砷化镓半导体材料
砷化镓无机非金属材料

砷化镓无机非金属材料
砷化镓是一种重要的无机非金属材料,它由砷和镓两种元素组成,化学式为GaAs。
砷化镓具有许多优异的物理和化学性质,因此在半导体、光电子、太阳能电池等领域得到了广泛的应用。
砷化镓是一种半导体材料,具有优异的电学性能。
它的导电性介于导体和绝缘体之间,可以通过掺杂来改变其导电性质。
此外,砷化镓的载流子迁移率高,电子和空穴的迁移速度都很快,因此在高速电子器件中得到了广泛的应用。
砷化镓是一种优异的光电子材料。
它的能带结构使得它具有优异的光电转换性能,可以将光能转化为电能或者将电能转化为光能。
因此,砷化镓被广泛应用于光电子器件中,如激光器、光电探测器、光电调制器等。
砷化镓还是一种优异的太阳能电池材料。
它的光电转换效率高,可以将太阳能转化为电能。
砷化镓太阳能电池具有高效、稳定、寿命长等优点,因此在太阳能电池领域得到了广泛的应用。
砷化镓作为一种重要的无机非金属材料,具有优异的物理和化学性质,在半导体、光电子、太阳能电池等领域得到了广泛的应用。
随着科技的不断发展,砷化镓的应用前景将会更加广阔。
砷化镓材料

砷化镓材料1 引言化合物半导体材料的研究可以追溯到上世纪初,最早报导的是1910年由Thiel等人研究的InP材料。
1952年,德国科学家Welker首次把Ⅲ-Ⅴ族化合物作为一种新的半导体族来研究,并指出它们具有Ge、Si等元素半导体材料所不具备的优越特性。
五十多年来,化合物半导体材料的研究取得了巨大进展,在微电子和光电子领域也得到了日益广泛的应用。
砷化镓(GaAs)材料是目前生产量最大、应用最广泛,因而也是最重要的化合物半导体材料,是仅次于硅的最重要的半导体材料。
由于其优越的性能和能带结构,使砷化镓材料在微波器件和发光器件等方面具有很大发展潜力。
目前砷化镓材料的先进生产技术仍掌握在日本、德国以及美国等国际大公司手中,与国外公司相比国内企业在砷化镓材料生产技术方面还有较大差距。
2 砷化镓材料的性质及用途砷化镓是典型的直接跃迁型能带结构,导带极小值与价带极大值均处于布里渊区中心,即K=0处,这使其具有较高的电光转换效率,是制备光电器件的优良材料。
在300 K时,砷化镓材料禁带宽度为1.42 eV,远大于锗的0.67 eV和硅的1.12 eV,因此,砷化镓器件可以工作在较高的温度下和承受较大的功率。
砷化镓(GaAs)材料与传统的硅半导体材料相比,它具电子迁移率高、禁带宽度大、直接带隙、消耗功率低等特性,电子迁移率约为硅材料的5.7倍。
因此,广泛应用于高频及无线通讯中制做IC器件。
所制出的这种高频、高速、防辐射的高温器件,通常应用于无线通信、光纤通信、移动通信、GPS全球导航等领域。
除在I C产品应用以外,砷化镓材料也可加入其它元素改变其能带结构使其产生光电效应,制成半导体发光器件,还可以制做砷化镓太阳能电池。
表1 砷化镓材料的主要用途3 砷化镓材料制备工艺从20世纪50年代开始,已经开发出了多种砷化镓单晶生长方法。
目前主流的工业化生长工艺包括:液封直拉法(LEC)、水平布里其曼法(HB)、垂直布里其曼法(VB)以及垂直梯度凝固法(VGF)等。
砷化镓

产业发展存在的问题
1
2 制备费用高居不下
砷有毒,一般的企业不愿投产
3
4
构造隧道结和阻止p/n结难度大
追日跟踪系统实施有难度 政策不明确,多晶· 硅依赖进口
5
