锂硫电池PPT课件
锂硫电池

Team members:
李露 郑云天 吴芮冰 赵晨 陈政翰
• • • • • •
Performance and principle
电池性能及原理(李 郑) 电池优缺点(吴)
Advantages and disadvantages Application and the market
Low potential
Disadvantages
Cyclical bad Active material loss
2015-5-6
Provide larger reaction area Prevensure enough of the active material in the electrode material
Production rules of threedimensional network structure, which is beneficial to form effective and conductive network and increase the porosity, stop the spread of the sulfur and improve the using rate of materials
2015-5-6
Application and the market 电池应用与市场
Applications
2015-5-6
Applications
• The lithium–sulphur battery (Li–S battery) is a rechargeable battery, notable for its high energy density. The low atomic weight of lithium and moderate weight of sulfur means that Li–S batteries are relatively light (about the density of water). They were demonstrated on the longest and highestaltitude solar-powered airplane flight in August 2008.
锂电池基础知识培训课件(PPT 36张)

注液
激光焊
卷绕
检测包装
配料工艺流程
正极 负极 负极干粉处理 正极干粉处理 负极筛粉 正极混干粉 负极搅拌
正极真空搅拌
负极筛浆料
正极筛浆料
正极拉浆
负极真空搅拌 负极拉浆
拉浆工艺流程
正、负极浆料 送带
上浆
烘烤
收带
正、负极裁片
裁片工艺流程
正极 负极 负极裁大片 正极裁大片 负极划线刮粉 正极划线刮粉 负极吸尘 正极片辊切 负极筛片辊切 正极称重分档 负极称重分档 正极制片 负极制片
制片工艺流程
正极真空烤烘 正极吸尘 正极片辊压 正极焊极耳 正极贴胶纸 正极吸尘 负极真空烤烘
负极片辊压
负极焊极耳 负极帖胶纸
负极冲压极耳
负极吸尘 卷绕
卷绕
卷绕工艺流程
正负极片 配片 隔膜 隔膜裁剪 套绝缘片并固定 入壳 负正极极耳点焊 卷绕 离芯入壳 测短路 压盖帽 底部超声焊 铝镍复合带
压芯 压底部胶纸
测短路 激光焊
激光焊工艺流程
上夹具
激光焊接
全检内阻
全检气密性
称重分级 注液
注液工艺流程
真空烘烤
注液 贴胶纸 称重 擦洗 套胶圈 化成
化成工艺流程
高温烘烤 压钢珠 清洗 高温储存 自检电压 铝镍复合片点焊 分成
测电压、贴不干胶,半成品入库
化成
检测包装工艺流 程
充电 全检电压
放电
全检内阻
反充电
全检尺寸 装盒、包装 客户
要消除这种效应有两种方法,一是采用小电流深度放电 (如用0.1C放至0V)一是采用大电流充放电(如1C)几次 镍氢电池和锂离子电池均无记忆效应
锂硫电池概述

锂硫电池概述锂硫电池(LSBs)是一种以硫为正极活性物质,金属锂为负极的新型二次电池。
受益于硫相态变化的多电子反应,锂硫电池拥有高达1675mAhg-1和2600Whkg-1的理论比容量和比能量,相当于商用锂离子电池数倍,并且硫储量丰富、价格低、环境友好,因而锂硫电池被认为是极具开发潜力和应用前景的新一代二次电池技术。
