解读有机化合物的结构表征
有机化合物的结构表征方法关系及区别

一、在研究有机化合物的过程中,往往要对未知物的构造加以测定,或要对所合成的目的物进展验证构造。
其经典的方法有降解法和综合法。
降解法是在确定未知物的分子式以后,将待测物降解为分子较小的有机物,这些较小的有机物的构造式都是的。
根据较小有机物的构造及其他有关知识可以判断被测物的构造式。
综合法是将构造的小分子有机物,通过合成途径预计*待测的有机物,将合成的有机物和被研究的有机物进展比拟,可以确定其构造。
经典的化学方法是研究有机物构造的根底,今天在有机物研究中,仍占重要地位。
但是经典的研究方法花费时间长,消耗样品多,操作手续繁。
特别是一些复杂的天然有机物构造的研究,要花费几十年甚至几代人的精力。
近代开展起来的测定有机物构造的物理方法,可以在比拟短的时间内,用很少量的样品,经过简单的操作就可以获得满意的结果。
近代物理方法有多种,有机化学中应用最广泛的波谱方法是紫外和可见光谱,红外光谱,以及核磁共振谱〔氢谱、碳谱〕,一般简称"四谱〞。
二、经典化学方法1、特点:以化学反响为手段一种分析方法2、分析步骤〔1〕测定元素组成:将样品进展燃烧,观察燃烧时火焰颜色、有无黑烟、剩余,再通过化学反响,检测C、H、O等元素含量,得到化学式〔2〕测定分子摩尔质量:熔点降低法、沸点升高法〔3〕溶解度实验:通过将样品参加不同试剂,观察溶解与否,来进展构造猜想〔4〕官能团实验:通过与不同特殊试剂反响,判断对应的官能团构造〔例:D-A反响形成具有固定熔点的晶体——存在共轭双烯〕〔5〕反响生成衍生物,并与构造的衍生物进展比拟。
三、现代检测技术〔一〕紫外光谱(Ultraviolet Spectra,UV)(电子光谱)1、根本概念〔1〕定义:紫外光谱法是研究物质分子对紫外的吸收情况来进展定性、定量和构造分析的一种方法。
〔2〕特点:UV主要产生于分子价电子在电子能级间的跃迁,并伴随着振动转动能级跃迁,是研究物质电子光谱的定量和定性的分析方法。
有机化合物结构表征

有机化合物的结构表征§4-1 概述研究一个有机化合物,不论是天然产物还是人工合成品都需要对这个化合物进行结构表征。
如果一个化合物的结构不清楚,就不能深入研究它的性质和作用,更不可说合成和改进这个化合物了。
所以,确定有机化合物的结构是有机化学研究的一项重要任务。
在有机化学研究中,怎样表征有机化合物的结构呢?下面我们从三个方面概要地讨论这个问题。
Ⅰ.有机化合物的研究过程有机化合物的研究过程是以化学实验为基础,现代分析技术为手段,有机结构理论为知道的系统研究方法,基本程序如下。
1.化合物的分离提纯研究任何一种有机化合物,必须保证该化合物是单一纯净的物质。
由于有机反应较为复杂,副反应较多,提纯有机化合物是一个非常艰巨的工作,尤其是从大量的天然物内提取生理活性很强的物质。
有机化合物分离提纯,经常使用的方法有蒸馏,萃取,重结晶,升华和层析等物理过程分离法。
随着分离提纯一起和方法的改善,技术手段的提高,有机化合物的分离提纯及经过仪器化,连续化和定量化发展。
经过分离提纯的有机化合物,可令相色清,高压液相色清,纸色谱和薄层色色谱等确定起纯度,具有微量,快速和准确的优点。
2.元素定性定量分析经过分离提纯的物质,纯度恰恰正式为一个纯的化合物后,可以进行元素定性分析测定这个化合物是由哪些元素组成的,然后在进行元素的定量分析时,确定组成化合物的每种元素的百分含量。
元素分析仪可以直接自动给出元素的定量分析结果。
根据元素定量分析结果,计算出该有机物的实验式。
