瞬变电磁法探测原理 (1)
瞬变电磁法原理

瞬变电磁法原理
瞬变电磁法(Transient Electromagnetic Method,简称TEM)是一种地球物理勘探方法,利用地下电阻率差异来探测地下结构的一种有效手段。
瞬变电磁法原理是基于法拉第电磁感应定律和麦克斯韦方程组,通过在地面上设置发射线圈和接收线圈,利用电磁场的感应效应来获取地下介质的电阻率信息。
在瞬变电磁法中,发射线圈产生的瞬时电流会在地下引起瞬时变化的磁场,这个瞬时变化的磁场会感应出地下的涡电流。
这些涡电流会产生自己的磁场,而这个磁场又会感应出接收线圈中的感应电压。
通过测量这个感应电压随时间的变化,就可以得到地下介质的电阻率信息。
瞬变电磁法原理的关键在于瞬时变化的电磁场。
由于地下介质的电阻率不同,对瞬变电磁场的响应也不同,因此可以通过测量感应电压的变化来推断地下的电阻率分布。
一般来说,导电性较好的地层会对瞬变电磁场产生较大的响应,而绝缘性较好的地层则会对瞬变电磁场产生较小的响应。
瞬变电磁法原理的优势在于其对地下较深部分的探测能力。
由于瞬变电磁法所产生的磁场变化非常快,因此可以感应出地下较深部分的涡电流,从而获取较深部分的电阻率信息。
这使得瞬变电磁法在地下水资源、矿产资源、地质构造等方面有着广泛的应用前景。
总的来说,瞬变电磁法原理是基于电磁感应定律和麦克斯韦方程组,利用瞬时变化的电磁场来感应地下介质的电阻率信息。
通过测量感应电压随时间的变化,可以推断地下的电阻率分布,从而实现对地下结构的探测。
瞬变电磁法在地下深部探测方面具有独特的优势,对于地质勘探、矿产资源勘查等具有重要的应用价值。
瞬变电磁法探测原理

2007 吉林大学
中心回线,回线半径100 100米 两层大地的电动势时间特性曲线 (中心回线,回线半径100米)
曲线62.8。衰减
曲线出现跷曲
2.不导电介质中的非磁性导电球体响应 不导电介质中的非磁性导电球体响应
Ia l 1 2 exp(−k t / τ ) εc (t) = 48π µ0 2 −1 2 3 • (4l π + h ) τ k =1
2 i (t) H1(t,0,0) = i (t) ≈ 0.45 πa a
一次磁场垂直分量随时间的变化率可写为: 一次磁场垂直分量随时间的变化率可写为:
∂H 1 (t ,0,0 ) 2 ∂ i (t ) 0 .45 ∂ i (t ) = ≈ ∂t π a ∂t a ∂t
2.回线轴上的一次场垂直分量为: 2.回线轴上的一次场垂直分量为: 回线轴上的一次场垂直分量为
时间域电磁法中,激发波形可以采用多种具有周期性的 时间域电磁法中,激发波形可以采用多种具有周期性的脉 具有周期性 冲序列,例如:矩形、梯形、半正弦形、三角形、 冲序列,例如:矩形、梯形、半正弦形、三角形、伪随机等 波形。 波形。 对瞬变电磁测深,在实际应用中,为了有效地抑制观测系 对瞬变电磁测深,在实际应用中, 统中的直流偏移和超低频噪声 干扰, 直流偏移和超低频噪声的 统中的直流偏移和超低频噪声的干扰,将不同时域的相应二 次场进行叠加,以消除随机干扰,提高信噪比, 次场进行叠加,以消除随机干扰,提高信噪比,需要采用周 期性脉冲序列连续激发二次场。 期性脉冲序列连续激发二次场。经常采用的激励场波形主要 双极性矩形脉冲、双极性半正弦脉冲、 有双极性矩形脉冲、双极性半正弦脉冲、双极性梯形脉冲序 等来激发二次电磁场。 列等来激发二次电磁场。
瞬变电磁法原理介绍