一、锂硫电池的结构锂硫电池主要由硫正极、锂负极、隔膜和电解质等组成。
硫正极是由活性物质硫与导电剂及粘结剂等按照一定比例均匀混合制备而成;锂负极为普通商用锂片;正负极之间放置隔膜,隔膜材质为聚合物且具有多孔隙、不导电的特点,目的是选择性通过离子而隔绝电子;电解液为含硝酸锂的非水类电解液体系,为锂硫电池内部氧化还原反应提供液态环境。
下图展示了锂硫电池的结构。
二、锂硫电池的储能机理LSBs的工作原理是单质硫与锂离子之间发生的可逆氧化还原反应。
放电时负极反应为锂失去电子变为锂离子,正极反应为硫与锂离子及电子反应生成硫化锂,正极和负极反应的电势差即为锂硫电池所提供的放电电压。
在外加电压作用下,锂硫电池的正极和负极反应逆向进行,即为充电过程。
图1.2为电池充放电过程单质硫的可逆转化示意图,其中放电时大致包括以下反应过程:正极反应:图 1.2可以看出,放电曲线有两个较为明显的平台,分别位于2.4-2.1V和2.1-1.5V。
放电前,正极活性硫的初始状态为环形分子(S8),放电开始后,S8分子发生开环反应并与锂离子结合生成Li2S8分子(式1-1),随着反应的进行,Li2S8进一步与锂离子结合生成长链多硫化锂Li2S6和Li2S4(式1-2和1-3),这一过程对应位于2.4-2.1V的第一放电平台;长链多硫化锂在有机电解液中溶解并在隔膜两侧扩散迁移,随着电化学反应的继续进行,长链多硫化锂在反应过程中得到电子被还原为短链多硫化锂(Li2S2和Li2S)(式1-4和1-5),这个反应过程在放电曲线中对应于第二个较长的平台(2.1-1.5V附近),这一过程贡献了LSBs大部分的理论容量,因此第二平台的反应深度很大程度上决定了LSBs的性能。
锂硫电池

锂电池的一种
目录
01 充放电原理
03 解决方法
02 存在的问题 04 新进展
锂硫电池是锂电池的一种,截止2013年尚处于科研阶段。锂硫电池是以硫元素作为电池正极,金属锂作为负 极的一种锂电池。单质硫在地球中储量丰富,具有价格低廉、环境友好等特点。利用硫作为正极材料的锂硫电池, 其材料理论比容量和电池理论比能量较高,分别达到 1675m Ah/g和 2600Wh/kg,远远高于商业上广泛应用的钴 酸锂电池的容量(<150mAh/g)。
新进展
近几十年来,为了提高活性物质硫的利用率,限制多硫化锂的溶解以及电池循环性能差的问题,研究者在电 解质及复合正极材料改性等方面进行了大量探索研究。对于电解质的改性,主要是采用固体电解质、凝胶电解质 或在电解液中添加LiNO3离子液体等措施,以限制电极反应过程中产生的多硫化锂溶解和减小“飞梭效应”,提 高了活性物质硫的利用率,从而达到改善锂硫电池的循环性能的目的。对于硫基复合正极材料的改性,主要是将 具有良好导电性能及特定结构的基质材料与单质硫复合制备高性能的硫基复合正极材料。其中,引入的基质材料 应具有以下功能:
(1)良好的导电性;
(2)活性物质硫可以在基质材料上均匀分散,以确保活性物质的高利用率;
(3)要对硫及多硫化物的溶解具有抑制作用。研究发现,通过将活性物质硫与活性炭、介孔碳、纳米碳纤维 (CNF)、多壁碳纳米管(MWCNTs)、石墨烯、聚丙烯腈(PAN)、聚苯胺(PAn)、聚吡咯(PPy)、聚噻吩 (PTh)等具有特定结构的基质材料制备硫基复合正极材料,可以显著改善锂硫电池的循环性能和倍率性能。
2014年8月22日,中科院大连化物所陈剑研究员带领先进二次电池研究团队,在高比能量锂二次电池方面取 得重要进展,研制成功了额定容量15Ah的锂硫电池,并形成了小批量制备能力。
锂离子电池安全培训PPT课件

.
223
有机溶剂 沸点 熔点 闪点 黏度 相对介电常数
EC
248 39 150 1.86
89.6
DMC
90
3 15 0.59
3.1
EMC 108 -55 23 0.65
2.9
DEC 127 -43 33 0.75
2.8
PC
241.7 -49.2 135 2.530
64.4
MPC 130 -43 36 0.78
• 隔膜 • 电解液 • 外壳五金件(钢壳、铝壳、盖板、极耳、绝缘片、绝缘胶带)
.
