第十三章 积分变换法求解定解问题

合集下载

数学物理方程练习题第七版(学生用)

数学物理方程练习题第七版(学生用)

= u(0, t) 0= , ux (2,t) 1,
u(x= ,0)
cos π x + x3 − 3x2 − x.
2
3.求定解问题的解:
u
x= x + u yy
sinπ x,
0 < x < 1, 0 < y < 1,
= u(0, y) 1,= u(1, y) 2,
u(x,0) =1+ x,
7
u
rr
+
1 u
r
r
+
1 r2
uθθ
= 0,
u= (1,θ ) A cosθ (−π < θ ≤ π ).
4. 设 A, B 为常数,用试探法求如下定解问题的解:
u rr
1 +rur
+
1 r2
u
θθ
=
0,
r < a,
u r= =a A cosθ + B sinθ (−π < θ ≤ π ).
练习十五
练习六
1.求解如下定解问题:
ut = uxx + cosπ x, (0 < x < 1, t > 0), u= x (0,t) u= x (1,t) 0, u(x,0) = 0.
3
2.求解如下定解问题:
= u tt
a2u
xx
+
t
sin
π l
x
,
u= (0,t) u= (l,t) 0, t ≥ 0,
X= ′(0)
X= (l)
0.
3. 求如下定解问题的解:
= ut uxx , 0 < x < 2, t > 0, ux= (0, t) u= (2, t) 0,

偏微分方程考试题

偏微分方程考试题

数学物理方程及数值解 复习提要一、偏微分方程的建立 CH1 典型方程和定解条件 【内容提要】1. 方程的建立(步骤:确定物理量;微元法建立等式;化简得方程)主要方法:微元法; 泛定方程:(1) 波动方程(双曲型):弦振动方程:222222(,)(,)(),()u x t u x t F a a txρ∂∂==∂∂张力单位长度弦质量 传输线方程:222222222221,00i a LCi a a t x t x νν∂∂∂∂-=-=∂∂∂=∂;, 电磁场方程:22222211,,H E H E t t εμεμ∂∂=∇=∇∂∂22222222221(),με标量函数形式:∂∂∂∂=++∂∂∂=∂u u u z a u a t x y (2) 热传导方程/扩散方程(抛物型):ρ,其中22u Fa u f f t c ∂=∇+=∂ 导热杆(无热源)222u u a t x ∂∂=∂∂, 导热片(无热源)22222()u u u a t x y ∂∂∂=+∂∂∂ (3) 稳恒方程(椭圆型):Poisson 方程:,2u f ∇= Laplace 方程:,20u ∇=2.定解条件:初始条件及边界条件边界条件(1)第一类边界条件(Dirichlet 条件): 1(,)(,)D u M t f M t ∂=(2) 第二类边界条件(Neumann 条件):2Duf n ∂∂=∂ (3) 第三类边界条件(Robin 条件): 3()Duu f n σ∂∂+=∂ 3.定解问题的提法:⎧⎪⎧⎨⎨⎪⎩⎩偏微分方程(泛定方程)定解问题初始条件定解条件边界条件()Cauchy ⎧⎨⎩泛定方程(1)初始问题初始条件 ⎧⎨⎩泛定方程(2)边界问题(第一,二,三)边界条件⎧⎪⎨⎪⎩泛定方程(3)混合问题初始条件边界条件4.线性偏微分方程的基本性质(1).线性迭加原理212,11,,,,,,,:nnij i ij i n i j i i j iL a b c a b c f x x x x x x ==∂∂=++∂∂∂∑∑其中是算子的函数111(1,2)(),nnni i ii ii i i i i i L u f in L c u c L u c f=====⇒==∑∑∑命题:21110(1,2),,()0,nnii i i i i i i i i i k j u Lu i c u c L c u x x ∞===∂==⇒=∂∂∑∑∑一致敛命收题:(2.) 齐次化原理(冲量原理)Duhamel 原理:设(,,)x t ωτ是方程22222,,(,)(,)0,(,),a x t t x x x f x x t ωτωτωττω⎧∂∂=-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解,⇒0(,,)d ,()t x t u x t ωττ=⎰是方程22222(,),,0(,0)(,0)0,0,u u a f x t x t tx u x u x x t ⎧∂∂=+-∞<<+∞>⎪∂∂⎪⎨∂⎪==-∞<<+∞⎪∂⎩的解。