实验式是反映组成化合物的元素种类和各元素原子比例的化学式,但还不能说明分子中各种元素的原子数目。
3.相对分子质量的测定测定化合物的相对分子质量,结合实验式就可以写出该化合物的分子式。
相对分子质量的测定方法有很多,质谱法是一种快速精确的测定方法。
4.确定化合物可能的构造式写出化合物的分子式后,按照同分异构的概念,就可以写出可能的同分异构体的构造式。
有机化学中同分异构现象十分普遍。
第七章-有机化合物的结构表征

不对称伸缩振动(νas) 2926 cm-1
(2)弯曲振动:
+
+
+ +
C
C
C
C
剪式振动(δs)
面内摇摆振动 (ρ) 面外摇摆振动 (ω)
扭式振动 (τ)
面内
面外
弯曲振动只改变键角,不改变键长
值得注意的是: 不是所有的振动都能引起红外吸
收,只有偶极矩(μ)发生变化的,才能有红外吸收
H2.O2.N2 电荷分布均匀,振动不能引起红外吸收 H-C≡C-H、R-C≡C―R, 其C≡C(三键)振动也不能引 起红外吸收
四、红外谱图解析
红外谱图解析的基本步骤是: 鉴定已知化合物:
1. 观察特征频率区: 判断官能团,以确定所属化 合物的类型 2. 观察指纹区: 进一步确定基团的结合方式
3.对照标准谱图验证
1.烷烃:
1.2853~2962cm-1 C—H 伸缩振动; 2. 1460cm-1、1380cm-1 C—H(—CH3.—CH2)面内弯曲振动 3.723cm-1 C—H[—(CH2)n—, n ≥ 4]平面摇摆振动;若n<4 吸 收峰将出现在734~743cm-1处。
4.醛与酮
二者的异同点: 1.在1700cm-1处均有一个强而尖的吸收峰, 为 C=O
(羰基)的特征吸收峰。
C=O(羰基)吸收峰的位置与其邻近基团有关, 若
羰基与双键共轭, 吸收峰将向低波数区位移。
O
(CH3)2CHCH2 C CH3
σ/cm-1
1717
O 1715
O (CH3)2C CH C CH3
/ppm CH3F CH3OH CH3Cl CH3Br CH3I CH3-H
有机化合物的结构分析

有机化合物的结构分析有机化合物是由碳元素与氢、氧、氮、硫等非金属元素通过共价键所组成的化合物。
它们广泛存在于自然界中,并且在生物学、药学、化学等领域中具有重要的应用价值。
在进行有机化合物的结构分析时,需要借助于一系列的实验方法和仪器设备,以确定有机化合物的分子式、结构式以及功能团的位置。
一、红外光谱分析法红外光谱分析是一种常用的有机化合物结构分析方法。
通过检测有机化合物分子中化学键的振动和伸缩,可以得到有关它们的结构信息。
红外光谱图上的吸收峰可以帮助我们确定分子中存在的功能团,比如氨基、羟基、羰基等。
此外,红外光谱还可以用于检测有机化合物中的非对称拉伸振动和对称拉伸振动,帮助我们确定有机化合物的手性性质。
二、质谱分析法质谱分析是一种通过检测有机化合物中离子的质量和相对丰度来确定其结构的方法。
通过质谱图上的质荷比(m/z)峰,可以推测出有机化合物的分子式和分子离子峰。
同时,质谱图上的裂解峰还可以提供有机化合物中化学键的断裂位置和分子结构的信息。
质谱分析法在有机化合物的鉴定和结构研究中发挥着重要的作用。
三、核磁共振分析法核磁共振分析是一种通过检测有机化合物中氢、碳等核自旋的能级差和共振频率来确定其结构的方法。
核磁共振谱图提供了有机化合物中各个原子核的相对化学位移和耦合常数,从而可以推导出有关化合物的结构信息。
核磁共振分析法可以用于确定有机化合物的碳谱和氢谱,进而得到有机化合物的结构式。
四、元素分析法元素分析是一种通过测定有机化合物中碳、氢、氧、氮等元素的含量和比例来确定其分子式的方法。