解决方案:
.广大的相关科研机构 合作攻关,做好镓的高 纯提取
国家策支持明细化鼓 励各地新建光伏电站 采用砷化镓光伏电池
对策
加大技术攻关,简化制 备工艺,减小电池系统 复杂度,降低电池制备 耗费
提高工厂生产的智能化、 自动化,减少生产直接 接触人员
应用情况:
砷化镓器件主要包括光电器件和微波器 件两大类。砷化镓以及其他Ⅲ-Ⅴ族化合 物具有直接跃迁的能带结构,在光电应 用方面处于有利的地位。
砷化镓太阳能电池
国内、外应用:
70 年代中期至 90 年代中期 90 年代中期
国内均采用L PE技术研制GaAs 电池。 国内开始采用MOCVD 技术研制GaAs 电池。
20世纪60年代
20世纪70年代
世纪80年代后
性质与属性:
砷化镓材料的分类:
1. 按照应用领域不同分类 :分为半绝缘砷化镓材料和低阻砷化镓材料。
• 第一类为半绝缘砷化镓材料约占整个GaAs 单晶材料市场需求的40 % 左右,主要用于微波场效应器件(FET)、模拟集成电路、数字集成 电路、光电子集成电路(OEIC)。 • 第二类为低阻(掺杂半导体)砷化镓材料,约占GaAs 材料的64%。 主要用于发光二极管(LED)、激光器、太阳能电池光电探测器 (PD)、微波二极管等器件。 2. 按照工艺方法不同的分类: 目前国内常用的砷化镓晶体生长方法有三种,LEC法(俗称为直拉)、 HB法(俗称为水平法)和VB法或VGF法(俗称为垂直)。
砷化镓

砷化镓和磷化镓是具有电致发光性能的半导体。
砷化镓发光二极管量子效率高、器件结构精巧简单、 机械强度大、使用寿命长,可应用于“光电话”。在 不便敷设电缆的地方或原有通信线路发生障碍时,可 用光电话通信,如在远洋船舶间或飞机间通话使用。 光电话应用的最突出实例是地面控制站与宇宙火箭在 大气层中加速或制动这段时间内的联系。那时火箭周
原 因
大多数产品不必太快。
砷化镓含有对人类有害的砷 元素,处理增加成本。
半导体材料特性
砷化镓于 1964 年进入实用阶段。砷化
镓可以制成电阻率比硅、锗高3个数量级以
上的半绝缘高阻材料 , 用来制作集成电路衬
底、红外探测器、γ光子探测器等。由于其 电子迁移率比硅大约 7倍,故在制作微波器 件和高速数字电路方面得到重要应用。
砷化镓是制作高温、高频、抗辐射和低噪声器 件的良好材料。 特别是它的能带具有双能谷结构, 又属于直接带隙材料,故可制作体效应器件,高效 激光器和红外光源。砷化镓还可用来制作雪崩二极 管、场效应晶体管、变容二极管、势垒二极管等微 波器件和太阳电池等。与锗、硅相比,砷化镓具有 更高的电子迁移率,因此它是制作高速计算机用集 成电路的重要材料。
载流子迁移率高,适合于做高速IC,如:飞机控制和超 高速计算机;是半绝缘的,使临近器件的漏电最小化,允 许更高的封装密度。 砷化镓 最大频率范围 最大操作温度 电子迁移率 功率损耗 材料成本 2-300 GHz 200℃ 8500 小 高 硅 <1GHz 120℃ 1450 大 低
砷化镓的单晶生产
直径GaAs单晶。其中以低位错密度的HB方法生长的
2~3英寸的导电砷化镓衬底材料为主。
Ⅲ-Ⅴ族化合 物在高温时 会发生部分 离解,因此, 在讨论它们 的相平衡关 系时,还必 须考虑蒸汽 压这一因素。
砷化镓材料

的,最大的区别就是热场与坩埚相对移动的方式不同。VGF技术, 坩埚是不移动的,而是调整各温区的温度,促使生长界面移动;