积分变换课后答案

积分变换课后答案

1-1之袁州冬雪创作1.试证:若()f t 知足Fourier 积分定理中的条件,则有 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞-∞-∞==⎰⎰分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试用三角形式证明.证明:操纵Fourier 积分的复数形式,有由于()()()(),,a a b b ωωωω=-=--所以 2.求下列函数的Fourier 积分:1)()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩; 2) ()0,0;e sin 2,0tt f t t t -⎧<⎪=⎨≥⎪⎩ 3)()0,11,101,010,1t t f t t t ⎧-∞<<-⎪--<<⎪=⎨<<⎪⎪<<+∞⎩分析:由Fourier 积分的复数形式和三角形式都可以解此题,请读者试用三角形式解.解:1)函数()2221,10,1t t f t t ⎧-≤⎪=⎨>⎪⎩为持续的偶函数,其Fourier变换为12233sin 2cos 2sin sin 4(sin cos )2t t t t t t ωωωωωωωωωωωω⎡⎤⎛⎫-=--+=⎢⎥ ⎪⎝⎭⎣⎦(偶函数)f(t)的Fourier 积分为2)所给函数为持续函数,其Fourier 变换为()224252j j 1121(2)j 1(2)j 256ωωωωωω⎡⎤--⎛⎫⎣⎦=+=⎪-+-+--+⎝⎭(实部为偶函数,虚数为奇函数) f (t)的Fourier 变换为 这里用到奇偶函数的积分性质.3)所给函数有间断点-1,0,1且f(-t)= -f(t)是奇函数,其Fourier 变换为12j(cos 1)2j 1sin d 0t t ωωω-=-⋅=⎰(奇函数) f(t)的Fourier 积分为其中t ≠-1,0,1(在间断点0t 处,右边f(t)应以()()00002f t f t ++-代替).3.求下列函数的Fourier 变换,并推证下列积分成果: 1)()e (0),t f t ββ-=>证明:22cos πd e ;02tt βωωβωβ-+∞=+⎰2)()e cos tf t t -=,证明:242πcos d e cos ;042tt t ωωωω-+∞+=+⎰ 3)sin ,π()0,πt t f t t ⎧≤⎪=⎨>⎪⎩,证明:2πsin ,πsin πsin 2d 010,πt t t t ωωωω⎧≤+∞⎪=⎨-⎪>⎩⎰ 证明:1)函数()e t f t β-=为持续的偶函数,其Fourier 变换为再由Fourier 变换得 即2)函数()e cos t f t t -=为持续的偶函数,其Fourier 变换为 再由Fourier 变换公式得 即 242πcos d e cos 042tt t ωωωω-+∞+=+⎰3)给出的函数为奇函数,其Fourier 变换为 故()()e 0,0t f t t ββ-=>≥的Fourier 正弦积分表达式和Fourier 余弦积分表达式.解:根据Fourier 正弦积分公式,并用分部积分法,有根据Fourier 余弦积分公式,用分部积分法,有1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πtf t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则 (令u ω-=)()j 1e d 2πutF u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πt F f t ωωω+∞=-=--∞⎰所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则(令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证 解:由Fourier 正弦变换公式,有 由Fourier 正弦逆变换公式,有 由此,当0t α=>时,可得5.设()()f t F ω⎡⎤=⎣⎦F,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为 所以反之,若已知()()F F ωω-=,则有此即标明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有亦即标明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为 所以反之,若已知()()F F ωω-=-,则有此即标明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i i F f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰,亦即标明()()j i f t f t =为t 的虚值函数.从而结论2)获证.sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为持续的偶函数,由公式有但由于当0a >时 当0a <时当0a =时,sin d 0,0a ωωω+∞=⎰所以得()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier 变换. 解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222a a t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F,由即得()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F. 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F,其中()t ϕ为一实数,则其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()()()()j j j j 1e e ed cose d cos 22t t tt F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另外一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t T f t T ⎧≤≤⎪=⎨⎪⎩其他1-31.若1122()[()],()[()],F f t F f t ωω== F F ,αβ是常数,证明(线性性质):分析:根据Fourier 变换的定义很容易证明. 证明:根据Fourier 变换与逆变换的公式分别有 6.若()[()]F f t ω= F,证明(翻转性质):()[()]F f t ω-=- F分析:根据Fourier 变换的定义,再停止变量代换即可证明.证明:()[()]t f t f t t ω+∞--∞-=-⎰Fj e d(令t u -=)()()u f u u ω+∞---∞=⎰j e d (换u 为t )()()t f t t ω+∞---∞=⎰j e d9.设函数()1,10,1t f t t ⎧<⎪=⎨>⎪⎩,操纵对称性质,证明:π ,1sin .0,1t t ωω⎧<⎪⎡⎤=⎨⎢⎥>⎣⎦⎪⎩F 证明:()[()]t f t f t t ω+∞--∞=⎰Fj e d 11t t ω--=⎰j e d由对称性质:()[()]f t F ω= F,则()[()]2,F t f ω=-F π有12.操纵能量积分()()2212f t t F ωω+∞+∞-∞-∞⎡⎤=⎣⎦⎰⎰d d π,求下列积分的值:1)21cos xx x +∞-∞-⎰d ; 2)42sin x x x +∞-∞⎰d ;3)()2211x x +∞-∞+⎰d ;4)()2221x x x +∞-∞+⎰d .