统计名词解释
统计学

第一章名词解释统计:即统计工作、统计资料、统计科学统计总体:是根据一定目的确定的所要研究事物的全体,它是客观存在,并在某一相同性质基础上结合起来的有许多个别事物组成的整体。
总体单位:构成统计总体的每个独立的个别事物。
标志:是说明总体单位特称的名称。
指标(统计指标):是说明现象总体量的特征的概念或范畴,及通过统计实践活动可得到指标的具体数值的总称。
变异:可变标志在总体各个单位具体表现上的差别。
变量:就是可变的数量标志。
简答题1.统计三种含义之间的关系:统计工作的成果是统计资料,统计科学是统计工作实践经验的理论概括和科。
学总结.2.统计研究的对象:社会经济现象的数量方面,其特点:同质性、大量性、差异性。
3.统计的职能:进行统计调查、统计分析;.提供统计资料和统计咨询意见;.实行统计监督。
4.分组的依据:①统计分组按其任务和作用不同,分为类型分组、结构分组和分析分组。
②统计分组按分组标志的多少分为简单分组和复合分组。
③统计分组按分组标志的性质分为品质分组和变量分组。
5.统计研究的基本方法:大量观察法、分组法、综合指标法。
统计研究的特点:数量性、总体性、具体性、社会性。
(从定性认识到定量认识,从个体认识到总体认识,从已知量的描述到未知量的推断)6.标志与指标二者的区别和联系有哪些?区别:(1)标志是说明总体单位特征的,而指标是说明总体特征的;(2)标志有可能用数值表示的品质标志与能用数值表示的数量标志,然而不论什么指标,都要用数值表示。
联系:(1)有些统计指标的数值是从总体单位的数量标志值汇总得到的;(2)在一定的研究范围内指标和数量标志之间存在着变换关系。
第二章名词解释统计调查:就是根据统计研究的目的、要求和任务,运用各种科学的调查方法,有计划、有组织地搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的调查资料的活动过程。
统计设计:是根据统计研究对象的性质和研究目的,对统计工作各个方面和各个环节通盘考虑和安排。
统计学名词解释

统计学名词解释第一章绪论1.随机变量:在统计学上,把取值之间不能预料到什么值的变量。
2.总体:又称母全体、全域,指具有某种特征的一类事物的全体。
3.个体:构成总体的每个基本单元称为个体。
4.样本:从总体中抽取的一部分个体,称为总体的一个样本。
5.次数:指某一事件在某一类别中出现的数目,又称为频数。
6.频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
7.概率:某一事物或某一情在某一总体中出现的比率。
8.观测值:一旦确定了某个值。
就称这个值为某一变量的观测值。
9.参数:又称为总体参数,是描述一个总体情况的统计指标。
10.统计量:样本的那些特征值叫做统计量,又称特征值。
第二章统计图表1.统计表:是由纵横交叉的线条绘制,并将数据按照一定的要求整理、归类、排列、填写在内的一种表格形式。
一般由表号、名称、标目、数字、表注组成。
2.统计图:一般采用直角坐标系,通常横轴表示事物的组别或自变量x,称为分类轴。
纵轴表示事物出现的次数或因变量,称为数值轴。
一般由图号及图题、图目、图尺、图形、图例、图组成。
3.简单次数分布表:依据每一个分数值在一列数据中出现的次数或总计数资料编制成的统计表,适合数据个数和分布范围比较小的时候用。
4.分组次数分布表:数据量很大时,应该把所有的数据先划分在若干区间,然后将数据按其数值大小划归到相应区域的组别内,分别统计各个组别中包括的数据个数,再用列表的形式呈现出来,适合数据个数和分布范围比较大的时候用。
5.分组次数分布表的编制步骤:(1)求全距(2)定组距和组数(3)列出分组组距(4)登记次数(5)计算次数6.分组次数分布的意义:(1)优点:A.可将杂乱无章数据排列成序,以发现各数据的出现次数及分布状况。
B.可显示一组数据的集中情况和差异情况等。