而VB技术中,热场固定不动,通过驱动坩埚进行移动,导致生
长界面产生相对运动,达到晶体生长的目的。由于控制过程的不 同,设备成本有很大的区别,VB工艺设备相对更便宜。
为2.5寸;生长周期长,同时熔体与石英舟反应引入 硅的沾污,无法得到高纯GaAs单晶。
LEC法
优点——可生长适用于直接离子注人的高纯非掺杂半绝缘单晶,
单晶纯度高,尺寸大,适于规模生产。 缺点——是结晶质量略差,位错密度较高,生长工艺复杂,工 艺设备昂贵,成本高。
为了进一步提高单晶的质量,随后又发展了一些新工艺, 主要是垂直梯度凝固法(VGF )和垂直布里奇曼法(VB ) 。
图2.1.LEC法示意图
2.1 GaAs单晶材料的制备
2.水平布里奇曼法(HB)
图2.2.HB法示意图
该方法的特点使熔体通过具有一定梯度的温区而获得单晶生长
2.1 GaAs单晶材料的制备
LEC法和HB法是初期的GaAs晶体生长的工艺方法,有一定质量高,工艺设备较简单。 缺点——晶锭尺寸和形状受石英舟形状的限制,最大晶体尺寸
1.4GaAs材料的性能的优缺点
与硅材料比较,砷化镓具有以下优势: 高的能量转换效率:直接跃迁型能带结构,GaAs的能隙为1.43eV,处
于最佳的能隙为1.4~1.5eV之间,具有较高的能量转换率;
电子迁移率高; 易于制成非掺杂的半绝缘体单晶材料,其电阻率可达 以上;
抗辐射性能好:由于III-V族化合物是直接能隙,少数载流子扩散长度较
砷化镓金属材料

砷化镓金属材料砷化镓金属材料在现代科技领域中扮演着重要的角色。
砷化镓是一种半导体材料,能够在高频和微波电子学、光电子学、太阳能和卫星通讯等领域中发挥出色的性能。
本文将从形成原理、性质和应用等方面详细介绍砷化镓金属材料的特性。
形成原理:砷化镓由镓和砷两种元素组成。
这两种元素原本并不易于合成,因为它们在化学上的性质迥异。
砷是一种负电性较强的非金属元素,而镓是一种质子数较多、负电性较弱的金属元素。
但是现在的科技发展已经克服了这些困难。
最终,砷化镓的生成是通过气相外延法在外延片上通过选择性培养和控制多晶砷和多晶镓的有序结晶和生长使之形成的。
这种技术的核心是对砷和镓蒸汽的控制,需要精确地控制沉积过程中的沉积速度和化学反应速率,才能够得到优良的砷化镓薄膜。
性质:砷化镓是一种禁带宽度较大的半导体材料。
它对于蓝色和紫色光的吸收能力非常好,但对于红色和红外线光线却不敏感。
同时,砷化镓的电子迁移速度也很快,这意味着它能够快速响应高频信号以及快速开关。
此外,相比于其他半导体材料(如硅和碳化硅),砷化镓具有更高的电子流动率和更短的开关时间,这使其成为高速、高功率及高温度应用领域的理想选择。
应用:1.高频电子学砷化镓被广泛应用于高频电子学领域中。
砷化镓材料的高电导率、高峰移速度以及宽禁带宽度使其成为制造高频电子元器件的理想选择。
比如用于发射机中的功率放大器、天线、调制器、环行器等等。
2.光电子学砷化镓特有的电子能级结构使其能够吸收或发射较高能量的光线。
因此砷化镓是制造激光器、光电探测器、太阳电池等设备的重要材料。
其中,砷化镓激光器被广泛应用于光通信、光储存、显示器显示、医疗实验等领域。
3.太阳能砷化镓的太阳能转化效率较高(太阳能电池的最高转换效率可达到34%)。
它在光电池元件中的应用广泛,特别是在空间卫星和其他需要于独立太阳辐射环境下工作的设备中。
