高中数学-直线与圆的位置关系
高中理科数学 直线与圆、圆与圆的位置关系

1 b
解析 将x2+y2+2ax+a2-4=0和x2+y2-4by-1-4b2=0化为标准方程得(x+a)2+y2
a 2 4b 2 =1+2=3,即a2+4b2=9,所 =4,x2+(y-2b)2=1,依题意得两圆相外切,故
a 2 4b 2 1 1 a 2 4b 2 1 1 1 a 2 4b 2 4 5 2 =1,当且 2 = 以 + = + ≥ +2 2 + 2 + 2 2 9 b 9 a 9 b 9a 9 a 2 b2 9 9 9 9 a b a 2 4b 2 1 1 2 2 仅当 = , 即 a =2 b 时等号成立 , 故 + 的最小值为1. 9b 2 9a 2 a 2 b2
答案 1
方法 3 解决与圆有关的切线和弦长问题的方法
1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线所在直线的斜率,当斜率不存在时,切线方程为y=y
0
;当斜率存在时,设为k,①k≠0时由垂直关系知切线斜率为- ,由点斜式
1 k
方程可求出切线方程,②k=0时切线方程为x=x0. 2.求过圆外一点(x0,y0)的圆的切线方程(切线斜率存在) (1)几何法:设切线斜率为k,则切线方程为y-y0=k(x-x0),即kx-y+y0-kx0=0.由 圆心到直线的距离等于半径,求得k,即可得出切线方程. (2)代数法:设切线方程为y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到
4 结合图形可得kAB= =-1, 4 | 4 2k | 3 又由 2 =2可得k=- , 4 1 k 3 即kAT=- , 4
【高中数学】直线与圆、圆与圆的位置关系

12+22
5
弦长为 2 r2-d2=2 55. 5
答案:2 55 5
8.若 P(2,1)为圆(x-1)2+y2=25 的弦 AB 的中点,则直线 AB 的方程为________.
-1 解析:因为圆(x-1)2+y2=25 的圆心为(1,0),所以直线 AB 的斜率等于1-0=-1,由
2-1
点斜式得直线 AB 的方程为 y-1=-(x-2),即 x+y-3=0.
2 1- 4 2= 14.
2
[解题技法] 几何法判断圆与圆的位置关系的 3 步骤
(1)确定两圆的圆心坐标和半径长; (2)利用平面内两点间的距离公式求出圆心距 d,求 r1+r2,|r1-r2|; (3)比较 d,r1+r2,|r1-r2|的大小,写出结论.
[课时跟踪检测]
A级
1.若直线 2x+y+a=0 与圆 x2+y2+2x-4y=0 相切,则 a 的值为( )
高中数学学科
=0 的距离 d>2,即 |k+2| >2,解得 0<k<4.
k2+1
3
答案:
0,4 3
3.设直线 y=kx+1 与圆 x2+y2+2x-my=0 相交于 A,B 两点,若点 A,B 关于直线 l:
x+y=0 对称,则|AB|=________.
解析:因为点 A,B 关于直线 l:x+y=0 对称,所以直线 y=kx+1 的斜率 k=1,即 y
(2)直线被圆截得的弦长
Байду номын сангаас
弦心距
d、弦长
l
的一半
1l
及圆的半径 r
构成一直角三角形,且有
r2=d2+
1l 2
2.
2
考点一 直线与圆的位置关系
高中数学人教A版 选择性必修第一册 直线与圆的位置关系 课件

5、已知过点 M (3, 3) 的直线 l 被圆 x2 y2 4 y 21 0
所截得的弦长为 8,求直线 l 的方程;
【解析】圆心 C(0, 2) ,半径 r 5 .所以弦心距 d 52 42 3 ,
(2)SPACB 2S PAC PA r 2PA
2 PC2 4 4 7.
12.(1)已知实数 x,y 满足方程(x-3)2+(y-3)2=6,则
x2+y2 的最大值为__________.