(2)缺点:原始数据不见了,从而依据这样的统计表算出的平均值会与用原始数据算出的值有出入,出现误差,即归组效应。
统计学名词解释

1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。
2、指标和标志标志是说明总体单位属性或特征的名称。
指标是说明总体综合数量特征和数量关系的数字资料。
3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。
简称总体。
构成总体的个体则称为总体单位,简称单位。
样本是从总体中抽取的一部分单位。
4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过程。
它是取得统计数据的重要手段。
5、统计绝对数和统计相对数反映总体规模的绝对数量值,在社会经济统计中称为总量指标。
统计相对数是两个有联系的指标数值之比,用以反映现象间的联系和对比关系。
6、时期指标和时点指标时期指标是反映总体在一段时期内累计总量的数字资料,是流量。
时点指标是反映总体在某一时刻上具有的总量的数字资料,是存量。
7、抽样估计和假设检验抽样估计是指根据所抽取的样本特征来估计总体特征的统计方法。
假设检验是先对总体的某一数据提出假设,然后抽取样本,运用样本数据来检验假设成立与否。
8、变量和变异标志的具体表现和指标的具体数值会有差别,这种差别就称为变异。
数量标志和指标在统计中称为变量。
9、参数和统计量参数是反映总体特征的一些变量,包括总体平均数、总体方差、总体标准差等。
统计量是反映样本特征的一些变量,包括样本平均数、样本方差、样本标准差等。
10、抽样平均误差样本平均数与总体平均数之间的平均离散程度称之为抽样平均误差,简称为抽样误差。
重复抽样的抽样平均误差为总体标准差的1/n。
11、抽样极限误差抽样极限误差是指样本统计量和总体参数之间抽样误差的可能范围。
我们用样本统计量变动的上限或下限与总体参数的绝对值表示抽样误差的可能范围,称为极限误差或允许误差。
统计学名词解释(超全)

统计学名词解释(超全)统计学:是一门搜集、整理、显示和分析统计数据的方法论科学。
总体:就是统计所要研究的事物或现象的全体,即由客观存在的,具有某种共同特征的许多个别事物构成的整体。
参数:是描述总体数量特征的指标,又称总体指标。
样本:是指从统计总体中抽取出来作为代表这一总体的、由部分个体组成的集合体。
变量:指给所要研究的事物起的名字,包括可变的标志和所有的统计指标。
总体参数:描述总体数量特征的指标,又称总体指标。
样本统计量:是根据样本数据计算出来的样本指标,用来描述样本的数量特征。
普查:为某一特定目的而专门组织的一次性全面调查。
抽样调查:是按随机原则,从总体中抽选部分单位进行观察,并根据部分单位(样本)的调查数据,从数量方面推断总体参数的一种非全面调查。
统计分组:根据被研究现象总体的内在特点以及统计研究的目的,将总体按照一定的标志分为若干个性质不同的组成部分的一种统计方法。
统计表:指显示统计整理结果的表格,就是把通过整理的调查数据,使其成为得以说明现象总体数量特征的分组数据,并按一定顺序排列而形成的表格。
时期数据:反映现象总体在一段时期内发展变化总结果的总量指标。
时点指标:反应现象整体在某一的点(瞬间)上所处状况的总量指标。
众数:是一组数据中出现次数最多的变量值。
时间序列:将反映某种现象的统计指标在不同时间上的数值,按时间顺序排列而成的序列。
发展水平:时间序列中的每一项指标数值,都称为发展水平,它反映了某种现象在一定时期或时点所达到的规模和水平。
均匀发展水平:将不同时间的发展水平加以均匀而得到的均匀数。
发展速度:是反映现象发展变化快慢程度的动态相对指标,是根据两个不同时期的发展水平对比求得的。
环比发展速度:是时间序列中敷陈期发展水平与前期发展水平之比,表明现象逐期发展变化的方向和程度。