瞬变电磁法原理介绍瞬变电磁法俗称TEM (Time domain electromagnetic methods )法,属时间域电磁感应方法。
其探测原理是:在地面布设一回线,并给发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向地下传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程。
该过渡过程又产生一个衰减的二次磁场向地表传播,由地面的接收回线接收二次磁场,该二次磁场的变化将反映地下地质体的电性分布情况。
如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。
如果地下没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现地下导体的存在。
瞬变电磁法特图3-1 瞬变电磁法原理示意图(1)对高阻层的穿透能力强,在高阻屏蔽地区用较小的回线可达到较大的探测深度,同时对低阻层有较高的分辨能力,利于在高阻围岩地区开展水文电法工作。
(2)瞬变电磁法一次磁场和被测磁场在时间上是分开的,所以,分辨率较高,并且可以在近区观测。
(3)方法本身受地形影响小。
使用回线源实现了装置的对称性,z x t>0Tx t=t 12t=t t=t 3可以减少断面的不均匀性和地层倾斜的影响。
工作中根据实际情况采用了大回线源装置,用探头接收。
大回线装置的Tx采用边长较大的矩形回线,Rx采用小型线圈(或探头)沿垂直于Tx长边的测线逐点观测磁场分量dB/dt值。
地下感应涡流向下、向外扩散的速度与大地导电率有关,导电性越好,扩散速度越慢,这意味着在导电性较好的大地上,能在更长的延时后观测到大地瞬变电磁场。
从“烟圈效应”的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反映浅部电性分布;晚期瞬变地磁场主要是由深部的感应电流产生的,反映深部的电性分布。
瞬变电磁法的基本原理

瞬变电磁法的基本原理
瞬变电磁法是电磁勘察的经典技术,具有无损检测、快速检测、深度较深等优点。
它是基于地球的磁场瞬变信号的原理,通过安装在地面的磁场探测器,利用地球的磁场受到磁性物体的叠加,形成磁场瞬变信号,然后将瞬变信号通过线缆传送到计算机中进行处理,可以精确地探测出地下磁性体的大小、位置和磁性等信息。
瞬变电磁勘探可以进行快速、全面、准确的地下磁性体探测,它在水文、工程、地质等方面具有广泛的应用。
瞬变电磁法的基本原理是:地球自身有一个恒定的磁场,当磁性物体出现在地球表面时,地球的磁场就会受到影响,这些受影响的磁场能够形成一个瞬变信号,这个信号能够通过电线传播到安装在地表的传感器上,然后把这些信号传输到计算机上进行深入分析,以获得磁性物体的具体信息。
煤矿瞬变电磁法的基本原理

煤矿瞬变电磁法的基本原理
煤矿瞬变电磁法是一种地球物理勘探技术,其基本原理是利用变化的电磁场在地下物质中引起的感应电流的变化来推断地下结构和地质特征。
瞬变电磁法的原理可以归结为以下几个步骤:
1. 发射电磁场:在地表上放置一个发射线圈,通过电流激发线圈产生变化的电磁场。
2. 感应电流产生:地下物质对电磁场的变化会产生感应电流。
地下物质的电导率和磁导率决定了感应电流的大小和分布。
3. 接收电磁信号:在地表上放置接收线圈,接收感应电流产生的变化信号。
4. 数据采集和处理:将接收到的信号传输到数据采集设备上,然后通过数学模型和计算方法对数据进行处理,将其转化为地下结构和电性特征的信息。
根据瞬变电磁法的原理,可以通过分析感应电流的变化来推断地下的物质性质和特征,如地层的厚度、电导率和磁导率等,进而对煤矿区域进行勘探和评估。
瞬变电磁法原理