解:1)2222sin 1cos 2xxx x xx +∞+∞-∞-∞-=⎰⎰d d(令2x t =)2sin t t t +∞-∞⎛⎫= ⎪⎝⎭⎰d 2)()22422sin 1cos sin x x xx x x x +∞+∞-∞-∞-=⎰⎰d d3)()22221111x t t x +∞+∞-∞-∞⎛⎫= ⎪+⎝⎭+⎰⎰d d 221121t ω+∞-∞⎡⎤=⎢⎥+⎣⎦⎰F d π,其中 从而4)()()2222221111x x x x x x +∞+∞-∞-∞+-=++⎰⎰d d ()2221111x x x x +∞+∞-∞-∞=-++⎰⎰d d 1-41.证明下列各式:2)()1f t ()()()()()23123f tf t f t f t f t ⎡⎤⎡⎤=⎣⎦⎣⎦;6)()()()()()()121212ddd;d d d f t f t f tf t f t f t t t t⎡⎤==⎣⎦ 10)()()()d t f t u t f ττ-∞=⎰分析:根据卷积的定义证明. 证明: 2)()()()123f t f t f t ⎡⎤⎣⎦()()()123d f f t f t ττττ+∞-∞⎡⎤=--⎣⎦⎰6)()()()()1212dd d d d f t f t f f t t t τττ+∞-∞⎡⎤⎡⎤=⋅-⎢⎥⎣⎦⎣⎦⎰()()()()1212ddd d d f f t f t f t t t τττ+∞-∞⎡⎤=⋅-=⎣⎦⎰, ()()()()1212d d d d d f t f f t f t t t τττ+∞-∞⎡⎤=-⋅=⎢⎥⎣⎦⎰.10)()()()()d f t u t f u t τττ+∞-∞=-⎰()1,0,t u t t τττ⎛⎫⎧<⎪-= ⎪⎨ ⎪>⎪⎩⎝⎭()d t f ττ-∞=⎰. 2.若()()()()12e ,sin t f t u t f t tu t α-==,求()()12f t f t .注意:不克不及随意调换()1f t 和()2f t 的位置. 解:由()()1e ,0e0,0t tt f t u t t αα--⎧>⎪==⎨<⎪⎩,()()2sin ,0sin 0,0t t f t tu t t >⎧==⎨<⎩,所以 ()()()()1221f t f t f t f t =()()21d f f t τττ+∞-∞=-⎰要确定()()210f f t ττ-≠()()210,0;0,0f t f t ττττ>≠->-≠.即必须知足 00t ττ>⎧⎨->⎩, 即0tττ>⎧⎨<⎩, 因此 (分部积分法)()2e sin cos e 10ttατααττα-⎡⎤-=⎢⎥+⎣⎦ 4 .若()()()()1122,F f t F f t ωω⎡⎤⎡⎤==⎣⎦⎣⎦FF ,证明:证明:()()()()121211d 2π2πF F F u F u u ωωω+∞-∞=⋅-⎰5.求下列函数的Fourier 变换: 1)()()0sin f t t u t ω=⋅; 2)()()0e sin t f t t u t βω-=⋅; 5)()()0j 0e t f t u t t ω=-;解: 1)已知()()1πδj u t ωω⎡⎤=+⎣⎦F,又 ()()()()()00j j 01sin e e 2jtt f t t u t u t u t ωωω-=⋅=-.由位移性质有()()000220πδδ2j ωωωωωωω⎡⎤=--+-⎣⎦-. 2)由Fourier 变换的定义,有5)操纵位移性质及()u t 的Fourier 变换,有再由象函数的位移性质,有7.已知某信号的相关函数()21e 4a R ττ-=,求它的能量谱密度()S ω,其中0a >.解 由定义知9.求函数()()()e ,0t f t u t αα-=>的能量谱密度. 解: 因为()()e ,0e 0,0ttt f t u t t αα--⎧>⎪==⎨<⎪⎩,当0τ>时,()()0f t f t τ+≠的区间为()0,+∞,所以 当0τ<时,()()0f t f t τ+≠的区间为(),τ-+∞,所以因此,()1e 2R αττα-=,现在可以求得()f t 的能量谱密度,即1-51.求微分方程()()(),()x t x t t t δ'+=-∞<<+∞的解. 分析:求解微分、积分方程的步调:1)对微分、积分方程取Fourier 变换得象函数的代数方程;2)解代数方程得象函数;3)取Fourier 逆变换得象原函数(方程的解). 解:设()(),x t X ω⎡⎤=⎣⎦F对方程双方取Fourier 变换,得即 其逆变换为()0,0.e ,0tt x t t -⎧<⎪=⎨≥⎪⎩4.求解下列积分方程: 1)()()()222210;y a b t b t aτττ+∞-∞=<<+-+⎰d 2)()222t t y τττ+∞----∞=⎰e d πe.解:1)操纵卷积定理可以求解此类积分方程.显然,方程的左端是未知函数()y t 与221t a +的卷积,即()221y t t a +.设()(),y t Y ω⎡⎤=⎣⎦F 对方程双方取Fourier 变换,有即 易知:22cos 2tt βωωβωβ+∞-=+⎰πd e ,有即所以()()22b b a a a b Y baωωωω----==πee πe 由上可知222201cos π2d e a t t t a t a a ωω+∞-⎡⎤=⎢⎦=⎥++⎣⎰F ,()()22--a b a b t b a =⎡⎤+⎣⎦π.2)设()(),y t Y ω⎡⎤=⎣⎦F对方程双方取Fourier 变换,同理可得操纵钟形脉冲函数的Fourier变换224e et A ωββ--⎡⎤=⎣⎦F 及由Fourier 变换的定义可求得:222e t βββω-⎡⎤=⎣⎦+F ,从而即 从而()()222-1-122y t ωωω--⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦πe πj e F F , 其中,记()22ef t ω-⎡⎤=⎣⎦F,则()22t f t -=,上式中第二项可操纵微分性质()()()()2222f t f t ωωω-''⎡⎤⎡⎤==⎣⎦⎣⎦F F j j e,则因此()22222t t y t --=-π22221t t -⎫=-⎪⎭e .()x t :其中()(),f t h t 为已知函数,,,a b c 均为已知常数.解:设()()()()()(),,.f t F h t H x t X ωωω⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦F F F 对方程双方取Fourier 变换,可得 即 从而2-11.求下列函数的Laplace 变换,并给出其收敛域,再用查表的方法来验证成果.1)()sin 2t f t =.分析:用Laplace 变换的定义解题.解: j j 22001sin sin d d 222j e e e st s t s t t t t t ⎛⎫⎛⎫+∞+∞--+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎡⎤==+ ⎪⎢⎥⎣⎦⎝⎭-⎰⎰L ()21112Re()0j j 2j 4122s s s s ⎡⎤⎢⎥=-=⎢⎥+⎢⎥-+⎣⎦>. 2)()2e t f t -=.解:()()d d Re()e e e e t t st s t t t s s >-22220012+∞+∞----+⎡⎤===⎣⎦+⎰⎰L . 3)()2f t t =. 解:2220000112e d d(e )2e d e st stst st t t t t s s t tt -+∞+∞+∞--+∞-⎡⎤⎡⎤==-=--⎣⎦⎢⎥⎣⎦⎰⎰⎰L ∣()022300222d(e )e e d Re()0st st st t t t s s s s+∞+∞--+∞-⎡⎤=-=--=⎢⎥⎣⎦⎰⎰∣ >.4)()sin cos f t t t =. 解:[]0sin cos sin cos e d st t t t t t +∞-=⎰L22121244s s =⋅=++. 7)()2cos f t t =. 