定基发展速度:是报告期发展水平与某一固定时期发展水平(最初发展水平)之比,说明现象在较长时期内总的发展变动方向与程度。
统计学名词解释

1、统计包括三方面的涵义:统计活动、统计资料、统计学;2、统计活动:是在一定的理论指导下,采用适宜的科学方法搜集、处理统计资料的一系列调查研究过程。
3、统计资料:即统计信息,它集中、全面、综合地反应国民经济和社会发展的现象和过程4、统计学:即统计理论,是一门独立的方法论科学,它根据自己的研究对象,系统的阐述统计理论的方法5、统计总体:是根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的,具有某种共同性质的许多个别单位构成的整体。
6、总体单位:是指构成总体的个体单位,它是总体的基本单位。
(又称个体)7、同质性:指总体各单位在某一标志上的共同性8、变异性:指总体所有单位至少有一个以上的可变品质标志或数量标志9、大量性:指统计总体中的单位应有足够的数量,如果总体单位应有足够的数量,如果总体单位数量很少,就难以揭示总体的规律性10、标志:是指统计总体中各单位所具同具有的属性和特征11、品质标志:表明总体单位属性方面的特征,用文字表示12、数量标志:数量方面的特征13、指标:是反映社会经济现象总体数量特征的概念和数值。
14、变异:统计中的标志和指标都是可变的15、变量:可以取不同值得量,在社会经济统计学中,各种数量标志和全部统计指标都是变量16、连续变量:数值是连续不断的,相邻两值之间可作无限分割,即可去无限数值17、离散变量:数值都是以整数位断开的,其数值要用计算的方法取得18、确定性变量:变量值的变动受制于某种决定性因素,致使其沿着一定的方向变动19、随机变量:影响变量值变动的因素有很多,作用不同,因而变量值变动无确定方向20、统计法:国家制定和认可的调整参与统计活动的各方面——统计主体、客体、宿体在统计活动中形成的社会关系的法律规范的总称21、统计设计:对一个完整的统计工作涉及各个方面和各个环节的通盘考虑和适当安排22、统计指标体系:将反映社会经济现象数量特征的一系列相互依存、相互联系的统计指标有机结合所组成的整体;23、指标名称:指标质的规定,它反映一定的社会经济范畴24、指标数值:根据指标的内容所计算出来的具体数值25、数量指标:反映总体总规模、总水平或总工作量的统计指标,又称总量指标26、质量指标:反映总体内部数量关系、单位一般水平、工作质量的统计指标27、描述指标:对总体及其组成部分的规模水平和数量关系进行客观描述的统计指标28、评价指标:反映社会经济总体的结构、比例、速度以及利用状况和效益、效果的统计指标29、监测指标:对社会经济总体运行进行跟踪监测,看其是否偏离既定目标,是否保持平衡的统计指标30、预警指标:可以对总体运行中出现的偏离进行及时的调控31、统计调查:是按照统计的任务和调查的目的要求,运用科学的方法搜集或者收集被研究对象的各个标志值的过程。
统计学名词解释

17.相对指标:也称相对数,就是将两个有联系指标的数值进行对比的结果;
18.时期数列:是由时期指标形成的,数列中的每个指标数值都是反映某种社会经济现象在一段时期内发展过程的总量;
29.简单随机抽样:这是按随机原则从总体N个单位中直接抽取n个单位做样本,使总体中每一个单位都有同等的可能性被抽中;
30.简单相关表:是资料未经分组的相关表,它是相关因素的标志值按照大小顺序并配合结果标志值一一对应而平行排列起来的统计表;
31.常住单位:是指在我国的经济领土上具有经济利益中心的经济单位;
88.组中值:指本组的上限与下限之间的中点值。它代表组内所有单位的标准值的平均水平。
89.次数分布:是指在统计分组的基础上,将总体的所有单位按组归类整理,并按一定顺序排列,形成总体单位在各组间的分布。
90.总体:按数量标志分组就形成变量分配数列,简称变量数列。
91.统计表就是用来表现统计资料汇总整理结果的汇总表。
92.累计次数:是指数列中高于或低于某一变量值的次数总和。