17
锂离子电池结构——正极
电池放电时从外电路获得电子的电极,此时电极发生还原反应。 通常是电位高的电极。锂离子电池中的钴酸锂、锰酸锂电极 等。
正极集流体:铝带(约0.1mm厚)
高温胶带(约0.05mm厚)
正极基体:铝箔(约0.016mm厚)
.
39
锂电池生产危险性
1.电解液的溶剂
• 电解液(电解质盐LiPF6 )溶剂主要组成是碳酸烷基酯, 如碳酸二甲酯(DMC),碳酸二乙酯(DEC),碳酸甲乙酯( EMC)等,都是沸点很低的可燃液体,遇火易燃烧 。
• 六氟磷酸锂(LiPF6) 有腐蚀作用。不可燃性,加热和酸类 进行反应会产生有害的氟化氢(腐蚀性)。氟化氢和金属 反应会产生爆炸性的气体。
3.0V,过放电会损坏电池性能。
关键3-电池贮存
锂离子电池应充电30%至50%容量后在室温下贮存。
.
32
二、锂离子电池生产的主要工艺
锂电制作的一般流程
配浆
涂布
辊压
化成
注液
装配
检测
出货
.
33
锂电池课件ppt

常见问题与解决方案
问题1
电池充不进电。解决方案:检查充电设备是否正常,更换 充电器或充电线;检查电池是否老化或损坏,更换电池。
问题3
电池膨胀或变形。解决方案:立即停止使用该电池,避免 发生危险;联系专业人员处理或更换电池。
问题2
电池续航时间变短。解决方案:检查电池是否过载或老化 ,减轻负载或更换电池;检查电池是否受到高温或低温影 响,保持适宜的工作环境温度。
CHAPTER
04
锂电池的充电与使用
充电方式与注意事项
充电方式
锂电池的充电方式主要有恒流充电、恒压充电和脉冲充电三种。恒流充电是指以恒定电流对电池进行 充电;恒压充电是指以恒定电压对电池进行充电;脉冲充电则采用间歇性的电流脉冲对电池进行充电 。
注意事项
在充电过程中,需要注意控制好充电电流和充电时间,避免过充或欠充。同时,要选择合适的充电设 备,确保充电安全。
负极材料
负极材料是锂电池中储存和释放锂离子的场所,常用的负极 材料包括石墨、钛酸锂等。负极材料的性能直接影响电池的 首次效率、循环寿命和安全性能。
负极材料的制备方法主要包括机械粉碎法、化学气相沉积法 、溶胶凝胶法等。制备过程中需注意控制温度、气氛、反应 时间等参数,以保证材料的晶体结构和纯度。
电解液
安全使用与维护
安全使用
在使用锂电池时,需要注意避免过载、短路、高温等危险情况。过载可能导致电池发热、膨胀甚至爆炸;短路可 能导致电池瞬间释放大量能量,引发火灾;高温则可能加速电池老化,降低电池性能。
维护建议
为了保持锂电池的性能和寿命,建议定期进行电池检查和维护。包括检查电池外观、清洁电池表面、保持电池干 燥、避免过度放电或充电等。
和更高的充电功率。
锂硫电池研究进展(课堂PPT)课件
课题背景及意义
锂硫电池:成本低、环境友好、材料来源充足、 理论比容量(1675 mAh g- 1 )和比能量(2500 Wh kg- 1)大
4
课题背景及意义
Li/S电池主要结构
5
存在问题: 1 、S的绝缘性。 2、多硫化物溶解造成活 性物质流失和Li负极的活 性降低,从而导致循环寿 命降低。 3 、S在放电过程中体积发 生膨胀,使结构稳定性发 生破坏。
11
国内外研究现状
4 采用全固态结构电池
国内外研究现状
5 采用电化学控制的测试手段
国内外研究现状
6 改进电池其他结构
国内外研究现状
通过对这些文献的分析发现一个普遍的问题,就是 大多研究只追求了高的放电比容量和长的循环寿命, 而忽视了电池材料硫含量和极片硫载量 (“双低”问题 )。
15
Thank You !