通过考察有机化合物的百分含量和摩尔比,可以推测它们的结构和化学式。
元素分析法广泛应用于有机化合物的合成和表征过程中。
综上所述,有机化合物的结构分析是一个重要且综合的研究领域。
通过运用红外光谱分析法、质谱分析法、核磁共振分析法和元素分析法等一系列的方法和技术,我们可以准确地确定有机化合物的结构信息,进而深入研究其性质和应用价值。
有机化合物的表征

• 分子及组成它的原子、电子在不断运动,各种运动状态都有一定的能 级,有电子能级、振动和转动能级、原子核自旋能级。分子中不同运 动方式的能级跃迁需要不同频率或波长的电磁辐射提供能量。如无线
• 电磁辐射,又称电磁波,具有波、粒二象性。电磁辐射的波长l(单位 cm 或nm)越短,频率v(单位Hz)越高,光子能量E(单位kJ·mol-1) 也越大。它们之间的关系是
上一页 下一页 返回
15.1 红外光谱法
• 式中 c为光速,是常数3×1010cm/s;犺为普朗克常数, 6.626×10-34J·s;犾为波长。电磁波的频率也常以波数σ表示,σ 是指每厘米所含有波长的数目,单位为cm-1。
• 组成分子的原子不停地振动,振动方式很多,在红外光谱中一般可以 分为伸缩振动和弯曲振动两种类型。
上一页 下一页 返回
15.1 红外光谱法
• 1)伸缩振动 • 键合原子沿键轴方向伸展和收缩,键长改变而键角不变。可以分为对
称伸缩振动和不对称伸缩振动。 • 2)弯曲振动 • 键合原子在键轴上下左右弯曲振动,键角改变而键长基本不变。可以
• 3. 紫外光谱法 • 4. 质谱法 • 有机化合物的结构表征可以分为三种方法:物理常数测定法、化学法
和近代物理方法。在每种方法中又可以分为不同的方法。但一般情况
下一页 返回
15.1 红外光谱法
• 下,没有只用一种方法就能够准确无误地给出化合物的构造,实际工 作中往往是几种方法联合使用、互相补充,才能够得到确切的构造式。 其中近代物理方法是应用近代物理实验技术建立的一系列仪器分析方 法。测定有机化合物的各种波谱,确定有机化合物的结构,现已构成 了有机化合物的波谱学。这种方法的特点是试样用样量少、测试时间 短、结果精确等。尤其与计算机联用后,其优越性更加突出。有机化 合物的波谱是记录有机化合物分子的微观性质,能够揭示微观粒子的 运动状态和相互之间的关系,是研究表征分子结构的最有利的手段和 方法。
教案:有机物的结构表征技术

教案:有机物的结构表征技术有机物是自然界中广泛存在的一类化合物,其中包含了大部分的生命活动所需的分子,因此研究有机物的结构与性质无论在理论探究上还是在应用研究上都有着重要的作用。
由于有机物种类繁多,结构多样,样品通常难以制备,所以需要有效的结构表征技术才能提高研究的准确度和效率。
目前,有机物的结构表征技术主要包括光谱法、色谱法、质谱法以及X射线衍射法等多种方法,下面将对这几种方法分别进行详细介绍。
一、光谱法光谱法是通过有机物吸收、散射或发射的光信号来确定其分子结构和性质。
根据所使用的光源、检测器以及样品状态,光谱法又可以分为红外光谱、紫外光谱、拉曼光谱、荧光光谱、圆二色光谱等多个子领域。
其中,红外光谱(FTIR)和紫外光谱(UV-Vis)是最为常用和广泛的两种光谱方法。
红外光谱法是一种基于有机物分子的振动吸收谱的谱学分析方法,根据不同种类的化学键在不同部位的振动特性,可以分析有机物的官能团、键型以及化学结构。
相较于其他分析方法,红外光谱法具有快速、易用、非破坏性的特点,因此在有机物分析中被广泛应用。
同时也有一定的局限性,例如无法检测出对称结构等方面的信息。
