电磁场与电磁波复习题(含答案)
电磁场与电磁波期末考试复习试题4套(部分含答案)

电磁场与电磁波期末考试复习资料11.圆柱坐标系中单位矢量 , 。
2.对于矢量A ,若 ,则=+•y x a y x a x )(2 ,=⨯x z a y a x 2 。
3.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ,矢量B A ⋅= 。
4.已知直角坐标系中点P 1(5,-2,1),P 2(3,1,2),则P1的位置矢量为 ,P1到P2的距离矢量为 。
5.已知球坐标系中单位矢量 。
6.在两半无限大导电平面组成的直角劈形中间放置一点电荷,此时点电荷的镜像电荷个数为 。
7.点电荷q 在自由空间任一点r 处电场强度为 。
8.静电场中导体内的电场为 ,电场强度与电位函数的关系为 。
9.高斯散度定理的积分式为 ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
10.已知任意一个矢量场A ,则其旋度的散度为 。
11.真空中静电场的基本方程的微分形式为 、 、 。
12.分析恒定磁场时,在无界真空中,两个基本场变量为 ,它们之间的关系为 。
13.斯托克斯定理为 ,它表明矢量场A 的旋度沿曲面S 的方向分量的面积分等于该矢量沿围绕此面积曲线边界的线积分。
14.任意一个标量场u ,则其梯度的旋度为 。
15.对于某一矢量 ,它的散度定义式为 ,用哈密顿算子表示为 。
16.介质中静电场的基本方程的积分式为 , , 。
17.介质中恒定磁场的基本方程的微分形式为 、 、 。
18.介质中恒定磁场的基本方程的积分式为 , , 。
19.静电场中两种介质分界面的边界条件是 , 。
20.在无限大的导体平面上方d 处放一点电荷q ,则其镜像电荷电量为 ,位置位于 ;如果一个点电荷置于两平行导体中间,则此点电荷有 镜像电荷。
21.矢量场223z a yz a y x a A z y x ++=在点P(1,1,0)的散度为 。
22.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ,位置位于 ;当点电荷q 向无限远处运动时,其镜像电荷向 运动。
《电磁场与电磁波》期末复习题及答案

《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波考试题答案参考资料

第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
(完整版)电磁场与电磁波试题及答案.

1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场和电磁波练习(有答案)