砷化镓光电池可以替代铜铟镓硒等热电路,具有光伏转换率高、耐辐照能力强等优点。
砷化镓简介

砷化镓(gallium arsenide)化学式 GaAs。
黑灰色固体,熔点1238℃。
它在600℃以下,能在空气中稳定存在,并且不为非氧化性的酸侵蚀。
砷化镓简介一种重要的半导体材料。
属Ⅲ-Ⅴ族化合物半导体。
化学式GaAs,分子量144.63,属闪锌矿型晶格结构,晶格常数5.65×10-10m,熔点1237℃,禁带宽度1.4电子伏。
砷化镓于1964年进入实用阶段。
砷化镓可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,用来制作集成电路衬底、红外探测器、γ光子探测器等。
由于其电子迁移率比硅大5~6倍,故在制作微波器件和高速数字电路方面得到重要应用。
用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点。
此外,还可以用于制作转移器件──体效应器件。
砷化镓是半导体材料中,兼具多方面优点的材料,但用它制作的晶体三极管的放大倍数小,导热性差,不适宜制作大功率器件。
虽然砷化镓具有优越的性能,但由于它在高温下分解,故要生长理想化学配比的高纯的单晶材料,技术上要求比较高。
砷化镓单晶生产技术中国掌握“半导体贵族”砷化镓单晶生产技术作为第二代半导体,砷化镓单晶因其价格昂贵而素有“半导体贵族”之称。
昨天,2001年7月31日,中国科学家宣布已掌握一种生产这种材料的新技术,使中国成为继日本、德国之后掌握这一技术的又一国家。
北京有色金属研究总院宣布,国内成功拉制出了第一根直径4英寸的VCZ半绝缘砷化镓单晶。
据专家介绍,砷化镓可在一块芯片上同时处理光电数据,因而被广泛应用于遥控、手机、DVD计算机外设、照明等诸多光电子领域。
另外,因其电子迁移率比硅高6倍,砷化镓成为超高速、超高频器件和集成电路的必需品。
它还被广泛使用于军事领域,是激光制导导弹的重要材料,曾在海湾战争中大显神威,赢得“砷化镓打败钢铁”的美名。
据悉,砷化镓单晶片的价格大约相当于同尺寸硅单晶片的20至30倍。
尽管价格不菲,目前国际上砷化镓半导体的年销售额仍在10亿美元以上。
半导体砷化镓

半导体砷化镓
半导体砷化镓是一种常见的III-V族化合物半导体材料。
它由镓和砷元素组成,化学式为GaAs。
砷化镓具有许多优异的电学和光学性能,因此被广泛应用于电子器件和光电器件领域。
砷化镓具有较高的电子迁移率和较大的能带间隙,这使得它在高频电子器件和光电器件中具有独特的优势。
它可用于制造高速场效应晶体管(HEMT)和金属半导体场效应晶体管(MESFET)等高频功率放大器。
此外,砷化镓还可用于制造光电二极管(LED)和激光器等光电器件,其高光电转换效率和快速分子振荡特性使其成为光通信和光存储技术的理想选择。
砷化镓还广泛应用于太阳能电池领域。
由于其较高的吸收系数和较长的载流子寿命,砷化镓太阳能电池具有较高的光电转换效率和较强的抗辐照能力。
此外,砷化镓还可与其他半导体材料组成多接触式太阳能电池,以实现更高效的光电转换。
总之,半导体砷化镓是一种重要的半导体材料,具有广泛的应用前景。