解 :22001cos 2cos cos e d e d 2ststt t t t t +∞+∞--+⎡⎤==⎣⎦⎰⎰L()2211112242j 2j 4s s s s s s ⎡⎤+=++=⎢⎥-++⎣⎦. 2.求下列函数的Laplace 变换: 1)()3,021,2 4.0,4t f t t t ⎧≤<⎪=-≤<⎨⎪≥⎩解: ()()24002d 3d d e e e stststf t f t t t t +∞---⎡⎤==-⎣⎦⎰⎰⎰L2)()π3,2.πcos ,2t f t t t ⎧<⎪⎪=⎨⎪>⎪⎩解:()()π2π02e d 3e d cos e d stst stf t f t t t t t +∞+∞---⎡⎤==+⎣⎦⎰⎰⎰L()()()()ππj j πππ222222313111e e Re()02j j 1e e e s s s ss s s s s s s -+----⎛⎫⎛⎫⎛⎫ ⎪=-+-=--> ⎪ ⎪ ⎪+-+⎝⎭⎪⎝⎭⎝⎭3) ()()2e 5δt f t t =+解:()()()()220005δe d d 5δe d e et s tst st f t t t t t t +∞+∞+∞---⎡⎤⎡⎤=+=+⎣⎦⎣⎦⎰⎰⎰L()0115e 5Re()222st t s s s -==+=+>--∣. 4)()()()cos δsin f t t t t u t =⋅-⋅ 解:()()()∣∣∣j j j 000011cos e e d 12j 2j j j e e ees t j s tttststt t t s s--++∞+∞+∞---=⎡⎤⎢⎥=--=-+-+⎢⎥⎣⎦⎰()222111111Re()2j j j 11s s s s s s⎛⎫=---=-= ⎪+-++⎝⎭>0. 2-21.求下列函数的Laplace 变换式: 1)()232f t t t =++.解:由[]2132!1232132mm m t s ss s s t t +⎡⎤⎡⎤==++=++⎣⎦⎣⎦及有L L L . 2)()1e t f t t =-. 解 :[]()()1111,e e t tt t t s ss s --⎡⎤⎡⎤===-⎣⎦⎣⎦222+1-1L L,L 1-.3)()()21e t f t t =-. 解:5)()cos f t t at =. 解: 由微分性质有: 6) ()5sin23cos2f t t t =- 解:已知[][]2222sin ,cos st t s s ωωωωω==++L L ,则 8)()4e cos4t f t t -=.解: 由[]2cos 416t s +s=L 及位移性质有 42cos4416e ts t s -⎡⎤=⎣⎦++4(+)L . 3.若()()f t F s ⎡⎤=⎣⎦L,证明(象函数的微分性质):特别地,()()tf t F s '⎡⎤=-⎣⎦L,或()()11f t F s t-'⎡⎤=-⎣⎦L ,并操纵此结论计算下列各式:1)()3e sin2t f t t t -=,求()F s . 解:()()()322sin 224e t t s s ωωω-===++22+3+3L ,2)()30e sin 2d tt f t t t t -=⎰,求()F s .解:()0332112sin 2d sin 234e e t t t t t t ss s --⎡⎤⎡⎤==⋅⎢⎥⎣⎦⎣⎦++⎰L L , 3)()1ln 1s F s s +=-,求()f t .解:()1ln ,1s F s s +=-()(),F s f t ⎡⎤=⎣⎦令-1L故 ()()-12sinh tF s f t t⎡⎤==⎣⎦L . 4.若()()f t F s ⎡⎤=⎣⎦L,证明(象函数的积分性质):()()d s f t F s s t ∞⎡⎤=⎢⎥⎣⎦⎰L ,或()()1d s f t t F s s ∞-⎡⎤=⎢⎥⎣⎦⎰L 并操纵此结论计算下列各式:1)()sin kt f t t=,求()F s .解: ()2222sin kkkt s s kωωω===++L , 2)()3e sin 2t t f t t-=,求()F s .解:()()322esin 234tt s -=++L,2-31.设()()12,f t f t 均知足Laplace 变换存在定理的条件(若它们的增长指数均为c ),且()()()()1212,f t f t F s F s ⎡⎤⎡⎤==⎣⎦⎣⎦LL ,则乘积()()12f t f t ⋅的Laplace 变换一定存在,且 其中(),Re .c s c ββ>>+证明: 已知()()12,f t f t 均知足Laplace 变换存在定理的条件且其增长指数均为c ,由Laplace 变换存在定理知()()12f t f t ⋅也知足Laplace 变换存在定理的条件且标明()()12f t f t ⋅的增长指数为2c .因此()()12f t f t ⋅的Laplace 变换在半平面()Re 2s c>上一定存在,且右端积分在()()Re s c c ββ≥+>上相对且一致收敛,而且在()Re 2s c >的半平面内,()F s 为解析函数.根据()()11F f t s ⎡⎤=⎣⎦L,则()1f t 的Laplace 反演积分公式为 从而(交换积分次序)()()()1j 0j 2e 12πjd d s q t F q f t t q ββ++∞-∞∞--⎡⎤=⎢⎥⎣⎦⎰⎰2.求下列函数的Laplace 逆变换(象原函数);并用另外一种方法加以验证.1)()221F s s a =+.2)()()()sF s s a s b =--.3)()()()2s cF s s a s b +=++. 10)()()()2214sF s ss =++.解: 1)12211sin at s a a-⎡⎤=⎢⎥+⎣⎦L . 2)()()1sa b s a s b a b s a s b ⎛⎫=- ⎪-----⎝⎭,3)()()()()()222111s cc a b c F s s a s b b a s a s b b a s b +--⎡⎤==-+⋅⎢⎥++-⎣⎦++-+,故10)由()()()2222131414ss s s s s F s s ⎛⎫=⎪++++⎝⎭=-,有 ()()()11cos cos 23f t F s t t -⎡⎤==-⎣⎦L.3.求下列函数的Laplace 逆变换: 1)()()2214F s s=+.6)()221ln s F s s -=.13)()221e sF s s-+=.解 : 1)用留数计算法,由于122j,2j s s ==-均为()F s 的二级极点, 所以6)令()()()22212ln ,ln 1s F s F s s s s -'==-,()()()()112e e 211t t F s tf t s s s-'=+-=+-=-+-L L , ()()21212ln 1cosh s f t t s t -⎛⎫-==- ⎪⎝⎭L. 13)2211122221e 1e s s ss s s -----⎡⎤⎡⎤⎡⎤+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LLL ()()()21,222,02t t t t u t t t ⎧->⎪=+--=⎨≤<⎪⎩.2-41.求下列卷积:3)m t n t (,m n 为正整数). 解:mt()()()0d 1C d nttnknm mk n k k n k t t t ττττττ-==⋅-=-∑⎰⎰()1!!1!m n m n t m n ++=++.注:本小题可先用卷积定理求出m t n t 的Laplace 变换,再由Laplace 逆变换求出卷积6)sin kt ()sin 0kt k ≠.解 :sin kt ()()001sin sin sin d cos cos 2d 2ttkt k k t kt k kt τττττ⎡⎤=-=---⎣⎦⎰⎰ ()0sin 211sin cos cos 2422tt k ktt kt t kt kkτ-=-+=-+.7) t sinh t解 :t sinh sinh t t =t ()0sinh d tt τττ=⋅-⎰()()()000111d(e )d(e )2e e sinh 2220t t t t t t t t t ττττττ---⎡⎤=-+-=-++-=-⎢⎥⎣⎦⎰⎰ 9)()u t a -()()0f t a ≥ .