紫外光谱法是一种测定有机物分子中所含共轭体系吸收紫外光的谱学分析方法,通过分析有机物的吸收特性得到其电子结构、分子键型、芳香或几何结构等信息,应用也很广泛。
但是需要注意,紫外光谱法的结果受溶剂和温度等影响较大。
二、色谱法色谱法是一种分离和分析化合物的方法,通过样品在固定相、流动相以及温度等条件下的分离达到分析的目的。
常用的色谱法有气相色谱法(GC)、液相色谱法(HPLC)以及毛细管色谱法(CE)等。
气相色谱法是指将气体作为流动相,在某种固定相上,将需要分离的有机物混合物分离出不同的成分,其中流动相和站相皆是气体。
气相色谱法在大分子的有机物分离时不太适用,但是其可检测的范围广,分离效率高,因此被广泛应用于分析化学和生物化学等领域。
液相色谱法是将有机物样品在一种液体流动相中传输,到达与之亲和的固定相表面并被分离的一种色谱方法。
有机化学中的表征与鉴定方法

有机化学中的表征与鉴定方法有机化学是研究含碳的化学物质的一门学科,关于有机物质的表征与鉴定方法是该领域研究的核心内容之一。
本文将介绍几种常用的有机化学表征与鉴定方法。
一、质谱法质谱法是一种能够鉴别化合物分子质量和结构的方法,对于分析有机物质的结构非常重要。
质谱法的基本原理是将化合物分子进行电子轰击或化学离解,得到化合物的质谱图谱。
质谱图上的峰值可以提供关于分子离子的质荷比、相对丰度和碎片离子等信息,从而可以确定有机物的分子式,判断其结构和碳骨架。
二、红外光谱法红外光谱法是一种通过测量有机物质在不同波长红外光照射下的吸收情况来表征物质的结构和功能团的方法。
有机物质中的化学键、取代基和官能团在不同波长的红外光照射下会发生吸收,吸收峰的位置和强度可以提供关于有机物质结构及含有的官能团的信息,通过对比不同样品的红外光谱图谱,可以确定有机物质的结构。
三、核磁共振波谱法核磁共振波谱法(简称NMR)是一种能够通过测量核磁共振信号来表征有机物质结构的方法。
核磁共振波谱法能够提供有机物中H、C 等原子核的化学位移、耦合常数和积分峰面积等信息,从而可以确定有机物的结构、官能团和立体构型。
四、气相色谱法气相色谱法是一种通过分离混合物中不同组分的方法,并通过检测组分在色谱柱上通过的时间来表征有机物质的方法。
有机物质在气相色谱柱中会根据其在柱上的亲和性差异而发生分离,通过检测各组分在固定时间内通过的峰面积或峰高,可以确定有机物质的组成和相对含量。
五、元素分析法元素分析法是一种通过测定有机物中各元素的含量来表征有机物质结构和组成的方法。
通过燃烧有机物质,将其转化为无机物质,并测定生成的气体或溶液中的元素含量,可以确定有机物质中碳、氢、氧等元素的相对含量,从而进一步确定其分子式和结构。
综上所述,有机化学中的表征与鉴定方法涵盖了质谱法、红外光谱法、核磁共振波谱法、气相色谱法和元素分析法等多种方法。
这些方法的使用可以帮助化学家确定有机物质的分子式、结构、官能团及其相对含量,为有机化学研究提供重要的实验手段。
第四章 有机化合物的结构表征

4,振动频率及其影响因
根据胡克定律和经典力学规律可以推导出其振动频率和 波数的公式:
化学键越强(即键的力常数k越大)原子折合质量越小,化 14 学键的振动频率越大,吸收峰将出现在高波数区。
P98-99
(1)力常数和折合质量的影
折合质量对振动频率的影响
15
(2),诱导效
O R C R' 1715 O R C F 1869
红外吸收产生条件
(1) 基团振动产生偶极矩变化。 (2) 辐射能量满足振动能级跃迁需要。 红外光谱适用范围广,无机和有机化合物都可以测定红外光 谱;各种相态都可以测定,如气态、液态、固态。 最常用溴化钾压片法,吸湿造成在3330cm-1处有吸收峰。
