5时间序列趋势外推预测

1
^
yn
1
^
yn
1
yn1
n
1
^
yn
1
yn1
^
yn
1
n
1
9.2 有非水平趋势样本序列的趋势外推法
• 如果时间序列是均值缓慢变动的,则使用局部均值模型。
• 1.加权滑动平均预测法
• 滑动平均预测
• 对时间序列
y1 y2 L yn 要外推预测值为
记 yn1
^
yn 1
^
yn 1
yn yn1 L ynN1
• (2)如果时间序列具有迅速且明显的变动倾向, 则a就取大一点,如(0.6~0.8)。
• 在实用上,类似移动平均法,多取几个a值进行试 算,看哪个预测误差小,就采用哪个。
年份
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
例7 某市1976~1987年某种电器销售额如下表所示。试
• 在加权平均算法中,如果所加权数随数据的时限增长而几何方式减小,
则
yt 1
的预测值
^
yn
可以写为:
•
^
n1
yn 1 C t ynt
其中C
n1
t
1由于
t0
t0
n1 t
1n 1
t0
则C
1 1n
^
n1
yn 1 1 t yn j 1 yn yn1 2 yn2 L
j0
• 令 1 则:
^
yn 1
yn 1 yn1 1 2 yn2 L
简化得到一次指数平滑公式为:
^
y (1) t
时间序列分解法和趋势外推法

时间序列分解法和趋势外推法时间序列分解法和趋势外推法是两种常用的时间序列分析方法。
时间序列分析是一种用来预测未来数据趋势和周期性的统计学方法。
时间序列分解法是一种将时间序列数据分解成趋势、周期性和随机成分的方法。
它的基本假设是时间序列数据是由多个不同的组成部分构成的,通过将这些组成部分分离出来,我们可以更好地理解数据的特征和行为。
常用的时间序列分解方法有加法模型和乘法模型。
加法模型将时间序列数据分解为趋势、周期性和随机成分的和。
趋势指的是数据的长期演变趋势,周期性表示数据在一段时间内出现的重复模式,而随机成分则代表了无法归因于趋势和周期性的随机波动。
加法模型的优点是适用于各种类型的时间序列数据,并且容易理解和解释。
乘法模型将时间序列数据分解为趋势、周期性和随机成分的乘积。
乘法模型假设趋势和周期性分量与数据的幅度成比例,这意味着它适用于数据波动较大的情况。
与加法模型相比,乘法模型更适用于数据幅度随时间变化的情况。
趋势外推法是一种基于时间序列数据的趋势进行未来预测的方法。
它假设趋势是时间序列数据最主要的特征,通过拟合趋势线并对其进行外推,我们可以预测未来数据的变化趋势。
趋势外推法常用的方法包括线性趋势外推和指数趋势外推。
线性趋势外推假设趋势是线性的,即数据随时间的变化呈现线性增长或减少的趋势。
通过线性拟合找到数据的趋势线,然后根据趋势线的斜率和截距,预测未来数据的变化趋势。
线性趋势外推是最简单的趋势外推方法,但它假设趋势是恒定的,忽略了数据的非线性特征。
指数趋势外推假设趋势是指数增长或指数衰减的,即数据呈现幂函数的趋势。
通过拟合指数增长或衰减曲线找到数据的趋势线,然后根据趋势线进行未来数据的预测。
指数趋势外推较线性趋势外推更灵活,能够更好地适应不同的趋势模式。
总之,时间序列分解法和趋势外推法是时间序列分析的常用方法。
时间序列分解法可以将数据分解成趋势、周期性和随机成分,帮助我们更好地理解数据的特征和行为。
第7章趋势外推预测方法