解:()u t a -()()()()00,d d ,tt a t a f t u a f t f t t a τττττ⎧<⎪=-⋅-=⎨-≥⎪⎩⎰⎰.10)()δt a -()()0f t a ≥. 解: 当t a <,()δt a -()0f t =. 当t a ≥,()()()()δd aa f t f t f t a τττττ+∞-∞==-⋅-=-=-⎰.()()f t F s ⎡⎤=⎣⎦L ,操纵卷积定理,证明:()()0d t F s f t t s⎡⎤=⎢⎥⎣⎦⎰L 证明:()()()()()1f t u t f t u t F s s⎡⎤⎡⎤⎡⎤=⋅=⋅⎣⎦⎣⎦⎣⎦LL L , ()()()()()()000d d d t t tf t u t u f t f t f t t τττττ⎡⎤⎡⎤⎡⎤⎡⎤=⋅-=-=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎰⎰⎰L L L L 3.操纵卷积定理,证明:()2221sin 2s a at a s t -⎡⎤⎢⎥=⎢⎥+⎣⎦L. 证明 :()()22222221ss F s s a s as a ==⋅+++,由 有2-51.求下列常系数微分方程的解: 1)()2e ,00t y y y '-==;8)()()()331,0000y y y y y y y '''''''''+++====; 12)()()()()()420,0000,01y y y y y y y ''''''''++=====;16)()π10sin 2,00,12y y t y y ⎛⎫''+=== ⎪⎝⎭.分析:解题步调,首先取Laplace 变换将微分方程化为象函数的代数方程, 解代数方程求出象函数, 再取Laplace 逆变换得最后的解.解:1)方程双方取Laplace 变换,并连系初始条件可得 即()()()1112121Y s s s s s ==-----. 从而方程的解为8)对方程双方取Laplace 变换,并连系初始条件,有即由留数计算法,由于10s =是()Y s 的一个一级极点,21s =-是()Y s 的一个三级极点,从而方程的解为2111e 2t t t -⎛⎫=-++ ⎪⎝⎭.12)对方程双方取Laplace 变换,并连系初始条件,有 即从而方程的解为()()11cos sin sin 2y t Y s t t t t -⎡⎤==*=⎣⎦L. 16)对方程双方取Laplace 变换,并连系初始条件,有即()()()()222020114y Y s s s s '=++++()222020113141y s s s '⎛⎫=-+ ⎪+++⎝⎭,从而 ()()()12010sin sin 20sin 33y t Y s t t y t -'⎡⎤==-+⎣⎦L.为了确定()0y ',将条件π12y ⎛⎫= ⎪⎝⎭代入上式可得()1703y '=-,所以方程的解为2.求下列变系数微分方程的解: 1)()()40,03,00ty y ty y y ''''++===; 3)()()()2120,02ty t y t y y '''+-+-==; 5)()()()()10,000,0ty n y y y y n ''''+-+===≥. 解: 1)方程双方取Laplace 变换,有即[][][]40ty y ty '''++=L L L ,亦即 从而()()2d 40d Y s sY s s++=双方积分可得()211ln ln 42Y s c ++=或()Y s =取其逆变换,有欲求c ,可由条件()03y =得到,即()()0003y cJ c ===,所以方程的解为其中()()()2001!12kkk x J x k k ∞=-⎛⎫= ⎪Γ+⎝⎭∑称为零阶第一类Bessel 函数. 3)方程双方取Laplace 变换,有整理化简后可得 即这是一阶线性非齐次微分方程,这里 所以从而方程的解为()()132e e 3!tt c y t Y s t ---⎡⎤==+⎣⎦L()312e t c t -=+(1c 为任意常数) 5)方程双方取Laplace 变换,有即整理化简后可得 双方积分可得 即从而方程的解为()(2n n y t ct J =(c 为任意常数)其中n J 称为n 阶第一类Bessel 函数.3.求下列积分方程的解: 1)()()()0sin d ty t at t y τττ=+-⎰; 3)()()0d 16sin4ty y t t τττ-=⎰; 5)()()20d e tt y y t t τττ--=⎰. 解:1)显然,原方程可写为双方取Laplace 变换,并操纵卷积定理,有 所以从而方程的解为3)原方程可写为双方取Laplace 变换,并操纵卷积定理,有 即取其Laplace 逆变换,有()()()1084y t Y s J t -⎡⎤==±⎣⎦L,即标明()()084y t J t =及()()084y t J t =-均为所求.这里,0J 为零阶第一类Bessel 函数.5)原方程可写为双方取Laplace 变换,并操纵卷积定理,有 所以从而方程的解为()()12t t y t Y s ---⎛⎫⎡⎤==±=± ⎪⎣⎦ ⎪⎝⎭L,即()t y t -=及()t y t -=-均为所求. 4.求下列微分积分方程的解: 1)()()()()0cos d ,01ty t y t y τττ'-==⎰;3)()()()()()022d ,02ty t y t y u t b y ττ'++=-=-⎰; 5)()()()()30144d ,003ty t y t y t y ττ'-+==⎰;解:1)原方程可写为 双方取Laplace 变换,得 即从而方程的解为3)操纵微分性质与积分性质,对方程双方取Laplace 变换,有 即操纵延迟性质,方程的解为5)操纵微分性质与积分性质,对方程双方取Laplace 变换,有 即方程的解为5.求下列微分、积分方程组的解:1)e,322ettx x y y x y '⎧+-=⎪⎨'+-=⎪⎩()()001x y ==; 4)()()()()()()0,01,0,000;0,000x x y z x x y y z y z x x y z z y z ''⎧-++==⎪'''+-+===⎨⎪''''++-===⎩8)()02d 0,4et tx x y x x y ττ-⎧'''++=⎪⎨⎪'''-+=⎩⎰()()00,0 1.x x '==- 解:1)对方程组的两个方程双方分别取Laplace 变换,有 即解之可得取其逆变换,可得方程组的解为4)对方程组的三个方程双方分别取Laplace 变换,有解之可得(注意:后两个方程标明()()Y s Z s =且()()2X s s Y s =-) 取其逆变换,可得解为8)对方程组的两个方程双方分别取Laplace 变换,有即消去()Y s ,可得即将()X s 的成果代入得 化简得取其逆变换,可得方程组的解为7.设在原点处质量为m 的一质点在0t =时在x 方向上受到冲击力()k t δ的作用,其中k 为常数,假定质点的初速度为零,求其运动规律.解:由题意知,在t 时刻质点m 处于x 轴正向的点()x t 处,其运动速度为()x t ',而加速度为()x t '',且有初始条件()()000x x '==.根据Newton 定律,该质点的运动规律归结为下述微分方程的初值问题:方程双方取Laplace 变换,且记()()x t X s ⎡⎤=⎣⎦L ,则即()2kX s ms =,从而方程的解(即质点的运动规律)为11.某系统的激励()sin x t t=,当系统响应()e cos sin t y t t t -=-+时,求1)系统的传递函数()G s ; 2)系统的脉冲响应函数()g t ; 3)系统的频率响应函数()j G ω. 解:1)由传递函数的定义知2)由脉冲响应函数的定义知3)当系统的传递函数()G s 中s 取j ω时,则得到系统的频率响应函数,即。