瞬变电磁法原理瞬变电磁法(Transient Electromagnetic method,简称TEM)是一种地球物理勘探方法,利用瞬变电磁场在地下介质中传播的特性,来获取地下介质的电性信息。
瞬变电磁法原理的核心在于利用瞬变电磁场的感应效应,通过对地下介质中的电导率进行探测,从而揭示地下构造和岩矿成矿体的信息。
瞬变电磁法的原理可以简单概括为,在地面上设置一个发射线圈,通过传输电流产生瞬变电磁场,这个瞬变电磁场会穿透地下介质并感应出地下介质中的电磁响应。
接收线圈则用来接收地下介质中的电磁响应,通过分析接收信号的变化,可以推断地下介质的电导率分布情况,从而得到地下介质的电性信息。
瞬变电磁法原理的核心在于瞬变电磁场的感应效应。
当发射线圈传输电流时,会在地下产生一个瞬变电磁场,这个瞬变电磁场会穿透地下介质,并感应出地下介质中的电磁响应。
地下介质中的电磁响应受到地下介质电导率的影响,不同的地下介质具有不同的电导率,因此它们会对瞬变电磁场产生不同的响应。
通过接收线圈接收地下介质中的电磁响应,并分析接收信号的变化,就可以推断地下介质的电导率分布情况。
瞬变电磁法原理的关键在于对接收信号的分析。
接收线圈接收地下介质中的电磁响应,这个响应信号包含了地下介质电导率的信息。
通过对接收信号的分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法通过对地下介质的电性信息进行探测,可以帮助地质勘探人员了解地下构造和岩矿成矿体的情况,为资源勘探和地质灾害预测提供重要的科学依据。
总之,瞬变电磁法原理是利用瞬变电磁场的感应效应,通过对地下介质的电性信息进行探测,来揭示地下构造和岩矿成矿体的信息。
通过对发射线圈传输的瞬变电磁场和接收线圈接收的电磁响应进行分析,可以得到地下介质的电导率分布情况,从而揭示地下介质的电性信息。
瞬变电磁法在资源勘探和地质灾害预测中具有重要的应用价值,是一种非常有效的地球物理勘探方法。
瞬变电磁法在铁矿采空区勘查中的应用

瞬变电磁法在铁矿采空区勘查中的应用概述瞬变电磁法是一种地球物理勘探方法,通过记录地下储层对电磁场的响应,来获取地下电性参数的方法。
在铁矿勘查中,由于采空区和开采导致的地下结构变化,传统的地球物理勘探方法往往无法满足勘查的需求。
而瞬变电磁法正是针对这一问题而发展起来的一种新型勘探技术,具有高分辨率、深部探测能力强等优点,在铁矿采空区勘查中有着广泛的应用价值。
瞬变电磁法原理瞬变电磁法是通过人工产生的瞬时电磁场来探测地下储层的电性结构。
其原理是首先在地表布置发射线圈,通过交变电流激发地下的电磁场;然后在被测区域布置接收线圈,接收地下储层对电磁场的响应。
根据接收到的信号,利用数学方法和电磁理论,可以反演地下储层的电性参数,从而获取地下结构信息。
瞬变电磁法在铁矿采空区勘查中的应用1. 铁矿采空区地下结构复杂铁矿采空区是指矿体被开采后形成的洞穴或空间,地下结构非常复杂。
通常情况下,地质勘查难以穿透采空区进行探测,使得矿床的储量和分布情况无法准确确定。
而瞬变电磁法能够在采空区进行深部探测,获取采空区下方地层的电性参数,为铁矿勘查提供关键的信息。
2. 高分辨率优势与传统的地球物理勘探方法相比,瞬变电磁法具有更高的分辨率。
由于采空区下方往往存在纷繁复杂的地质构造,高分辨率的探测能力可以有效地识别不同类型的地层和岩石,帮助勘查人员准确判断铁矿矿床的储量和分布情况。
3. 深部探测能力由于采空区下方的地质构造往往较为复杂,而且深度较大,因此需要具有强大的深部探测能力。
瞬变电磁法在铁矿采空区勘查中能够深入到几十到几百米的深度范围内进行探测,可以有效地获取采空区下方的地质构造信息,为铁矿勘查提供必要的数据支撑。
4. 实际案例瞬变电磁法在铁矿采空区勘查中已经取得了一些成功的应用案例。
例如在某铁矿的采空区勘查中,使用瞬变电磁法成功识别了采空区下方的高电阻率带和低电阻率带,为确定铁矿矿体的延伸方向和未来的矿床开发提供了重要的指导,取得了良好的勘查效果。
昭阳煤矿瞬变电磁法超前探测技术