【解析】x2+y2=[ (x-0)2+(y-0)2]2, 它表示(0,0)和(x,y)两点间距离的平方, 最大距离为 3 2+ 6, 则 x2+y2 的最大值为(3 2+ 6)2=24+12 3.
7、已知圆 C:x2+(y-2)2=5,直线 l:mx-y+1-m=0. (1)求证:对 m∈R,直线 l 与圆 C 总有两个不同的交点; (2)若直线 l 与圆 C 交于 A、B 两点,
①当弦长|AB|最大时,求 m 的值; ②当弦长|AB|最小时,求 m 的值. 【分析】(1)直线 l:m(x-1)-y+1=0,过定点 P(1,1), P 在圆 C 内,所以直线 l 与圆 C 总有两个不同的交点.
设直线 l 的方程为 y 3 k(x 3) ,即 kx y 3k 3 0 ,
根据点到直线的距离公式, d | 3k 1| , 1 k2
因此, | 3k 1| 3 ,即 | 3k 1| 3 1 k2 ,解得 k 4 ,
1 k2
3
直线方程为: 4x 3y 21 0 ,
经检验, x 3 0 适合题意, 所以,所求直线方程为: 4x 3y 21 0 或 x 3 0 .
(1) 2 b 2 2 (2) 2 b 2或b 2 2
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系(附答案解析)

2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。
高中数学-直线与圆的位置关系.docx

直线与圆的位置关系直线的方程 斜截式 斜率k 纵截距b y=kx+b不包括垂直于X 轴的直线 点斜式点 P](X],yJ 斜率k y - y { =k ( x- •X]) 不包括垂直于X 轴的直线 两点式点 P](X],yJ y-y^ 兀-话包括坐标轴和平行于坐标轴的直线 和 P 2(x 2,y 2)力一必 x 2 -X| 截距式 横截距a兰+― a b 不包括坐标轴,平行于坐标轴和过原点的直 线纵坐标b一般式Ax+By+C=0 A 、B 不同时为0圆的方程标准式:(x-a)2+(y^b)2 = r 2f 其中厂为圆的半径,(a,b)为圆心.一般式:x 1 + y 2^Dx^Ey+F = Q (£)2 + £2-4F>0).其中圆心为 I 2 2; 半径为丄>J D 2 + E 2-4F 2参数方程:P =rCOSa [y = rsina典型例题 例1・已知一个圆和y 轴相切,在直线y =兀上截得的眩长为2“,且圆心在直线x-3y = 0 上,求圆的方程。
练习:求过点A(l,2)和B(l,10)且与直线x-2y-\ = Q 相切的圆的方程。
练习:已知圆C 和y 轴相切,圆心在直线x-3y = 0上,且被直线y = x 截得的弦长为2护,求圆C 的方程。
点与圆的位置关系:x = a + rcosay = b + rsina (Q 是参数)•消去〃可得普通方程已知点M(x0,y0)及圆C:(x-a)2+(^-/7)2 = r2(r>0),(1)点M 在圆C 外o |CM > r <=> (x0 -a)2 +(y0-b'y > r2;(2)点M 在圆C 内o |CM < r <=> (x0 -6f)2 +(y()一叭 < r2;(3)点M 在圆C 上O |CM =厂o (x0+(y0 -/?)' 二r2圆的切线⑴切线:①过圆x2 + y2 = R2上一点P(x0,y0)圆的切线方程是:f+)升=疋,过圆(x-a)2+(y-b)2 = R2上一点戶(兀。
绝密资料高中数学直线与圆的位置关系

第49讲直线与圆的位置关系一、课程标准1、能根据给定直线、圆的方程,判断直线与圆的位置关系2、能用直线和圆的方程解决一些简单的数学问题与实际问题.二、基础知识回顾1、直线与圆的位置关系(1)三种位置关系:相交、相切、相离.(2)圆的切线方程的常用结论①过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2;②过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2;③过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.三、自主热身、归纳总结1、若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系为()A. 在圆内B. 在圆上C. 在圆外D. 