它在电子器件、光电器件和太阳能电池等领域的应用,将推动科学技术的发展,并为人们生活带来更多便利和可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从材料特性、工艺特点等方面对上述 几种工艺进行比较,如下表所示, VB/VGF法制备的材料在位错密度、位错 分布、电学均匀性、低应力及机械强度等 方面更具有优势。
三种工艺比较
2.2GaAs晶体的加工 晶体长成后,进行热处理以消除应力及 改善电学性能,然后,进行头尾切割、 滚圆、定向切割、倒角、研磨、抛光等 精细加工,最终研制成具有优良的几何 参数和表面状态的抛光片。
节基本上是一致的,最大的区别就是热场与坩埚
相对移动的方式不同。VGF技术,坩埚是不移动
的,而是调整各温区的温度,促使生长界面移动;
而VB技术中,热场固定不动,通过驱动坩埚进
行移动,导致生长界面产生相对运动,达到晶体
生长的目的。由于控制过程的不同,设备成本有 很大的区别,VB工艺设备相对更便宜。
2.1 GaAs单晶材料的制备
晶体结构:GaAs材料的晶体结构属于闪锌矿型晶格结构,如 图1.1所示。
化学键:四面体键,键角为109°28‘,主要为共价成分。由 于镓、砷原子不同,吸引电子的能力不同,共价键倾向砷原 子,具有负电性,导致Ga-As键具有一定的离子特性,使得 砷化镓材料具有独特的性质。
图1.1.GaAs晶体结构
GaAs的原子结构是闪锌矿结构,由Ga原子 组成的面心立方体结构和由As原子组成的面心立 方体结构沿对角线方向移动1/4间距套构而成的。 Ga原子和As原子之间主要是共价键,也有部分 离子键。
极性:砷化镓具有闪锌矿型结构,在[111]方向上,由
一系列的Ⅲ族元素Ga及Ⅴ族元素As组成的双原子层
(也是电偶极层)依次排列。在[111]和
是不等效的,从而具有极性,如图1.2所示 。
方向上
存在Ga面和As面,在这两个面上形成两种不同
的悬挂键,如图1.3所示,As面的未成键电子偶促使表
面具有较高的化学活泼性,而Ga面只有空轨道,化学
GaAs材料的制备,包括GaAs单
晶材料的制备、晶体的加工和将单晶
材料加工成外延材料,外延材料能直 接被用于制造IC器件。其中最主要是 GaAs单晶材料的制备。
2.1GaAs单晶材料的制备
GaAs单晶材料的制备流程如下所示:
2.1 GaAs单晶材料的制备
GaAs晶体生长方法有:
1.液封直拉法(LEC) 液封直拉法的过程:在一密闭的高压容器内设计好的热系 统中,放置一热解氮化硼(PBN)坩埚,坩埚中装入化学计量 比的元素砷、镓和液封剂氧化硼,升温至砷的三相点后,砷液 化和镓发生反应,生成砷化镓多晶,将砷化镓多晶熔化后,将 一颗籽晶与砷化镓熔体相接,通过调整温度,使砷化镓熔体按 一定晶向凝固到籽晶上,实现晶体生长。LEC法示意图如图2.1 所示。
(4)恒温梯度生长;源和衬底分别放在溶液的上 部和下部,源的温度比衬底温度高,导致溶质穿 过溶液在衬底上进行外延生长。 (5)电外延生长;利用电流通过溶液和衬底的界 面,使得溶液局部过冷而达到过饱和
通过液相外延生长薄膜,通常有三种途径, 一是倾倒式,就是讲熔化的液体直接倾倒在衬底 表面进行外延,外延完成后,将多余的流出,这 种技术制备的外延层和溶液不容易脱离干净,导 致外延层的厚度和均匀性不易控制
资源稀缺,价格昂贵,约Si材料的10倍;
污染环境,砷化物有毒物质,对环境会造成污染;
机械强度较弱,易碎;
制备困难,砷化镓在一定条件下容易分解,而且砷材料 是一种易挥发性物质,在其制备过程中,要保证严格的 化学计量比是一件困难的事。