17
6.红外光谱图和波谱信
波数线性 4000~2000 cm–1等间距,2000~400 cm–1等间距。
43
44
二、1H-NMR的化学位移:
(一)屏蔽效应和化学位
感应磁场对外磁场的屏蔽作用称 作电子屏蔽效应(electronic shield effect)。 这种由于分子中各组氢核所处的化学环境不同,在不同的磁场 产生共振吸收的现象称为化学位移(chemical shift),也作为表 示不同信号间差距的度量。
近代物理方法 ——有机化合物的波谱学。
4
(5)化合物结构表征: 化学方法:利用官能团特征反应确定化合物类别,化 降解及合成方法,官能团转化法。 物理常数测定法:标准品对比法,如混合熔点法。 近代物理方法 ——有机化合物的波谱学。 近代物理方法的特点:试样用量少,测试时间 短,结果精确等。 有机化合物的结构表征往往需要多种方法结合 使用,才能确定化合物的结构。
羰基的伸缩振动频率(cm-1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质谱(MS) 不属于光波谱,它主要是确定分子的相对质 量和组成分子的基团,进一步推测分子的结构。
表征不同结构的化合物要选用不同的方法,很难用一种 方法(尤其对新化合物)准确确定分子结构,经常是 几种方法联合使用,互相补充,互相验证。
本章主要掌握红外光谱(IR)和核磁共振光谱(NMR)
4.2.1基本原理
1. 分子振动的类型 (1)伸缩振动
成键的两原子沿键轴方向伸长和缩短的振动 称为伸缩振动,常用ν 表示。 伸缩振动有两种:对称伸缩振动(νs)
不对称伸缩振动(νas)
解读有机化合物的结构表征
振动频率ν 与两原子的质量M1、M2、 键的力常数 k 有关: 或用波数σ 表示为:
解读有机化合物的结构表征
与有机分子结构有关的光波的频率如下表:
解读有机化合物的结构表征
解读有机化合物的结构表征
有机化合物结构表征最常用的光波谱 红外光谱(IR)反映的是价电子跃迁,常用来决定
化合物含有什么官能团,属于哪类化合物。 紫外光谱(UV)反映的也是价电子跃迁,更多的用
于电子离域体系的电子跃迁,常用来表征分子中 重键的情况,特别是共轭体等。 核磁共振光谱(NMR)反映的是原子核(氢核和碳 核)的跃迁,常用来测定有机分子中的氢原子和 碳原子连接的方式和化学环境。
解读有机化合物的结构表征
4.2 红 外 光 谱(IR,Infraned pectroscopy) 又称振动光谱,一般红外光谱仪测量吸收光的 波数(频率的倒数,单位cm-1)为40机化合物的结构表征。
解读有机化合物的结构表征
①键的力常数k与键能有关,键能大,力常数
大,振动频率也大。
解读有机化合物的结构表征
② M1和M2越小,(1/M1 + 1/M2)越大,振
动频率也越大。
解读有机化合物的结构表征
③ 同一原子上有几个键,振动会发生互相 影响,H-C-H两个C-H键振动频率相等, 互相偶合,或是对称伸缩振动,或是不 对称伸缩振动,振动频率也变化。
把官能团化合物转化成衍生物,测定衍生 物的性质。
解读有机化合物的结构表征
物理常数测定法:
此法只能为辅助方法。
近代物理方法: 红外光谱、紫外光谱、核磁共振谱和质
谱被广泛使用。这些方法揭示化合物微观结构, 是结构表征的最有力的手段和快速的方法。
解读有机化合物的结构表征
• 1、电磁波粒子能量:
解读有机化合物的结构表征
测定物质吸收光波的频率表征分子结构的原理