趋势外推法的假设条件: (1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。 (2)假设所研究系统的结构、功能 等基本保持不变,即假定根据过去资料 建立的趋势外推模型能适合未来,能代 表未来趋势变化的情况。
第1节 指数曲线法
指数曲线模型 (7.1.1) 对式(7.1.1)两端取对数,得 令 则 这样就把指数曲线 模型转化为直线模型
在利用包络曲线预测时首先要建立包络曲线,具体步骤为: 第一步:分析各类预测对象的预测参数的发展趋势; 第二步:求出各技术单元功能相对增长速度最快的点(xi,yi),i=1,2,…,m; 第三步:绘制包络曲线,即在点( xi,yi )处与i(i=1,2,…,m)技术单元曲线相切的曲线。
二、应用范围 某项技术发展的前期阶段,采用包络曲线对技术发展进行深入研究,可以外推出新的远景技术,从而可以未雨绸缪,提前完成技术贮备,以便及时进行技术更新。 当某一技术的发展趋于极限时,采用包络曲线外推可能出现的新技术。 用包络曲线外推未来某一时刻的特性参数水平,借以推测将会出现那种新技术。 验证决策中制定的技术参数是否合理。如果拟定的参数在包络曲线之上,则可能有些冒进,如在其下则可能偏于保守。合理的技术参数应与包络曲线相吻合,偏高偏低皆需调整。
0
y
a
t
表7.1.1 指数曲线模型差分计算表
第2节 修正指数曲线法
修正指数曲线预测模型 (7.2.1) 式中:a、b、c为待定参数。 为求出a、b和c三个参数,可应用分组法。通常的做法是先把整个时间序列数据分成三组,使每组数据个数相等,然后通过各组数据之和求出参数的具体数值。
表7.2.1 修正指数曲线模型差分计算表
第3节 生长曲线法
生物的生长过程一般经历发生、发展、成熟到衰老几个阶段。发生初期成长速度较慢;发展时期生长速度则较快;成熟时期,生长速度由达到最快而后逐渐变慢,到衰老期则几乎停止生长。 指数曲线模型不能预测接近极限值时生物生长的特性值,因为趋近极限值时,生物生长特性值已不按指数规律增长。描述生物生长过程可以考虑运用形状近似于S型的曲线(称为S曲线)。 本节主要介绍两种最为常用的生长曲线 龚珀兹曲线 皮尔曲线。
时间序列分解法和趋势外推法讲义

时间序列分解法和趋势外推法讲义一、时间序列分解法时间序列分解法是将一个时间序列数据分解为几个不同的成分,从而更好地理解和预测时间序列的趋势和季节性。
时间序列可以包含趋势(Trend)、季节性(Seasonality)、周期性(Cyclical)和随机性(Irregularity)等多个成分。
时间序列分解法的步骤如下:1. 平滑法:首先对原始数据进行平滑操作,以去除季节性和随机性的影响。
常用的平滑方法有简单平均法、加权平均法和指数平滑法等。
2. 趋势估计:通过对平滑后的序列进行趋势估计,得到时间序列的趋势线。
常用的趋势估计方法有移动平均法、自回归法和多项式拟合法等。
3. 季节性调整:将平滑后的序列减去趋势线,得到季节性成分。
季节性成分可以用于对未来季节性的预测。
4. 周期性调整:将季节性成分减去周期性成分,得到去除季节性和周期性的序列。
5. 随机性分析:对去除季节性和周期性的序列进行随机性分析,以检查是否存在随机性波动。
时间序列分解法的优点是能够更好地理解时间序列的组成成分,并且能够提供对未来趋势和季节性的预测。
然而,该方法的缺点是对于包含较多周期性成分的序列,可能无法准确地分解出趋势和季节性等成分。
二、趋势外推法趋势外推法是利用时间序列数据中的趋势成分进行未来数值的预测。
该方法假设时间序列的趋势相对稳定,根据过去的趋势发展,推断未来的发展方向。
趋势外推法的步骤如下:1. 趋势估计:首先对时间序列进行趋势估计,得到趋势线。
常用的趋势估计方法有移动平均法、自回归法和多项式拟合法等。
2. 趋势外推:根据趋势线的发展趋势,预测未来的数值。
可以利用历史数据的增长速率进行线性外推,也可以利用拟合的趋势函数进行非线性外推。
趋势外推法的优点是简单易用,速度快,适用于短期或趋势相对稳定的预测。
然而,该方法的缺点是对于趋势波动较大或突变的时间序列,预测结果可能存在较大的误差。
三、实施过程实施时间序列分解法和趋势外推法的具体步骤如下:1. 收集时间序列数据:收集需要分析和预测的时间序列数据,可以是销售数据、股票交易数据等。
趋势外推法的手段