主要内容
1
课题背景及意义
2
国内外研究现状
3
目的内容及方
案
4 方案依据及已经取得的进展
1
课题背景及意义
在强大的社会发展需求推动下,锂二次电池技术不断向高能量
密度、高功率密度、和长循环寿命等几个方向发展
输出电压高
能量密度高
使用寿命长
锂离子 电池
自放电率低
环境友好
易携带
2ቤተ መጻሕፍቲ ባይዱ
课题背景及意义
目前己商品化的锂离子电池的能量密度已达150-200 Wh/kg。但受到LiCoO2,LiMn204和LiFeP04等传统正 极材料和碳负极材料自身理论容量的限制,很难进一 步提升其能量密度。
9
国内外研究现状
v3纳米线导电网络
也有以带孔的碳纳米线为载体合成的正 极活性材料。具体方法是将溴化十六烷 基三甲铵加入HCl之后,再加入 (NH4)2S2O8 ,搅拌,降温到0-5度。形 成吡咯单体纳米线 10 干燥后600度热处
锂电池培训资料ppt
06
案例分析与实践操作
总结词
通过锂电池生产工艺流程优化,实现产品质量提升和生产成本降低。
详细描述
该企业针对自身锂电池生产工艺流程存在的问题,从设备、工艺和流程等方面进行全面优化,实现了产品质量提升和生产成本降低,取得了良好的经济效益。
案例一:某企业锂电池生产工艺流程优化实践
总结词
通过加强锂电池使用与维护管理,有效延长电池寿命和提升车辆续航里程。
常见故障及解决方案
可能是由于过充、过放或内部短路等原因引起,应立即停止使用。
电池膨胀
可能是由于电池外壳破损或内部密封不良引起,应立即停止使用。
电池漏液
可能是由于充电设备故障或电池损坏引起,应检查充电设备和电池状态。
电池无法充电
可能是由于使用时间过长或使用不当引起,应更换电池或改善使用方式。
电池性能下降
加强内部管理,提高企业核心竞争力
企业应该加强内部管理,提高研发、生产和销售等方面的能力,以应对政策变化带来的挑战和机遇。
企业如何应对政策变化
与政府保持良好沟通,及时反馈问题
企业应该与政府保持良好沟通,及时反馈产业发展中存在的问题和困难,积极争取政策支持。
灵活调整战略,适应市场需求变化
企业应该根据市场需求变化和政策变化,灵活调整战略和经营计划,以适应市场变化和政策变化。
电解液灌装
将配置好的电解液灌入电池中。
电池组装
将正极片、负极片、隔膜等组装在一起,形成锂电池。
电解液灌装与电池组装
电池检测
对组装好的锂电池进行电压、电流、容量等方面的检测。
包装
对检测合格的锂电池进行包装,以保护电池不受损坏,提高其安全性。
电池检测与包装
03
动力电池发展现状与趋势PPT课件
2021
33
铅酸电池的主要优缺点
优点:
1. 原料易得,价格相对低廉; 2. 高倍率放电性能良好; 3. 温度性能良好,可在-40~+60℃的环境下工作; 4. 适合于浮充电使用,使用寿命长,无记忆效应; 5. 废旧电池容易回收,有利于保护环境.
缺点:
1. 比能量低,一般为30~40Wh/kg; 2. 使用寿命不及Cd/Ni电池; 3. 制造过程容易污染环境,必须配备三废处理设备.
差
2021
38
镍氢电池主要应用
目前市场上销售的混合动力汽车,主要以镍氢 电池作为动力电源。在HEV所用的动力电池中, 镍氢动力电池的技术仍是最成熟,综合性能最 高的。
纯电动方面,较小的比能量使得镍氢电池续航 能力较低,优势不比锂离子电池。
主要应用领域——混合动力汽车
2021
39
第三代 锂离子电池
140
复合碳源
130 成膜催化剂
优化掺杂
1200 10 20Cyc3l0e Nu40mbe5r0 60 70
160
碳包覆磷酸铁锂,2C 充放电循环
150
140
130
120 2021
110
Nb+F 掺杂 Nb 掺杂 F 掺杂
未掺杂
48
尖晶石锰酸锂材料
优点:
成本低
易合成
工作电压高
安全性能好
对环境无污染
负极材料 涂覆 负极片
铜箔
卷绕 卷好的负 放入电池外外壳里 正负极片
抽真空 封装后
注入电池外外壳里 成为单体
电解液
电池
cell→pack生产流程简图
电芯
预化成
化成
老化
pack
锂硫电池简介及其复合隔膜研究进展ppt幻灯片
无机物修饰 黑磷(Black-Phosphorus)
J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong, Y. Cui, Advanced Materials, 28 (2016) 9797-9803.