位置不确定2、直线kx-y-4k+3=0与圆x2+y2-6x-8y+21=0的交点个数为()A. 0B. 1C. 2D. 1或23、若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a的取值范围是()A. [-3,-1]B. [-1,3]C. [-3,1]D. (-∞,-3]∪[1,+∞)4、过点(2,3)与圆(x-1)2+y2=1相切的直线的方程为________________.5、直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则AB=________.6、(多选)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A. 6B.5C.- 6 D.-57、(多选)已知圆C:(x-3)2+(y-3)2=72,若直线x+y-m=0垂直于圆C的一条直径,且经过这条直径的一个三等分点,则m=()A.2 B.48、(2019·湖南长沙月考)设直线l:(m-1)x+(2m+1)y+3m=0(m∈R)与圆(x-1)2+y2=8相交于A,B两点,C为圆心,且△ABC的面积等于4,则实数m=________.四、例题选讲考点一、直线与圆的位置关系例1、(1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定(2)已知点P(a,b)(ab≠0)是圆x2+y2=r2内的一点,直线m是以P为中点的弦所在的直线,直线l的方程为ax+by=r2,那么()A.m∥l,且l与圆相交B.m⊥l,且l与圆相切C.m∥l,且l与圆相离D.m⊥l,且l与圆相离变式1、(1)(2020·杭州模拟)若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围为()A.(-∞,2) B.(2,+∞)C.(-∞,-6) D.(-6,+∞)(2)若圆x2+y2=r2(r>0)上恒有4个点到直线x-y-2=0的距离为1,则实数r的取值范围是()A.(2+1,+∞) B.(2-1,2+1)C.(0,2-1) D.(0,2+1)变式2、已知圆C的方程为x2+(y-4)2=4,点O是坐标原点,直线l:y=kx与圆C交于M,N两点.(1)求k的取值范围;(2)直线l能否将圆C分割成弧长之比为1∶3的两段弧?若能,求出直线l的方程;若不能,请说明理由.方法总结:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.考点二圆的弦长问题例2、已知直线ax-y+2-a=0与圆C:(x-3)2+(y-1)2=9相交于A,B两点,若弦AB的长为32,求实数a的值.变式1、(1)在平面直角坐标系xOy中,直线3x-y+1-3=0被圆x2+y2-6x-2y+1=0截得的弦长为________.(2)当直线l:ax-y+2-a=0被圆C:(x-3)2+(y-1)2=9截得的弦长最短时,实数a的值为________.(3)若直线l:ax-y+2-a=0与圆C:(x-3)2+(y-1)2=9相交于A,B两点,且∠ACB=90°,则实数a的值为________.变式2、(1)过点M(1,2)的直线l与圆C:(x-3)2+(y-1)2=9相交于A,B两点,若弦AB的长为25,则直线l的方程为_(2)已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=________.方法总结:弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d ,圆的半径长为r ,则弦长l =2r 2-d 2.考点三 圆的切线问题例3、(徐州一中2019届模拟)已知点P (2+1,2-2),点M (3,1),圆C :(x -1)2+(y -2)2=4.(1)求过点P 的圆C 的切线方程;(2)求过点M 的圆C 的切线方程.变式1、已知点P(2+1,2-2),点M(3,1),圆C :(x -1)2+(y -2)2=4.(1) 求过点P 的圆C 的切线方程;(2) 求过点M 的圆C 的切线方程,并求出切线长.变式2、已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程.(1)与直线l 1:x +y -4=0平行;(2)与直线l 2:x -2y +4=0垂直;(3)过切点A(4,-1).方法总结:求圆的切线方程应注意的问题求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时应注意斜率不存在的切线.五、优化提升与真题演练1、【2020年天津卷】知直线80x -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.2、【2020年浙江卷】.