有机化合物分子中的原子、电子、原子核等是运 动的,质点不同,运动状态不同,能量差是量子化 的。用电磁波辐射物质,质点吸收电磁波,获得能 量,改变运动状态。因此,分子中不同质点运动状 态改变,只能吸收具有相应能量的波,即一定能量 的波。换句话说,分子吸收波的频率,反映了分子 中各质点的种类和运动状态。
解读有机化合物的结构表征
分离后检查纯度:方法有测熔点、沸点、折射率、 比旋光度等物理常数和色谱分析等。
3. 元素的定量定性分析
分析样品的组成元素及其含量,计算出化合物组 成的实验式。
4. 测定相对分子质量
测定相对分子质量,结合实验式才能写出分子 式。
解读有机化合物的结构表征
5. 推测构造式
根据化合物制备方法或来源,结合分子式,利用 同分异构概念,推测可能的构造式,甚至构型式。
第四章 有机化合物的结构表征
解读有机化合物的结构表征
4.1 研究有机化合物结构的基本程序
1. 研究一个未知有机化合物的基本程序
分离提纯→元素定性、定量分析→测定相对 分子质量→推测构造式→结构表征
2. 常用的分离方法:
蒸馏、萃取、洗涤、重结晶、升华、色层、色 谱等物理分离过程,有时用物理、化学相结合的分 离过程。
多,也可以看成独立的,
因此可用官能团的伸缩振动光谱表征化合物。
解读有机化合物的结构表征
(2)弯曲振动 弯曲振动是离开键轴的前、后、左、右振
动。键长不改变,键角改变,力常数变化小。 亚甲基有面内振动和面外振动。
因分子的弯曲振动,振动频率很低。
解读有机化合物的结构表征
2.产生红外光谱的条件
1)红外光辐射的频率与分子中键振动的频率 相当时,才能被吸收产生吸收光谱。 2)振动过程中能引起偶极矩变化的键才能产 生吸收光谱。H2、O2、N2等双原子分子,HC≡C-H,对称R-C≡C-R中的-C≡C-振动时都不引 起偶极矩改变,观察不到红外吸收,>C=O,N3振动引起的偶极矩变化大,吸收强度大。
②Y≡Z和Y=X=Z伸缩振动区(2400~2100cm-1) 主要包括C≡C,C≡N,C=C=C,C=N=O 键伸缩振动。
③Y=Z伸缩振动区(1800~1600cm-1)
解读有机化合物的结构表征
2. 指纹区(低频区)
小于1600cm-1的振动频率都在此区,主要是CC,C-N,C-O等单键的伸缩振动和各种弯曲 振动的频率。分子结构的微小变化,这些键 的振动频率都能反映出来,就象人的指纹一 样有特征,故称指纹区。能反映化合物的精 细结构。
解读有机化合物的结构表征
4.2.2 重要官能团的吸收区域 红外吸收光谱大体上分成三个区域,官能
团吸收区又分几个特征区:
解读有机化合物的结构表征
1. 官能团吸收区(高频区)
在3700~1600cm-1区组成官能团键的吸收大都 在此区,故称官能团区。其又分三个小区: ①Y-H伸缩振动区(3700~2500cm-1) 主要是O-H,N-H,C-H等单键伸缩振动频率区。
对称伸缩振动(νs) 2850cm-1
不对称伸缩振动(νas) 2930cm-1
解读有机化合物的结构表征
C-C-H两键振动频率相差大 (2900cm-1/1000cm-1), 互相影响小,看成独立的。
C-C,C-N,C-O振动频率比较接近, 相互有影响,
因此同一个化学键,在不同的分子中σ 不等。 Y-H,y=Z和Y≡Z振动频率比C-C键的高得
6. 结构表征
物理常数测定法、化学法和近代物理法。 近代物理方法:应用近代物理实验技术建立的一系 列仪器分析方法-------波谱法。
解读有机化合物的结构表征
化学方法:
(1)官能团分析方法 官能团决定研究对象所属化合物类别,进
行定性分析,进行定量测定。 (2)化学降解及合成方法 (3)官能团转化法