GaAs材料本身为直接带隙半导体,其禁带宽度为 1.43ev,作为太阳电池材料, GaAs具有良好的 光吸收系数,
2.1 GaAs单晶材料的制备
3.垂直梯度凝固法(VGF) 工艺过程: (1)熔化多晶料; (2)开始生长时坩埚底部 <100>方向的籽晶处于 慢速降温的温度梯度; (3)为调节化学计量比在 熔体上方保持一定的As 压; (4)生长完毕时晶体慢速 冷却到室温。
图2.3.VGF法示意图
4.垂直布里奇曼法(VB) VB法与VGF法基本上市相同的,许多工艺细
3.1 GaAs薄膜单晶材料
虽然GaAs体单晶通过扩散S、Zn等杂质,可 以形成p-n结,制备单晶体的GaAs太阳电池,但 是其效率低、成本高,人们更多的是利用GaAs 薄膜单晶材料制备太阳电池,以便获得高质量的 GaAs单晶薄膜,提高太阳电池效率,相对的降 低生产成本。
GaAs的外延包括同质外延和异质外延两种,如 GaAs/ GaAs何GaAlAs/ GaAs结构。通常GaAs 单晶外延薄膜可以采用液相外延(LPE)、金属 -有机化学气相沉积外延(MOCVD)和分子束外 延技术,对于太阳电池用GaAs,考虑到性能价 格比和相应三元化合物半导体材料的制备。前两 者得到了更广泛的应用。
性质比较稳定。这一特性有利于GaAs材料进行定向腐 蚀。
GaAs在室温条件下呈现暗灰色,有金属光泽, 相对分子质量为144.64;在空气或水蒸气中能稳 定存在;但在空气中,高温600℃条件下可以发 生氧化反应,高温800℃以上可以产生化学离解; 常温下,化学性质也很稳定,不溶于盐酸,但可 溶于硝酸和王水。
温度系数小:能在较高的温度下正常工作。
砷化镓材料的缺点:
资源稀缺,价格昂贵,约Si材料的10倍;
污染环境,砷化物有毒物质,对环境会造成污染;
机械强度较弱,易碎;
制备困难,砷化镓在一定条件下容易分解,而且砷材料 是一种易挥发性物质,在其制备过程中,要保证严格的 化学计量比是一件困难的事。
砷化镓材料的缺点:
1.2 GaAs太阳电池 早在1956年,GaAs太阳电池就已经被研制。 20世纪60年代,同质结GaAs太阳电池的制备和 性能研究开始发展,一般采用同质结p-GaAs/nGaAs太阳电池,由于GaAs衬底表面复合速率大 6 于10 cm/s,入射光在近表面处产生的光生载流 子出一部分流向n-GaAs区提供光生电流外,其 余则流向表面产生表面复合电流损失,使同质结 GaAs太阳电池的光电转换效率较低。
液相外延生长GaAs薄膜,主要是控制溶液 的过冷度和过饱和度,从而获得高质量的薄膜。 控制过冷度的方法有: (1)渐冷生长, 即溶液与衬底接触后,溶液的温 度逐渐降低,形成过冷度,进行外延生长。 (2)一步冷却生长;即溶液温度降低至液相线下, 然后让溶液与衬底接触,在恒定温度下进行外延 生长。 (3)过冷生长;即溶液温度降低在液相线下,然 后让溶液与衬底接触,再以一定速度降低温度进 行外延生长。
图2.1.LEC法示意图
2.水平布里奇曼法(HB)
图2.2.HB法示意图
该方法的特点使熔体通过具有一定梯度的温区而获得单晶生长
2.1 GaAs单晶材料的制备