93.强度相对指标:是两个性质不同但是存在一定联系的指标的对比,用来反映事物的强度、密度和普遍程度的指标。
94.众数:是指总体中出现次数最多的标志值。
95.平均发展水平:将不同时期的发展水平加以平均而得的平均数叫平均发展水平,在统计上又称为序时平均数或动态平均数。
44.资本形成
:是指各机构单位通过经济交易获得或处理生产资产的行为;
45.因素分析法:它是利用指数体系,对现象的综合变动从数量上分析其受各因素影响的一种分析方法。
统计名词解释

应很小,即出现大X 值概率很小。即X 越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。若P>a则没有 理由拒绝H0。 29. X 用途: (1) 实际频数与拟合频数拟合优度: A推断两个或两个以上总体率或构成比有无差别 (四格表/行x列表) 。 B两变量之间有无相互关系。C频数分布的拟合优度检验(判断次样本是否来自某种分布)。 (2)某些分布可用X 近似。 (3)间接应用:如t分布和F分布就是在X 分布基础上推导出来的。 30. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部 分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是 否具有统计学意义。 31.假设检验中P,a,b(倍他)的关系及统计学意义: a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”, 以此判断是否不拒绝H0无效假设, 在假设检验中, 按a检验水准, 拒绝了原来正确的H0, 即犯了第1类错误, 犯此错误的概率为a。 b:在T假设检验中,按照a检验标准,没有拒绝原来错误的无效假设,即犯了第2类错误,犯次错误的概率 是b。 P:是在H0成立时大于等于用样本计算的统计值出现的概率用P值与检验水准a比较,根据比较的结果作出统 计判断。如果P≤a时,就怀疑假设的成立,拒绝H0。若P>a则接受H0拒绝H1。P值越小只能说明作出拒绝H0, 接受H1的推论时犯错误的机会越小。 32.制定参考值步骤: (1)从正常人总体中抽样(2)控制测量误差 (3)判定是否需要分组确定参考值范围(4)决定单侧还是双侧 (5)选择合适的百分上限(6)对资料的分布进行正态性检验 (7)根据资料的分配类型选定恰当的方法进行参考值范围的估计 33. 标准差与标准误不同: (1)二者描述内容不同:前者个体变异;后者群体变异。 (2)二者与n样本含量关系不同:n很小时S不稳定,n足够大时S接近总体标准差;而S不变时,n接近无穷 大时,标准误接近0。 (3)二者用途不同:S:描述观察值的离散程度/计算CV即变异系数/估计医学参考值范围/计算标准误;标 准误:反映均数抽样误差大小/估计总体均数可信区间/用于假设检验。 34. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为 定性变量(分类)和定量变量(连续)。
统计学名词解释

总体:总体是指客观存在的,在同一性质基础上结合起来的许多个别事务的整体,亦称统计总体。
总体单位:总体单位是指构成统计总体的个别事物的总称。
指标:指标是反映总体现象数量特征的概念。
标志:标志是说明总体单位特征的名称。
统计调查:是按照预定的目的和任务,运用科学的统计调查方法,有计划有组织地向客观实际搜集统计资料的过程。
调查对象:是根据调查目的、任务确定的调查的范围,即所要调查的总体,它是由某些性质上相同的许多调查单位所组成的。
调查单位:是所要调查的现象总体中的个体,即调查对象中的一个一个具体单位,它是调查中要调查登记的各个调查项目的承担者。
报告单位:是负责向统计调查机关提交调查资料的单位。
普查:是专门组织的一次性的全面调查,用来调查属于一定时点上或时期内的现象的总量。
复合分组:对同一总体选择两个或两个以上的标志重叠起来进行分组。