电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
电磁场与电磁波试题及答案

电磁场与电磁波试题及答案导言:电磁场和电磁波是电磁学领域中的重要概念,对于理解电磁现象、电磁波传播及应用都具有重要意义。
本文将针对电磁场和电磁波相关的试题进行解答,帮助读者巩固对这一知识点的理解。
一、电磁场概念及特点1. 试题:电磁场是指什么?电磁场有哪些特点?答案:电磁场指的是电荷或电流所产生的周围空间的物理场。
具体包括静电场和磁场。
电磁场的特点有以下几个方面:- 电磁场具有源极性:任何一个电磁场的产生都必须由电荷或电流来产生。
- 电磁场具有传递性:当源增大或减小时,电磁场的强度也会相应变化。
- 电磁场具有辐射性:电磁场会以电磁波形式向外传播。
- 电磁场具有叠加性:多个电磁场可以在同一空间中叠加。
二、电磁场强度及电磁波的传播1. 试题:电磁场强度的概念是指什么?电磁波的传播过程是怎样的?答案:电磁场强度是指单位电荷所受到的电磁力的大小,通常用矢量表示,其方向为电荷所受电磁力的方向。
电磁波的传播过程主要包括以下几个阶段:- 在电磁场中,源电荷或电流激发出电磁波。
- 电磁波在空间中以垂直波动的方式传播。
- 电磁波的传播过程中,电场和磁场相互垂直、交替变化。
- 电磁波传播速度为光速,即3×10^8 m/s。
三、电磁波的频率和波长1. 试题:电磁波的频率和波长有什么关系?请列举几种常见电磁波的频率和波长范围。
答案:电磁波的频率和波长之间有以下关系:频率 = 光速 / 波长以下是几种常见电磁波的频率和波长范围:- α射线:频率高,波长短,一般范围为10^18 - 10^20 Hz,波长约为10^(-12) - 10^(-10) m。
- 紫外线:频率较高,波长较短,一般范围为10^14 - 10^16 Hz,波长约为10^(-8) - 10^(-7) m。
- 可见光:频率适中,波长适中,范围为4×10^14 - 8×10^14 Hz,波长约为3.75×10^(-7) - 7.5×10^(-7) m。
《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
(完整word版)电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1一. 填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 .另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 .2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。
4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件.第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。
第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。
在每种边界条件下,方程的解是 唯一的 。
5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ⋅-=,12()s n H H J ⨯-=.6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。
二.简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波.(2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。
因为它只有纵向电场分量,又成为电波或E 波.(3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。
因为它只有纵向磁场分量,又成为磁波或M 波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波复习题一、填空题1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任意一点处通量对体积的变化率。
散度与通量的关系是矢量场中任意一点处通量对体积的变化率。
2、 散度在直角坐标系的表达式 z A y A x A z yxA A ∂∂∂∂∂∂++=⋅∇=ρρdiv ;散度在圆柱坐标系下的表达;3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右手螺旋法则。
当S 点P 时,存在极限环量密度。
二者的关系 ndS dC e A ρρ⋅=rot ;旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该点最 大环量密度的方向。
4.矢量的旋度在直角坐标系下的表达式。
5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。
梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与梯度的关系是梯度的大小为该点标量函数ϕ的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达式 ;7、直角坐标系下方向导数u∂的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。
9、麦克斯韦方程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ⋅=∂⋅=-⋅∂=∂=+⋅∂⎰⎰⎰⎰⎰⎰r r r r r r r r g r r r r r g ÑÑÑÑ其物理描述分别为10、麦克斯韦方程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε∇⋅=∇⨯=-∂∂∇⋅=∇⨯=+∂∂r r r r r r r其物理意义分别为11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。
12、坡印廷矢量的数学表达式20S c E B E H ε=⨯=⨯r r r r r ,其物理意义表示了单位面积的瞬时功率流或功率密度。
功率流的方向与电场和磁场的方向垂直。
表达式()sE H dS ⨯⎰r r r g Ñ的物理意义穿过包围体积v 的封闭面S 的功率。
13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象。
两种极化现象分别是 、 ,产生的现象分别有 、 、 。
描述电介质极化程度或强弱的物理量是 P ρ 。