趋势外推法的手段趋势外推法是一种预测未来发展方向和趋势的方法,其基本原理是根据过去的数据和趋势,通过一定的数学模型和推理方法,对未来的可能发展进行预测和判断。
下面将介绍趋势外推法的几种常见手段。
1. 线性外推法:线性外推法是一种基于线性趋势的外推方法。
根据一组数据点的线性趋势,计算出其斜率和截距,从而得出线性方程,并利用该方程预测未来的发展趋势。
线性外推法常用于简单的线性发展趋势,适用于数据变化比较稳定的情况。
例如,我们可以通过过去几年的销售数据,计算出销售额与时间之间的线性关系,然后根据线性方程的参数,预测未来销售额的发展趋势。
2. 指数平滑外推法:指数平滑外推法是一种基于指数趋势的外推方法。
它根据过去数据的指数增长或指数衰减趋势,对未来数据进行预测。
指数平滑外推法适用于有明显趋势变化的数据,并且能够较好地适应数据的变化。
例如,在预测某产品的未来销售量时,可以利用指数平滑外推法,根据过去销售量的变化趋势,对未来销售量进行预测。
3. 趋势函数外推法:趋势函数外推法是一种基于数学函数的外推方法。
它通过拟合历史数据的变化趋势,找出最适合数据变化的函数,并利用该函数预测未来的趋势。
常用的趋势函数包括多项式函数、指数函数、对数函数等。
例如,我们可以通过拟合历史数据的变化趋势,找到一个最适合该数据的多项式函数,然后利用该函数预测未来的数据发展趋势。
4. 时间序列分析外推法:时间序列分析外推法是一种基于时间序列数据的外推方法。
它通过对时间序列数据的周期性、波动性等特征进行分析,找出其规律性,并利用规律性预测未来的趋势。
时间序列分析外推法常用的方法包括自回归(AR)、滑动平均(MA)、自回归滑动平均(ARMA)等。
例如,在对某商品的销售数据进行预测时,可以使用时间序列分析外推法,通过对历史销售数据的波动性和周期性进行分析,预测未来销售的发展趋势。
综上所述,趋势外推法是一种常用的预测未来发展趋势的方法,其手段包括线性外推法、指数平滑外推法、趋势函数外推法和时间序列分析外推法等。
定量预测方法

定量预测方法定量预测方法种类很多,这里仅介绍常用的趋势外推法、时间序列法、回归预测法和灰色预测法。
1.趋势外推法趋势外推法就是运用直线或曲线拟合模型展开预测的方法。
在运用趋势外推法时,应当根据以获取的市场实际资料分析其发展趋势,挑选预测方案,按预测方案里的有关方法展开运算得出结论财政预算值。
(1)直线趋势法。
直线趋势法的方程为用最轻平方等方法估算a和b的值,创建直线预测模型。
然后再根据变量t的值展开预测。
(2)曲线趋势法。
以二次抛物线为例,曲线趋势法的公式为用最轻平方等方法估算a、b、c的值,创建曲线预测模型。
然后再根据变量t的值展开预测。
2.时间序列法(略)3.重回预测法回归预测法是通过分析自变量与因变量之间的相互关系,根据自变量数值的变化,预测因变量数值变化的一种方法,也可称为相关分析预测法。
这种方法是预测学的基本方法,应用十分广泛。
(1)一元线性重回法。
一元线性重回预测的数学模型就是一元线性方程,其计算公式为(2)二元线性回归法。
二元线性回归预测的数学模型是二元线性方程,其计算公式为4.灰色预测法灰色预测法是指通过分析系统内部各因素之间的相关程度,根据原始数据的生成处理来寻求系统变化规律,以此建立微分方程模型,从而预测市场发展趋势的预测方法。
灰色预测法通过生成法处理系统内的变量。
生成法分为累加生成法和累减生成法。
累加生成法是将原始序列通过累加得到生成序列,即将原始序列的第一个数据作为新序列的第一个数据,将原序列的第二个数据加到第一个数据上,其和作为新序列的第二个数据,将原序列的第三个数据加到第二个数据上,其和作为新序列的第三个数据,依此类推,得到生成序列。
累减生成法是将原始序列的数据前后相减,得到累减生成序列。
时间序列 趋势外推法 r语言