复合分组体系:多个复合分组组成的分组体系。
频数:是指分配数列中各组的单位数,也称次数。
频率:是将跟组的单位数(频数)与总体单位数相比,求得的用百分比表示的相对数,也称比率或比重。
统计指标:是反映总体现象数量特征的基本概念及其具体数值的总称。
总量指标:是反映总体规模的统计指标,表明现象总体发展的结果。
平均指标:是总体各单位某一数量标志一般水平的统计指标。
是将一个总体内各个单位在某个数量标志上的差异抽象化,以反映总体的一般水平的综合指标。
标志变异指标:是表明总体各个单位标志值的差异程度(离散程度)的指标。
强度相对指标:是不属于同一总体的两个性质不同但相互间有联系的总量指标对比的比值,是用来反映现象的强度、密度和普遍程度、利用程度的综合指标。
加权算数平均数:是在总体经过分组形成变量数列(包括单项数列和组距数列),有变量值和次数的情况下,将各组变量值分别与其次数相乘后加总求得标志总量,再除以总体单位数(即次数总和)而求得的数值。
标准差:是总体各单位变量值与其平均数的离差平方的算术平均数的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1统计学:运用概率论、数理统计的原理与方法研究数据的搜集;分析;解释;表达的科学。
2医学统计学:就是运用统计学的基本原理和方法来研究医学问题的一门学科,它包括设计,数据收集,整理,分析以及分析结果的正确解释和表达。
3总体:是根据研究目的所确定的同质观察单位某种观察值(即变量值)的全体。
4参数:医学研究通常都想了解关于总体某些数值特征,这些数值特征称为参数。
5统计量:根据样本算得的某些数字特征称为统计量。
6抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为抽样误差。
7样本:从总体中抽出供研究的观察单位就称为样本。
8变量:观测单位的某种特征或属性,变量的观测值就是所谓的变量值,有时也称为数据或资料。
9误差:泛指实测值与真实值之差,一般可区分为随机误差和非随机误差两大类。
10系统误差(非随机误差)(偏性或偏倚):最常见的非随机误差即所谓系统误差,是指使实测值系统偏离真实值的,具有方向性的误差,因此也常称为偏性或偏倚。
11随机事件:根据某一研究目的,在一定条件下对某一随机事件(不确定现象)进行观测,其结果在事先是不确定的,将其称为随机事件,简称事件。
12小概率事件;把概率很小的随机事件称为小概率事件,一般P小于等于0.05或p小于等于0.01的事件。
13观察性研究是一种客观地观察,记录和描述事物或现象的认识活动。
14目标总体:调查目的所确定的总体称为目标总体。
15样本含量:确定调查对象和观察单位后,还要确定需要调查多少观察单位,即样本含量。
16抽样调查:是一种非全面调查,即从总体中抽取一定数量的观察单位组成样本,对样本进行调查。
17同质:是指观察单位(研究个体)间被研究指标的影响因素相同。
18统计资料:也称统计信息,是统计部门或单位进行工作所搜集,整理,编制的各种统计数据资料的总称。
19变量值:随机变量的取值称变量值。
20空白对照:指对照组不接受任何处理,常用于实验动物和实验方法研究,以评价试验是否处于正常状态及测量方法的准确度等。
21实验对照:指对对照组施加某种与处理因素有关的实验因素。
22标准对照:指用现有标准方法或常规方法作为对照。
23自身对照:指对照与实验在同一受试对象身上进行。
24平衡设计:各组样本含量相等时,称为平衡设计。
25配对设计:是将受试对象按一定条件配成对子,再将每对的两个受试对象随机分配到两个不同的处理组。
26交叉设计:是一种特殊的自身对照设计,它按事先设计好的实验次序,在各个时期对受试对象先后实施各种处理,以比较处理组间的差异。
27频数:不同组别的观察值个数就称为频数。
28频数表:将分组的标志和相应的频数列表,即为频数分布表。
29求全距:全距又称为极差,是全部数据中最大值与最小值之差,用符号R 表示。