接收线圈灵敏度
接收线圈灵敏度对探测结果也 有重要影响,灵敏度高的接收 线圈可以更好地捕捉微弱信号 。
数据处理方法
数据处理方法对探测结果的准 确性也有重要影响,采用合适 的处理方法可以更好地提取有
用信息。
03
昭阳煤矿瞬变电磁法超前 探测技术实践
判断含水性
根据电阻率等参数,可以 判断含水性,为煤矿安全 生产提供决策依据。
指导掘进
通过超前探测技术,可以 提前了解前方地质条件, 指导掘进方向和速度。
瞬变电磁法超前探测技术的主要影响因素
地层电阻率
地层电阻率是影响瞬变电磁法 探测效果的关键因素,不同地 层的电阻率会影响探测结果的
准确性。
激发场源强度
昭阳煤矿瞬变电 磁法超前探测技 术
汇报人:
2023-12-02
ห้องสมุดไป่ตู้
目录
• 瞬变电磁法超前探测技术概述 • 瞬变电磁法超前探测技术原理 • 昭阳煤矿瞬变电磁法超前探测技
术实践 • 昭阳煤矿瞬变电磁法超前探测技
术应用效果评估 • 结论与展望
01
瞬变电磁法超前探测技术 概述
瞬变电磁法技术简介
瞬变电磁法是一种利用电磁感应 原理探测地下物体分布特征的方
法。
瞬变电磁法通过发送脉冲磁场并 测量其响应,可以获取地下物体
的电导率和磁导率等参数。
瞬变电磁法具有探测深度大、分 辨率高、抗干扰能力强等优点。
超前探测技术的重要性
超前探测技术可以提 前探明地下情况,预 防安全事故发生。
超前探测技术可以提 高矿产资源利用率, 减少浪费。
超前探测技术可以指 导采矿作业,提高生 产效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬变电磁法探测原理
瞬变电磁法,即Transient Electromagnetic Method(简称TEM),是利用不接地回线
或接地线源向地下发送一次脉冲场,以激励地层介质感生电磁场,在一次脉冲场间歇期间
利用同一回线或电偶极接收感应电磁场。
其物理基础是电磁感应原理,据此理论在电导率
和磁导率均匀的大地上,铺设输入阶跃电流的回线,当发送回线中电流突然断开时,在下
半空间就要被激励起感应涡流场以维持在断开电流前存在的磁场,此瞬间的电流集中在回
线附近的地表,并按指数规律衰减。
在发送一次脉冲磁场的间歇期间,观测由地下地质体受激励引起的涡流产生的随时间变化的感应电磁场(或称响应场)。
地层介质被激励所感应的二次涡流场强弱决定于地层
介质所耦合的一次脉冲磁场磁力线的多少,二次场的大小与地下介质的电性有关:低阻地
质体感应二次场衰减较慢,二次场电压较大;高阻地质体感应二次场衰减较快,二次场电
压较小。
根据二次场衰减曲线的特征,就可以判断地下地质体的电性、性质、规模和产状等,由于瞬变电磁仪接收的信号是二次涡流场的电动势(纯异常响应),对二次电位进行归
一化处理后。
根据归一化二次电位值的变化特征,可间接地探测各种地质构造问题。
因此,瞬变电磁作为一种时间域的人工源地球物理电磁感应探测方法,是根据地质构造本身存在
的物性差异来间接判断有关地质现象的一种有效的地质勘探手段。
瞬变电磁场在大地中主要以“烟圈“扩散形式传播,在这一过程中,电磁能量直接在
导电介质中传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是
源下面的局部,较低频部分传播到深处,且分布范围逐渐扩大。
从烟圈效应的观点看,早期瞬变电磁场是由近地表的感应电流产生的,反应浅部电性分布,晚期瞬变电磁场是由深部的感应电磁场产生的,反应深部的电性分布。
因此,观测和研究大地瞬变电磁场随时间的变化规律,可以探测大地电位的垂向变化。
矿井瞬变电磁法原理与地面电磁法原理基本相同,所不同的是矿井瞬变电磁法是在井下巷道内进行瞬变电磁场呈全空间分布,接收线圈接收的信号是来自发射线圈上下两个方向全空间岩石电性的综合反映。