时间序列趋势外推法 r语言时间序列分析是一种用于预测未来数据趋势的统计方法,而趋势外推法是一种常用的时间序列预测方法之一。
在R语言中,我们可以使用一些内置的函数和包来实现时间序列的趋势外推。
下面我将从时间序列、趋势外推法和R语言的角度分别介绍这些内容。
首先,时间序列是一系列按时间顺序排列的数据点。
时间序列分析旨在识别数据中的模式和趋势,以便预测未来的数值。
趋势外推法是一种基于时间序列数据中的趋势进行预测的方法,它可以帮助我们理解数据的长期发展趋势,并做出相应的预测。
在R语言中,有一些常用的包和函数可以用来进行时间序列分析和趋势外推。
其中,最常用的包包括“forecast”、“tseries”和“stats”等。
这些包提供了丰富的函数和工具,可以帮助我们进行时间序列数据的处理、分析和预测。
在R语言中,我们可以使用“ts”函数将数据转换为时间序列对象,然后利用“forecast”包中的函数进行趋势外推。
常见的趋势外推方法包括简单移动平均法、指数平滑法、ARIMA模型等。
我们可以根据数据的特点选择合适的方法进行趋势外推,并使用相应的R函数进行计算和预测。
除了使用内置的函数和包,R语言还提供了丰富的可视化工具,如ggplot2包和plot函数,可以帮助我们直观地展示时间序列数据的趋势和预测结果,从而更好地理解数据并进行决策。
总之,时间序列分析和趋势外推是重要的数据分析方法,而R语言提供了丰富的工具和函数来支持这些分析。
通过合理选择方法和工具,我们可以利用R语言进行时间序列数据的趋势外推,并得出有效的预测结果。
希望这些信息能够帮助你更好地理解时间序列趋势外推在R语言中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列趋势外推法姓名:王茂林
学号:2014125104 班级:信息1411 组别:第一组
1.根据下列数据年取暖器的销售量,并对模型进行结果说明。
第一步:把数据导入excel做出能够反映数据变化趋势的散点图
•从图可知,曲线呈现总体上升趋势,初期变化较快,随后增长比较缓慢,纵坐标在达到6000时,趋于一个固定队的值。
接下来,我们通过散点图进行合理外推:
一:假设为指数曲线预测模型:
我们知道指数曲线其特点是环比发展速度为一个常数。
根据最小平方法的原理得
再求反对数,就能求出指数曲线预测模型的参数a,b的估计值。
(1)选择模型。
计算序列的环比发展速度放在表格中,
从我计算的环比结果我们可以得知一个规律,就是环比发展速度的变化大体相近。
因此,我可以用指数曲线预测模型来预测。
(2)建立指数曲线预测模型。
所求指数曲线预测模型为:^y=53644.47137(57129.80609)^t
(3)预测。
分别把t=9和t=10代入算出指数曲线预测模型。
当我计算前三年的预测值的时候,才发现和真实值相差太远,以至于后面的数据都无法输出。
算这么多,我才醒悟过来,模型开始就假设错啦,而且错的不可理喻,因为指数曲线的趋势性是递增的,而本数据的散点图是开始递增,后来增长变得缓慢,到最后趋于一个固定的值。
和指数曲线的趋势性相差十万八千里。
所以,模型假设不成立。
二:假设为修正指数曲线预测模型.
由于修正指数曲线预测模型的一阶差分为
是指数函数形式,因此由指数曲线预测模型的特点,可知修正指数曲线预测模型的特征是:一阶差分的环比为一个常数。
接下来我们来计算本数据的一阶差分和一阶差分环比。
(1) 选择预测模型。
计算序列一阶差分的环比放在表中,从环比数据可以看出:一阶差分环比基本上为一个常数,而这个常数为80;
所以,可配合修正指数曲线预测模型来预测。
(2)建立修正指数曲线预测模型。
n=3,将计算结果代入k;a;b的计算公式,得到如下的过程:
(3) 预测。
分别把t=9和t=10代入算出的修正指数曲线预测模型。
可得2012年和2013年取暖器的预测销售量。
其预测值为:
Y(2012)=61206.575+(-15185.567)(0.804210)^9=59069.8126
Y(2013)=61206.575+(-15185.567)(0.804210)^10=59488.16931
三:假设为龚珀兹曲线预测模型:
依据修正指数曲线估计参数的方法,可求得:
将计算结果代入,计算可得:
所求龚珀兹曲线的预测模型为:y=60819.47543(0.757575725)^(0.7807519)^t
(3) 预测。
分别把t=9和t=10代入龚珀兹曲线预测模型。
可得2012年和2013年取暖器的预测销售量。
其预测值为
y=60819.47543(0.757575725)^((0.7807519)^9)=59026.20
y=60819.47543(0.757575725)^((0.7807519)^10)=59414.7929
四:模型分析
对比三个模型,第一个指数模型,预测值和真实值相差太远,模型假设错误。
然后比较修正指数曲线模型和龚珀兹曲线模型;算出两个模型的残差平方和。
然后求和。
图表可知;修正指数曲线模型的残差平方和求和值1277.0668601;而龚珀兹曲线模型的残差平方和求和值为12396.46。
所以,选择修正指数曲线模型为本题目的最终模型。
总结:不知道预测结果和做题思想对不对,但是通过做本次作业,我受益匪浅,首先是,通过实际操作,夯实了课堂基础,理论与实际的结合,更是提高了用工具去简单处理数据的能力。
本次所有计算的数据,我都是保留了5位数或以上,虽然数据大,计算麻烦,但是我想的是能够尽量让预测值和真实值更接近,让模型的预测数据的说服力更强。
也许,本次作业全部错啦,我还是不会气馁的,争取下次做的更好。
衷心感谢老师的批阅,谢谢!最后祝恩师国庆节快乐!。