.
复合材料修饰 PVDF-C
H. Wei, J. Ma, B. Li, Y. Zuo, D. Xia, ACS Applied Materials & Interfaces, 6 (2014) 20276-20281.
.
复合材料修饰 PVDF-C
.
复合材料修饰
微孔碳/聚乙二醇(MPC/PEG)
S.H. Chung, A. Manthiram, Advanced Materials, 26 (2014) 7352-7357.
碳材料修饰 石墨烯(Graphene)
G. Zhou, S. Pei, L. Li, D.W. Wang, S. Wang, K. Huang, L.C. Yin, F. Li, H.M. Cheng, Advanced Materials, 26 (2014) 625-631.
.
聚合物修饰(Nafion-全氟磺酸酯)
◆导电性和多硫化物的阻隔性应是商业化Li-S电池复合膜的关键考虑因素。 ◆采用物理或化学方法阻隔多硫化物的功能材料涂覆旨在拦截、吸收和捕获 这些多硫化物。 ◆导电涂层应有较高的导电性并且具备多孔的孔道结构从而有利于电子、 Li+ 和重新激活被困的活性物质的电解液的传输。 ◆通过不同的制备工艺来提高轻质涂覆层与基膜的粘附力,比如流延法、真 空过滤、旋涂、丝网印刷等技术。 ◆单独的陶瓷或者聚合物涂覆由于涂层本身导电性差而不利于电子的高效转 移,而结合导电碳与功能陶瓷或聚合物作为复合涂层可提高循环稳定性。 ◆未来的Li-S电池涂覆膜应该有合适的孔道结构、轻质、额外的物理和化学 性能,其在提高Li-S电池性能方面可能会占据主导地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
1
锂离子电池不足
.
2
锂离子电池不足
.
3
锂电池应用
.
4
锂离子电池不足
.
5
动力电池发展现状
化学体系 负极/正极
理论容量 Ah/kg
氧化钴锂 (Sanyo,
LiC6/LiCoO2
Samsung等)
370/~295
镍基材料 LiC6/LiNixCoyAlz (Johnson Control,Salt)
Electrochimica Acta 55 (2010) 4632–4636
正极:S/PPyA:乙炔黑:LA123(粘结剂)=70:20:10 (wt%) 电解液:1M LiCF3SO3/(DOL:DME=1:1 volume) 性能:首次放电容量1285mAh/g,40圈后放电容量为860mAh/g
<300/~120
~170/120
<300/160
电位 vs Li+/Li 100mV/3.9V
100mV/3.6V
100mV/3.8V
1.5V/3.9V
100mV/3.3V
开路电压 3.9V 3.6V 3.8V 2.4V 3.3V
.
6
锂硫电池
.
7
锂硫电池
2010年7月,Sion Power的锂硫电池则应用于美国无 人驾驶飞机动力源,表现引人注目,无人机白天靠太 阳能电池充电,晚上放电提供动力,创造了连续飞行 14天的纪录
.
8
锂硫电池的不足
• 锂支晶:锂的电化学沉积速率(i0=~8*10-4A/cm2)远大于锂离子的扩散传输 速率(D=~ 4×10-6 cm2·s-1),故锂电极受扩散控制,特征表现为产生锂支晶
• 不稳定的SEI膜:在锂硫电池中,多硫化物与锂产生SEI膜,由于反应复 杂性,SEI膜不稳定,影响了锂电极的稳定性能。硫化物阴离子不仅可与 溶解硫或短链聚硫离子反应生成易溶性多硫化物,也可发生电化学还原
.
17
硫碳复合材料——优势
.