30偏态分布:不对称型的分布是指频数分布不对称,集中位置偏向一侧,也称之为偏态分布。
若集中位置偏向数值小的一侧(左侧),称为正偏态。
若集中位置偏向数值大的一侧(右侧),称之为负偏态。
31均数:是算数均数的简称,用于描述一组同质定量资料的平均水平.总体均数用μ表示,样本均数用X 表示。
32几何均数: 用以描述对数正态分布或数据呈倍数变化资料的水平。
记为G。
33频数表: 用来表示一批数据各观察值或在不同取值区间的出现的频繁程度(频数)。
对于离散数据,每一个观察值即对应一个频数,如某医院某年度一日内死亡0,1,2…个病人的天数。
对于散布区间很大的离散数据和连续型数据,数据散布区间由若干组段组成,每个组段对应一个频数。
34统计量:统计量是指样本的统计指标,如样本均数、样本率等。
样本统计量可用来估计总体参数。
总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。
35概率:又称几率,是度量某一随机事件A发生可能性大小的一个数值,记为P(A),P(A)越大,说明A事件发生的可能性越大。
0﹤P(A)﹤1。
频率:在相同的条件下,独立重复做n 次试验,事件A 出现了m 次,则比值m/n 称为随机事件A 在n 次试验中出现的频率。
当试验重复很多次时P (A)= m/n。
36计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料.计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等37 随机变量:是指取指不能事先确定的观察结果。
随机量的具体内容虽然是各式各样的,但共同的特点是不能用一个常数来表示,而且,理论上讲,每个变量的取值服从特定的概率分布。
38中位数: 将一组观察值由小到大排列,n 为奇数时取位次居中的变量值;为偶数时,取位次居中的两个变量的平均值。
反映一批观察值在位次上的平均水平。
39极差亦称全距,即最大值与最小值之差,用于资料的粗略分析,其计算简便但稳定性较差。
40百分位数是将n 个观察值从小到大依次排列,再把它们的位次依次转化为百分位。
百分位数的另一个重要用途是确定医学参考值范围。
41四分位数间距是由第3 四分位数和第1 四分位数相减计算而得,常与中位数一起使用,描述偏态分布资料的分布特征,较极差稳定。
42方差:方差表示一组数据的平均离散情况,由离均差的平方和除以样本个数得到。
43标准差是方差的正平方根,使用的量纲与原量纲相同,适用于近似正态分布的资料,大样本、小样本均可,最为常用。
44变异系数用于观察指标单位不同或均数相差较大时两组资料变异程度的比较。
用CV 表示。
计算:标准差/均数*100%45统计推断:通过样本指标来说明总体特征,这种从样本获取有关总体信息的过程称为统计推断46抽样误差:由个体变异产生的,抽样造成的样本统计量与总体参数的差异,称为抽样误差47标准误及X s :通常将样本统计量的标准差称为标准误。
许多样本均数的标准差X s称为均数的标准误,它反映了样本均数间的离散程度,也反映了样本均数与总体均数的差异,说明均数抽样误差的大小。
48可信区间:按预先给定的概率确定的包含未知总体参数的可能范围。
该范围称为总体参数的可信区间。
它的确切含义是:可信区间包含总体参数的可能性是1- α ,而不是总体参数落在该范围的可能性为1-α 。
49.参数估计:指用样本指标值(统计量)估计总体指标值(参数)。
参数估计有两种方法:点估计和区间估计。
50.假设检验中P 的含义:指从H0 规定的总体随机抽得等于及大于(或等于及小于)现有样本获得的检验统计量值的概率。
51.I型和II 型错误:I 型错误(type I error ),指拒绝了实际上成立的H0,这类“弃真”的错误称为I 型错误,其概率大小用α表示;II 型错误(type II error),指接受了实际上不成立的H0,这类“存伪”的误称为II 型错误,其概率大小用β表示。