LEC法和HB法是初期的GaAs晶体生长的工艺方法,有一定的 优点和缺点。 HB法 优点——单晶的结晶质量高,工艺设备较简单。 缺点——晶锭尺寸和形状受石英舟形状的限制,最大晶体尺寸 为2.5寸;生长周期长,同时熔体与石英舟反应引入 硅的沾污,无法得到高纯GaAs单晶。 LEC法 优点——可生长适用于直接离子注人的高纯非掺杂半绝缘单晶, 单晶纯度高,尺寸大,适于规模生产。 缺点——是结晶质量略差,位错密度较高,生长工艺复杂,工 艺设备昂贵,成本高。 为了进一步提高单晶的质量,随后又发展了一些新工艺,主 要是垂直梯度凝固法(VGF )和垂直布里奇曼法(VB ) 。
液相外延制备GaAs单晶薄膜技术简单、薄膜 生长速率高、掺杂剂选择范围广、毒性小、而且 薄膜生长是在近似热平衡状态下,所以制备的薄 膜单晶位错密度低、质量较好;同时因为过程温 度低,可以避免造成容器对材料的污染。
液相外延制备GaAs薄膜也有相应的弱点:一是 外延结束后,溶液和衬底必须分离,比较困难。 二是表面形貌粗糙,表面复合速率高,影响了太 阳电池的效率此外液相外延难以生长多层薄膜的 复杂结构,精确控制精度也比较困难。
在波长0.85μm以下,GaAs的光吸收系数急 4 剧升高,达到10 /cm,比硅材料要高1个数量级, 而这正是太阳光谱中最强的部分。因此,对于 GaAs太阳电池而言,只要厚度达到3μm,就可 以吸收太阳光谱中的95%的能量。
由于GaAs材料的尽带宽度为1.43ev,光谱响应特 性好,因此太阳光电转换理论效率相对较高。
3.3 金属-有机化学气相沉积外延
金属-有机化学气相沉积外延是指以H2作为载 气,利用Ⅲ族金属有机物和Ⅴ族氢化物或烷基化 合物在高温进行分解,并在衬底上沉积薄膜的技 术。 MOCVD生长系统,包括气体处理系统、反应室、 尾气处理系统、控制系统。
金属-有机化学气相沉积制备GaAs薄膜可以分为常 压和低压两种形式,后者(LP-MOCVD)具有 生长温度低、外延层的碳污染小、电子迁移率高、 浓度和组分分布曲线陡峭、寄生反应少等优点。 MOCVD的反应室一般由石英构成,内置石墨或 SIC基座放置衬底,利用射频感应、红外辐射、 电阻加热等技术进行衬底温度的加热和控制。
GaAs半导体材料
1、GaAs材料的性质和太阳电池 1.1 GaAs的基本性质 1.2 GaAs太阳电池 2、 GaAs单晶体材料 2.1 布里奇曼法制备GaAs单晶 2.2 液封直拉法制备GaAs单晶 3、 GaAs薄膜单晶材料 3.1 液相外延制备GaAs薄膜单晶 3.2 金属-有机化学气相沉积外延 3.3 Si、Ge衬底上外延制备GaAs薄膜材料
1、 GaAs材料的性质和太阳电池 1.1 GaAs材料的性质
GaAs材料是一种典型的Ⅲ-Ⅴ族化合物半导 体材料。1952年,H.Welker首先提出了GaAs的 半导体性质,随后人们在GaAs材料制备、电子 器件、太阳电池等领域导体激光器, 1963年又发现了耿氏效应,使得GaAs的研究 和应用日益广泛,已经成为目前生产工艺最成 熟、应用最广泛的化合物半导体材料,它不仅 是仅次于硅材料的微电子材料,而且是主要的 光电子材料之一,在太阳电池领域也有一定的 应用。
3.2 液相外延制备GaAs薄膜单晶 液相外延技术是1963年提出的,并应用于 GaAs等化合物半导体薄膜材料方面,其原理是 利用过饱和溶液中的溶质在衬底上析出制备外延 薄膜。 其外延薄膜层的质量受到外延溶液的过饱和 度、表面成核过程的生长机理、溶液组分梯度和 温度梯度引起的对流等因素的影响。