设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.3、【2020年全国2卷】.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A. B. C. D.4、【2020年全国3卷】若直线l 与曲线y 和x 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D. y =12x +125、(2020届清华大学附属中学高三第一学期12月月考)已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,若OAB ∆为正三角形,则实数m 的值为( )A .2B .2C D 6、(2020届山东省枣庄、滕州市高三上期末)已知直线1:0l kx y +=()k R ∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A .B .C .5+D .3+7、【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.8、 (2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.。
高中数学必修二-直线与圆的位置关系

直线与圆的位置关系知识集结知识元不含有参数的直线与圆位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲不含有参数的直线与圆位置关系例1.已知点P在单位圆x2+y2=1上运动,P到直线3x﹣4y﹣10=0与x=3的距离分为d1、d 2,则d1+d2的最小值是.例2.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.例3.经过圆x2+y2﹣2x+2y=0的圆心且与直线2x﹣y=0平行的直线方程是()A.2x﹣y﹣3=0B.2x﹣y﹣1=0C.2x﹣y+3=0D.x+2y+1=0含有参数类型直线与圆的位置关系知识讲解1.直线与圆的位置关系1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.例题精讲含有参数类型直线与圆的位置关系例1.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上情况都有可能例2.直线ax﹣y+a=0(a≥0)与圆x2+y2=9的位置关系是()A.相交B.相切C.相离D.相切或相离例3.圆x2+y2+4x﹣2y﹣1=0上存在两点关于直线ax﹣2by+2=0(a>0,b>0)对称,则的最小值为()A.8B.9C.16D.18简单切线类型知识讲解1.圆的切线方程圆的切线方程一般是指与圆相切的直线方程,特点是与圆只有一个交点,且过圆心与切点的直线垂直切线.圆的切线方程的类型:(1)过圆上一点的切线方程:对于这种情况我们可以通过圆心与切点的连线垂直切线求出切线的斜率,继而求出直线方程(2)过圆外一点的切线方程.这种情况可以先设直线的方程,然后联立方程求出他们只有一个解(交点)时斜率的值,进而求出直线方程.例题精讲简单切线类型例1.设点A为圆(x﹣1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为()A.y2=2x B.(x﹣1)2+y2=4C.y2=﹣2x D.(x﹣1)2+y2=2例2.已知圆的方程是x2+y2=1,则经过圆上一点M(1,0)的切线方程是()A.x=1B.y=1C.x+y=1D.x﹣y=1例3.'已知圆C的方程为x2+y2﹣2x+4y﹣3=0,直线l:x﹣y+t=0.若直线l与圆C相切,求实数t的值.'简单弦长问题知识讲解弦长问题一、求直线与圆相交时的弦长有三种方法(1)交点法:将直线方程与圆的方程联立,求出交点A,B的坐标,根据两点间的距离公式|AB|=求解.(2)弦长公式:如图所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A(x1,y1),B(x2,y2),则|AB|==|x1-x2|=|y1-y2|(直线l的斜率k存在).(3)几何法:如图,直线与圆C交于A,B两点,设弦心距为d,圆的半径为r,弦长为|AB|,则有()2+d2=r2,即|AB|=2.通常采用几何法较为简便。
人教版高中数学必修2第四章《4.2直线、圆的位置关系:4.2.1 直线与圆的位置关系》教学PPT

1)若AB和⊙O相离, 则 d > 5cm ; 2)若AB和⊙O相切, 则 d = 5cm ; 3)若AB和⊙O相交,则 0cm≤ d < 5cm.