一维波动方程的解题方法及习题答案

一维波动方程的解题方法及习题答案

第二篇数学物理方程—物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程一偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。

一、数理方程的来源和分类(状态描述、变化规律)1、来源 I .质点力学:牛顿第二定律F =mr 连续体力学 II.麦克斯韦方程弹性体力学<(弹性定律)'弦 杆振动:出血力— a 2V 2 u (r , t ) = 0 (波动方程); 膜 0t 2 流体力学:质量守恒律:皿不V ・(p y ) = 0£ d t热力学物态方程:过+ (y -V )y ="p + f = 0 (Euler eq.).d t p JJ D .d c=fffp d i nV- D = p ; J E -d l =JJB -d s nVx E = B ;力B - d c= 0 nV- B = 0; J H - d l DjJ(j + D ) - d s nVx H = j + D . E = -V u , B = Vx A ,u ,A 满足波动方程。

、Lorenz 力公式n 力学方程;制axwell eqsT 电导定律n 电报方程。

IIL 热力学统计物理 热传导方程:以一 k V 2T = 0;特别:稳态(生= 0): V 23 = 0 (Laplace equation). < 八 01 扩散方程:0P - D V 2 p = 0. 、 01 IV.量子力学的薛定谔方程: i 方迦=—疟 V 2 u + Vu .0 01 2 m二、数理方程的导出推导泛定方程的原则性步骤:(1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。