18
硫碳复合材料——碳纳米管
Journal of Power Sources 189 (2009) 1141–1146
正极:硫掺杂多壁碳纳米管(S-coated-MWCNTs) 性能:60次循环后仍具有670mAh/g的容量
S-coated-MWCNTs优点: 为锂硫电池电化学反应提供较高力学强度 的反应活性点和较大的电化学反应面积 产生规则三维网络结构,有利于形成有 效导电网络并增加多孔性,阻止多硫化锂扩 散出去,并提高硫的利用率 疏通放电过程中容易堵塞正极孔洞的
正极:NiS(球磨法) 负极:Li 电解液:PEO 温度:80oC 电压:1.5V 理论特性容量:590mAh/g
放电时的正极反应
第一圈 特性容 量为 580mAh /g ,200 圈后特 此保留 93%,
金属硫化物总结:其他金属硫化物的研究有MoS2、MoS3、Li2S、MnS2、V2S2等,一度曾经 商业化,但是由于安全问题和功率密度较低和电活性和利用率较低等问题而受限制
Journal of Power Sources 196 (2011) 6951–6955
正极:S/tubular Ppy+乙炔黑+PEO 电解液: 1 M LiCF3SO3 /TEGDME 性能:首圈循环容量1153mAh/g ,80圈后650mAh/g
.
14
硫聚合物—聚(吡咯-苯胺)共聚物 (PPyA)
性能:高倍率性能优异,1.6A/g(0.95C)条件下,200圈后放电容量670mAh/g
RGO-TG-S增强性能示意图
TG: a thermally exfoliated graphene
370/~300
尖晶石结构 LiC6/LiMn2O4 氧化锰锂
(LG Chem)
370/148
钛酸锂
Li4Ti5O12/LiMnO2 233/148
(Enerdel,
Toshiba)
磷酸亚铁锂 LiC6/LiFePO4 (A123)
370/178
实际容量 Ah/kg <300/160+
<300/~180
生成 Li2S 沉淀(2Li + Li2Sx → Li2Sx–1 +Li2S↓),而 Li2S 沉淀又可能与溶 液中聚硫离子生成多硫化物(Li2S + 2 Li2Sx → Li2Sx–1 + Li2Sx+1)
• 体积变化较大:硫的密度(2.03g/cm3)较Li2S(1.67g/cm3)高出约20%,充 放电过程中产生收缩与膨胀
.
11
有机二硫化物
.
12
硫聚合物—聚丙烯腈(PAN)
Journal of Electroanalytical Chemistry 573 (2004) 121–128
正极:PAN与S高温共混 负极:Li 性能:第二圈放电520mAh/g,240圈后为480mAh/g
.
13
硫聚合物—聚吡咯聚苯胺(PAn)
容量高,0.1C放电倍率下100圈后容 量为837mAh/g
高倍率循环性能好,500圈放电容量 比较稳定
.
16
硫/纳米金属氧化物
International Journal of Hydrogen Energy 34(2009) 1556-1559
正极:S/V2O5活性材料:Super P: Mg0.8Cu0.2O:PVDF=50:30:10:10(wt%) 电解液:1 mol L1 LiPF6/ EC:DMC:EMC (1:1:1, by volume) 性能:首次放电容量 545mAh/g,30圈后 422mAh/g(77.5%)
Li2S S-coated-MWCNTs不足: 碳纳米管的表面积低于350m2/g,孔隙容 量不足0.5cm3/g,限制了硫元素的有效质量; 碳纳米管长度达数微米,可能引发硫原子 的不连续负载,会进一步阻碍沿碳纳米管轴 向传输的锂离子
.
19
硫碳复合材料——石墨烯
Chem. Commun., 2012, 48, 4106–4108
• 穿梭效应:正极的中间产物长链聚硫离子溶解扩散至负极,在负极表面 还原生成短链聚硫离子,后者又扩散至正极,在充电时被氧化成长链聚 硫离子,这个过程消耗了充放电电量,限制了锂硫两极的电化学效率。
• 电位较低
• 硫是绝缘体
.
9
锂硫电池改性研究
.
10
金属二元硫化物-NiS
Journal of Alloys and Compounds 361 (2003) 247–251