52.检验效能:1- β称为检验效能(power of test),它是指当两总体确有差别,按规定的检验水准a 所能发现该差异的能力。
53.检验水准:是预先规定的,当假设检验结果拒绝H0,接受H1,下“有差别”的结论时犯错误的概率称为检验水准,记为α 。
54..率又称频率指标,说明一定时期内某现象发生的频率或强度。
计算公式为:发生某现象的观察单位数/可能发生某现象的观察单位总数*100%,表示方式有:百分率(%)、千分率(‰)等。
55.构成比又称构成指标,说明某一事物内部各组成部分所占的比重或分布。
计算公式为:某一组成部分的观察单位数/同一事物各组成部分的观察单位总数*100%,表示方式有:百分数等。
56..比又称相对比,是A、B 两个有关指标之比,说明A 是B 的若干倍或百分之几。
计算公式为:A/B ,表示方式有:倍数或分数等。
57.非参数统计:针对某些资料的总体分布难以用某种函数式来表达,或者资料的总体分布的函数式是未知的,只知道总体分布是连续型的或离散型的,用于解决这类问题的一种不依赖总体分布的具体形式的统计分析方法。
由于这类方法不受总体参数的限制,故称非参数统计法,或称为不拘分布的统计分析方法,又称为无分布型式假定的统计分析方法。
58.参数统计:通常要求样本来自总体分布型是已知的(如正态分布),在这种假设的基础上,对总体参数(如总体均数)进行估计和检验,称为参数统计59..秩次:变量值按照从小到大顺序所编的秩序号称为秩次。
60.秩和:各组秩次的合计称为秩和,是非参数检验的基本统计量。
61.直线回归建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。
直线回归是回归分析中最基本、最简单的一种,故又称简单回归。
62.回归系数即直线的斜率,在直线回归方程中用b 表示,b 的统计意义为X 每增(减)一个单位时,Y平均改变b 个单位。
63.相关系数r:用以描述两个随机变量之间线性相关关系的密切程度与相关方向的统计指标。
64.参数估计:是指用样本统计量来估计总体参数,有点估计和区估计两种方法。
65.点估计:是用样本计量直接作为总体参数的估计值。
66.区间估计:是给出被估计参数的可能的数值范围。
67.单体t检验:样本与总体均数比较的检验。
68.方差齐性检验:在进行两样本均数比较的t检验时,必须知道两总体方差是否相等,其相等的检验即方差齐性检验。
69.方差分析:又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。
70.单独效应:是指其他因素水平固定时,同一因素不同水平的效应之差。
71.重复测量资料:是同一受试对象的同一观察指标在不同时间点上进行多次测量所获得的资料,常用来分析观察指标在不同时间点上的变化特点。
72.主效应:是指某一因素单独效应的平均值。
73.交互效应:是指两个或多个因素间的效应互不独立的情形。
74.单因素方差分析:完全随机设计资料的方差分析。
75对数变换:.即将原始数据X取自然对数或常用对数,将对数值作为新的分析数据。
76平方根变换:即将原始数据X的算数平方根作为新的分析数据。
(同理:倒数变换,平方根反正弧变换)77正态性检验:判定资料是否服从正态分布。
78变异指标是用于描述一组观察值围绕中心位置散布的范围,即描述离散趋势的统计指标。
数值越大,说明数据越离散,反之越集中。
79平均数指标用于描述一组同质观察值的集中趋势,反映一组观察值的平均水平。
80分层抽样先将总体中全部个体按某种特征分成若干“层”,再从每一层内随机抽取一定数量的个体组成样本。
分层特征与研究目的有关。
按各层比例抽样。
为减少抽样误差,要求层内误差最小,层间误差最大。
81整群抽样先将总体分成若干“群”,从中随机抽取几个群,抽取群内的所有观察单位组成82调查样本“群”的确定与研究目的无关。