(2)立假设:抓主要因素,舍弃次要因素,将问题“理想化”--- “无理取闹”(物理趣乐)。

数学物理方法(傅里叶变换法)

数学物理方法(傅里叶变换法)

utt u |t

0
a2u

xx 0( x
(x),ut |t (x)
)
解: 应用傅里叶变换,即用 eikx / 2 同乘方程和定解条件
中的各项,并对空间变量x积分,t看做参数,则
2
定解问题变换成:U k 2a2U 0
U |t0 (x),U |t0 (x)
初始扰动只限于区域T0,如图,取一定点r,与T0
最小距离为d,最大距离为D,当t<d/a,
S
r at

T0不相交,按泊松公式u(r,t)=0,表示扰动的前锋
T0 d
Dr
没有到达r,当d/a<t<D/a,
S
r at
跟T0
相交,
u(r, t )

0
扰动到达r,当t>D/a,
S
r at
包围了T0,但跟T0不相交,u(r,t)=0,表明
N0 x/ 2a t ez2 dz
x/2a t
被积函数是偶函数,故
w(x,t) N0
2

x/ 2a t ez2 dz
0
误差函数
记做erfx,则w可写为:
x
w(x,t) N0erf ( 2a
) t
所求的解如下:
11
u( x, t )

N0
w(x,t)

N0 1 erf
dt
对t积分一次,并考虑零初始值可得:
U (t; k) ek2a2t t F ( ; k)ek2a2 d 0 t f ( , )eik ek e 2a2t k2a2 dd 0
进行傅里叶逆变换

积分变换法求解定解问题

积分变换法求解定解问题

1
F ()eixd
2
为f(x)的傅里叶逆变换式,记为f(x)=F-1[F(ω)];称
函数f(x)为F(ω)的傅里叶逆变换,简称傅氏逆变换
(或像原函数)。
傅里叶变换与傅里叶逆变换是互逆变换,即
F1F() F1 F f (x) F1F f (x) f (x)
定义 13.1.3 多维傅里叶变换 n维情况下函数 f(x1, x2,…,xn)傅氏变换为
F1 F1() F2 () f1( x) * f2( x)
证明:
F f1(x) * f2(x)
f1( x) * f2 ( x) eixdx
f1( )
f2(x
)eixd dx
f1( )
f2 (u)ei(u )dud
x u
dx du
f1( )ei )
f2 (u)eiudud
n
12
dn
注:傅氏变换和其逆变换积分前的系数虽然各书 的写法各不相同,但只要这两个系数的乘积等于 1/2π,傅氏变换和其逆变换则均可满足。
三、δ 函数
定义 13.1.5 如果一个函数满足下列条件,则 称之为δ 函数,并记为δ(x):
(
x)
0
x0 x0
(x)dx 1
等价定义(函数序列的极限):
f (ax)e a
1 d(ax)
a
1
f
iu
(u)e a du
1
iu
f (u)e a du
a
a
1 F() 1 F()
aa a a
u ax dx du
卷积定义 知函数f1(x)和f2(x),则它们的卷积定 义为:
f1(x) * f2(x) f1( ) f2(x )d

数学物理方法3-4积分变换法

数学物理方法3-4积分变换法

§3.4.1
第三章 偏微分方程的定解问题 第四节 积分变换法
直线上的初值问题
例3.4.1求解热传导 问题
dU(, t) 2 2 a U(, t), t 0 解:利用傅立 dt 叶变换的性质 U(, 0) (), t a22 a22t C () U(, t) e C F(, ) e d
思考 利用积分变换方法求解问题的好处是什么?
第三章 偏微分方程的定解问题 第四节 积分变换法
傅立叶变换的定义
U ( , t ) u ( x, t )e


j x
1 dx , u ( x , t ) 2



U ( , t )e j x d
傅立叶变换的性质 微分性 位移性 f ( n ) (x) ( j ) n F ( )
e
d d
1 2a
t


( )e
2 x
4 a 2t
d
第三章 偏微分方程的定解问题 第四节 积分变换法
§3.4.2
半无界直线上的问题
半无界区域上的热传导(扩散)问题 2 u 2 u 0 x , t 0 t a x 2 0, 例3.4.4 求解 t 0 u (0, t ) u0 , u ( x, 0) 0, 0 x 做代换 u ( x, t ) v( x, t ) u0 转化为直线上热传导方程 2 v v 2 对称延拓法(奇延拓) a , 0 x , t 0 2 x t x0 u0 , v(0, t ) 0, t0 ( x) u0 , x0 v( x, 0) u0 , 0 x 考虑与无界区域上 波传播问题的差别

第三节+积分变换在解定解问题中的应用

第三节+积分变换在解定解问题中的应用

u~( , t )
~( )ea2w2t

t
0
~f ( , )ea2 2 (t )d
再对 u~(,t) 进行傅氏逆变换
u(x,t) F
1[~( )ea2 2t ] F
[1 t ~f ( , )ea2 2 (t )d ] 0
F
ቤተ መጻሕፍቲ ባይዱ( )e 1
ea )
求u (x, s)的逆变换,利用延迟性质
L
[e 1 s
F
(s)]

f (t 0,


),
t t
(为非负实数)

u(x,
t
)


f0
2 f
t 0t
2 2
.
(t

x a
)
2
,
tx a
tx
2
a
第三节 积分变换在解定解问题中的应用
No. 18
dt
dt
ea2 2t (du~ a2 2u~) ea2 2t ~f (,t)
dt
第三节 积分变换在解定解问题中的应用
No. 6
数学物理方程
第五章 积分变换法
两边积分(从0—t),得
ea2 2tu~( , t)