例1、如图,已知直线l:3x+y-6=0和圆心为C 的圆x2+y2-2y-4=0,判断直线l与圆的位置关 系;如果相交,求它们的交点坐标。
相交
△>0
r >d
O
x
当-2 2<b<2 2 时,⊿>0, 直线与圆相交;
当b=2 2或 b=-2 2 时, ⊿=0, 直线与圆相切;
当b>2 2或b<-2 2 时,⊿<0,直线与圆相离。
㈠方法探索
y 解法二(利用d与r的关系):圆x2+y2=4的圆心为(0,0),半径为r=2
00b b
圆心到直线的距离为 d
(3)△<0 直线与圆径相r离的. 大小关系 直线与圆没有交点
方法3:代数性质
2、相切 (d=r)
直线与圆有一个交点
3、相交 (d<r)
直线与圆有两个交点
设圆 C∶(x-a)2+(y-b)2=r2, 直线L的方程为 Ax+By+C=0,
(x-a)2+(y-b)2=r2
Ax+By+C=0
练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 1)若d=4.5cm ,则直线与圆 相交, 直线与圆有___2_个公共点. 2)若d=6.5cm ,则直线与圆__相__切__, 直线与圆有___1_个公共点. 3)若d= 8 cm ,则直线与圆__相__离__, 直线与圆有___0_个公共点.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的位置关系
直线的方程
斜截式 斜率k y=kx+b 不包括垂直于x 轴的直线
纵截距b
点斜式 点P 1(x 1,y 1) 1y y -=k (1x x -) 不包括垂直于x 轴的直线
斜率k
两点式 点P 1(x 1,y 1) 不包括坐标轴和平行于坐标轴的直线 和P 2(x 2,y 2) 截距式 横截距a 1=+b
y
a x 不包括坐标轴,平行于坐标轴和过原点的直线
纵坐标b
一般式 Ax+By+C=0 A 、B 不同时为0 圆的方程
标准式:2
2
2
()()x a y b r -+-=,其中r 为圆的半径,(,)a b 为圆心.
一般式:220x y Dx Ey F ++++=(22
40D E F +->).其中圆心为,2
2D E ⎛⎫-- ⎪⎝⎭,
参数方程:cos sin x r y r αα=⎧⎨=⎩
,cos (sin x a r y b r ααα=+⎧⎨=+⎩是参数). 消去θ可得普通方程
典型例题
例1.已知一个圆和y 轴相切,在直线x y =上截得的弦长为72,且圆心在直线0
3=-y x 上,求圆的方程。
练习:求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程。
练习:已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为
7
2,求圆C 的方程。
121
121x x x x y y y y --=
-
-
点与圆的位置关系:
已知点()00M ,x y 及圆()()()2
2
2C 0:x-a y b r r +-=>, (1)点M 在圆C 外()()2
2
200CM r x a y b r ⇔>⇔-+->; (2)点M 在圆C 内⇔()()2
2
200CM r x a y b r <⇔-+-<; (3)点M 在圆C 上()2
0CM r x a ⇔=⇔-()2
20y b r +-=
圆的切线
(1)切线:①过圆222x y R +=上一点00(,)P x y 圆的切线方程是:200xx yy R +=,过圆
222
()()x a y b R -+-=上一点
00(,)
P x y 圆的切线方程是:
200()()()()x a x a y a y a R --+--=,一般地,如何求圆的切线方程?(抓住圆心到直线的
距离等于半径);②从圆外一点引圆的切线一定有两条,可先设切线方程,再根据相切的条件,运用几何方法(抓住圆心到直线的距离等于半径)来求;③过两切点的直线(即“切点弦”)方程的求法:先求出以已知圆的圆心和这点为直径端点的圆,该圆与已知圆的公共弦就是过两切点的直线方程;③切线长:过圆2
2
0x y Dx Ey F ++++=(222()()x a y b R -+-=)外一点00(,)P x y 所引圆的切线的长为
;
例2. 已知圆的方程为222
x y r +=, 00(.)P x y 是圆外一点,经过P 点作圆的切线两切线,
切点分别为A,B,求直线AB 的方程。
练习:写出过圆x 22
10y += 上的一点的切线方程
练习:设A 为圆1)1(2
2
=+-y x 上动点,PA 是圆的切线,且|PA|=1,则P 点的轨迹方程为---
直线与圆的位置关系:
直线:0l Ax By C ++=和圆()()2
2
2C :x a y b r -+-=()0r >有相交、相离、相切。
可从代数和几何两个方面来判断:
(1)代数方法(判断直线与圆方程联立所得方程组的解的情况):0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;
(2)几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切。
提醒:判断直线与圆的位置关系一般用几何方法较简捷
例3.已知直线方程为
圆方程为2
2
(1)1x y -+=则当m 为何值时,直线与圆(1)相切 (2)相离 (3)相交
例4.已知⊙C :(x-1)2+(y-2) 2
=2,P(2,-1),过P 作⊙C 的切线,切点为A 、B 。
求切线直线PA 、PB 的方程
练习:若直线(1)10a x y +++=与圆 22
20x y x +-=相切,则 a 的值为( d )
A. 1或-1
B. 2,或-2
C. 1
D. -1 练习:已知过(1,0),(0,2)A B -的直线与圆2
2
(1)()1x y a -+-=相切,则a=?