u~( ,0)

t
0
e a 2 2
~f (,
)d
于是
[u(
x,
t
)]

u(
x,
t
)e
i
x
dx
第三节 积分变换在解定解问题中的应用
No. 12
数学物理方程
第五章 积分变换法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(13.2.1)
【解】 先对时间t作拉氏变换
26
由此原定解问题中的泛定方程变为
再实施傅氏逆变换来进行求解.利用傅氏逆变换公式以及卷积定理27 Nhomakorabea方程的解为
得原定解问题的解为 再作拉氏逆变换,并查阅拉氏变换表,
28
第十三章 积分变换法
在复变函数理论中,我们曾用拉普拉斯变换法求
解常微分方程.经过变换,常微分方程变成了代数方
程,解出代数方程,再进行反演就得到了原来常微分 方程的解. 积分变换法是通过积分变换简化定解问题的一种 有效的求解方法.
1
对于多个自变量的线性偏微分方程,可以通过实施积 分变换来减少方程的自变量个数,直至化为常微分方程, 这就使问题得到大大简化,再进行反演,就得到了原来偏 微分方程的解. 积分变换法在数学物理方程(也包括积分方程、差 分方程等)中亦具有广泛的用途.尤其当泛定方程及边界 条件均为非齐次时,用经典的分离变量法求解,就显得有 些烦琐和笨挫,而积分变换法为这类问题提供了一种系统 的解决方法,并且显得具有固定的程序,按照解法程序进 行易于求解.利用积分变换,有时还能得到有限形式的解, 而这往往是用分离变量法不能得到的.
15
常微分方程的初值问题的解是
再进行逆傅里叶变换,
交换积分次序
16
引用积分公式
且令
以便利用积分公式,即得到
17
例13.1.4 求解无限长细杆的有源热传导方程定解问题
【解】
利用
对定解问题作傅氏变换,得到常微分方程的定解问题
18
上述问题的解为
为了求出上式的逆变换,利用下面傅氏变换的卷积公式,即
若 则
5
下面的讨论我们假设待求解的函数u及其一阶导数是有限的 .
13.1.1 弦振动问题
例13.1.1 求解无限长弦的自由振动定解问题
(假定:函数u及其一阶导数是有限的,以后不再特别 指出.这一定解问题在行波法中已经介绍.
6
【解】
应用傅里叶变换,即用 遍乘定解问题中的各式,
并对空间变量x积分(这里把时间变量看成参数),按照傅 里叶变换的定义,我们采用如下的傅氏变换对:
求解无限长弦的强迫振动方程的初值问题
【解】 根据与例13.1.1 相同的方法,作傅氏变换
11
我们容易得到原定解问题可变换为下列常微分方 程的问题
12
上述问题的解为
利用傅氏变换的性质有
故得到
13
代入得到
即得
14
13.1.2 热传导问题
例13.1.3 求解无限长细杆的热传导(无热源)问题
【解】 作傅氏变换, 定解问题变换为
23
根据傅氏变换定义,
的傅氏逆变换为
再利用卷积公式
最后得到原定解问题的解为
24
13.2
拉普拉斯变换解数学物理定解问题
由于要作傅氏变换的函数必须定义在
上,故当我们讨论半无界问题时,就不能对变
量x作傅氏变换了.
因此本节介绍另一种变换法:拉普拉斯变换法
求解定解问题.
25
13.2.1 无界区域的问题
例15.2.1 求解无限长细杆的热传导(无热源)问题
2
特别是对于无界或半无界的定界问题,用 积分变换来求解,最合适不过了.(注明:无界或 半无界的定界问题也可以用行波法求解) 用积分变换求解定解问题的步骤为: 第一:根据自变量的变化范围和定解条件确定选
择适当的积分变换;
对于自变量在
内变化的定解问题
(如无界域的坐标变量)常采用傅氏变换,
3
自变量在 常采用拉氏变换.
内变化的定解问题(如时间变量)
第二:对方程取积分变换,将一个含两个自变量的偏
微分方程化为一个含参量的常微分方程; 第三:对定解条件取相应的变换,导出常微分方程的定 解条件; 第四:求解常微分方程的解,即为原定解问题的变换; 第五:对所得解取逆变换,最后得原定解问题的解.
4
13.1 傅里叶变换法解数学物理定解问题
用分离变量法求解有限空间的定解问题时,所得 到的本征值谱是分立的,所求的解可表为对分立本征 值求和的傅里叶级数. 对于无限空间,用分离变量法求解定解问题时, 所得到的本征值谱一般是连续的,所求的解可表为对 连续本征值求积分的傅里叶积分. 因此,对于无限空间的定解问题,傅里叶变换是
一种很适用的求解方法.
19
而积分
即为
最后得到定解问题的解为
20
13.1.3 稳定场问题
我们先给出求半平面内 拉普拉斯方程的第一
系统解法 边值问题的傅氏变换
例 13.1.5 定解问题
21
【解】 对于变量
作傅氏变换,有
定解问题变换为常微分方程
22
因为
可取正、负值,所以常微分定解问题的通解为
因为
,故得到
常微分方程的解为 设
简化表示为
7
对其它函数也作傅氏变换,即为
于是原定解问题变换为下列常微分方程的定解问题
上述常微分方程的通解为
8
代入初始条件可以定出
这样
9
最后,上式乘以
并作逆傅氏变换.应用延迟定
理和积分定理得到
这正是前面学过的的达朗贝尔公式.
10
例13.1.2
为了说明傅氏变换法解非齐次方程特别简便,
我们特举一强迫弦振动问题:
相关文档
最新文档