练习:已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为
弦长求法
0x y m ++
=
(1)几何法:弦心距d ,圆半径r ,弦长l ,则2
2
22l d r ⎛⎫
+= ⎪⎝⎭
.或者AB =
(2)解析法:用韦达定理,弦长公式. 直线y kx b =+与圆2
2
2
()()x a y b r -+-= 相交两
点A,B. A B AB x =-=
例5.已知直线:1l y kx =+,圆C :22
(1)(1)9x y -++=.
(1) 试证明:不论k 为何实数,直线l 和圆C 总有两个交点;
(2) 当k 取何值时,直线l 被圆C 截得的弦长最短,并求出最短弦的长。
练习:已知圆C :2
2
2430x y x y +++-=和直线l :10x y ++=,则圆C 到直线l 的距离
的点共有( )
A 、1个
B 、2个
C 、3个
D 、4个
例6.已知直线:2l y kx =+和曲线C:y =有两个交点,求实数k 的取值范围.
练习:圆82
2
=+y x 内有一点)2,1(-P ,AB 为经过点P 且倾斜角为α的弦。
(1) 当4
3π
α=时,求弦AB 的长;(2)当弦AB 被点P 平分时求直线AB 的方程。
练习:已知直线mx y =与圆021682
2
=+-++y x y x 交于Q P ,两点,O 为坐标原点,求
⋅的值。
课后练习:
1.设0>m ,则直线01)(2=+++m y x 与圆m y x =+2
2的位置关系为
A .相切
B .相交
C .相切或相离
D .相交或相切 3.设直线过点),0(a ,其斜率为1, 且与圆22
2=+y x 相切,则a 的值为
A .± 2
B .±2
C .±2 2
D .±4 4.“b a =”是“直线2+=x y 与圆2)()(2
2
=-+-b y a x 相切”的
A 充分而不必要条件.
B .必要而不充分条件
C .充要条件
D .既不充分也不必要条件 5.若直线)0,0(022>>=+-b a by ax 始终平分圆01422
2
=+-++y x y x 的周长,则
b
a 1
1+ 的最小值为 A . 41 B . 2
1
C . 4
D .4-
8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有 A .1条 B .2条 C .3条 D .4条
9.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是
A.(4,6)
B.[4,6)
C.(4,6]
D.[4,6] (二)填空题:
11.设P 为圆221x y +=上的动点,则点P 到直线34100x y --=的距离的最小值为 _ . 12.已知圆)0()5(:2
22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共
点,则r 的取值范围是 .
13.设直线30ax y -+=与圆2
2
(1)(2)4x y -+-=相交于A 、B 两点,且弦AB 的长为
a =___.
14.过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直
线l 的斜率k = .
(三)解答题
1.求过点(2,4)A 向圆42
2
=+y x 所引的切线方程。
2.求直线012=--y x 被圆0122
2
=--+y y x 所截得的弦长。
3.已知实数y x ,满足12
2
=+y x ,求1
2
++x y 的取值范围。