14、折射率的定义是/n c v = ,折射率与波速和相对介电常数之间的关系分别为 /n c v = 、 2r n ε= 。
15、磁介质是指在外加磁场的作用下,能产生磁化现象,并能影响外磁场分布的物质,磁介质的种类可分别有抗磁质、顺磁质、铁磁质、亚铁磁质。
介质的磁化加磁场的现象 。
描述介质磁化程度的物理量是m χ。
16、介质的三个物态方程分别是c D E B H J E εμσ===u r u r u r u u r r r 。
17、静态场是指静态场是指场量不随时间变化的场,静态场包括 静电场、恒定电场及恒定磁场。
分别是由静止电荷或静止带电体、恒定电流的导体、恒定电流的导体产生的。
18、静电场中的麦克斯韦方程组的积分形式分别为00s v l s l s D d s dv E dl B d s H dl J d s ρ⋅=⋅=⋅=⋅=⋅⎰⎰⎰⎰⎰⎰u r r u r r u r r u u r r u r r ÑÑÑÑ ;静电场中的麦克斯韦方程组的微分形式分别为00D E B H J ρ∇⋅=∇⨯=∇⋅=∇⨯=u u r u r u r u u r u r ;19、对偶原理的内容是 如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的 ; 叠加原理的内容是若1φ和2φ分别满足拉普拉斯方程,即012=Φ∇和022=Φ∇,则1φ和2φ的线性组合:21a φφφb +=必然也满足拉普拉斯方程:0a 212=+∇)(φφb 式中a 、b 均为常系数;唯一性定理的内容是 唯一性定理可叙述为:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。
。
20、电磁场的赫姆鹤兹方程组是22020E E t με∂∇-=∂r r 0, 22020B B t με∂∇-=∂r r 0 。
21、电磁波的极化是指均匀平面波传播过程中,在某一波阵面上,电场矢量的振动状态随时间变化的方式为波的极化(或称为偏振),其三种基本形式分别是线极化波、圆极化波、椭圆极化波。
22、工程上经常用到损耗正切,其无耗介质的表达式是tan /c δγωε=,其表示的物理含义是传导电流和位移电流密度的比值。
损耗正切越大说明 损耗越大 。
有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量与磁场强度矢量之间存在相位差。
23、一般用介质的损耗正切不同取值说明介质在不同情况下的性质。
一个介质是良介质的损耗正切远小于1,属于非色散介质;当表现为良导体时,损耗正切为远大于1,属于色散介质。
24、波的色散是指同一媒质中,不同频率的波将以不同的速度传播,其相应的介质为色散媒质。
波的色散是由媒质特性所决定的。
色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度大,群速 小于 (大于、小于)相速;后者是波长大的波,其相速度小,群速 大于 (大于、小于)相速;在无色散介质中,不同波长的波相速度相等,其群速 等于 (等于、不等于)相速。
25、色散介质与介质的折射率的关系是 指波的传播速度即相速取决于介质折射率的实部,因而随频率而变,不同频率的波将以不同的速率在其中传播。
耗散介质是指 ①实际的介质都是有损耗的,非理想介质是有损耗介质也称为耗散介质,在这里是指电导率但仍然保持均匀、线性及各向同性等特性。
②是指其折射率的虚部为非零值的媒质,这时波在传播的过程中会逐渐衰减。
26、基波的相速为k /ω,群速就是波包或包络的传播速度,其表达式为/g v d dk ω=。
一般情况下,相速与群速不相等,它是由于波包通过有色散的媒质,不同单色波分量以不同相速向前传播引起的。
27、趋肤效应是指随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体的表面附近,导体内部的电流却越来越小,趋肤深度的定义是当交变电流通过导体时,电流密度在导体横截面上的分布将是不均匀的,并且随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体的表面附近,导体内部的电流却越来越小,这种现象称为趋肤效应,趋肤深度的的表达式1δα== 。
二、名词解释1、传导电流、位移电流自由电荷在导电媒质中作有规则运动而形成电介质内部的分子束缚电荷作微观位移而形成2、电介质的极化、磁介质的磁化在外电场作用下,电介质中出现有序排列电偶极子以及表面上出现束缚电荷的现象 。
在外磁场的作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子磁矩都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布,这种现象称为物质的磁化。
3、静电场、恒定电场、恒定磁场静电场是静止电荷或静止带电体产生的场。
恒定电场载有恒定电流的导体内部及其周围介质中产生的电场恒定电流的导体周围或者内部不仅存在电场,而且存在磁场,这个磁场不随时间变化就是恒定磁场。
4、泊松方程、拉普拉斯方程静电场的电位函数 满足的方程2ρφε∇=-称为泊松方程。
如果场中某处有ρ=0,即在无源区域,静电场的电位函数满足的方程将这种形式的方程称为拉普拉斯方程。
5、对偶原理、叠加原理、唯一性定理如果描述两种物理现象的方程具有相同的数学形式,并且有相似的边界条件或对应的边界条件,那么它们的数学解的形式也将是相同的,这就是对偶原理。
叠加原理:唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一地确定了,或者说这时拉普拉斯方程的解是唯一的。
6、镜像法、分离变量法、格林函数法、有限差分法镜像法是利用一个与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,这个相似的电荷称为镜像电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场,这20φ∇=种方法称为镜像法。
分离变量法是求解拉普拉斯方程的基本方法,该方法把一个多变量的函数表示成为几个单变量函数的乘积后,再进行计算。
格林函数法用于求解静态场中的拉普拉斯方程,泊松方程及时变场中的亥姆霍兹方程。
先求出与待解问题具有相同边界形状的格林函数。
知道格林函数后通过积分就可以得到任意分布源的解。
有限积分法在待求场域内选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程,转化为以离散点位函数值表示的方程组。
结合具体边界条件求解差分方程组,即得到所选的各个离散点上的位函数值。
7、电磁波、平面电磁波、均匀平面电磁波变化的电场产生变化的磁场,而变化的磁场又产生变化的电场,这样,变化电场和变化磁场之间相互依赖,相互激发,交替产生,并以一定速度由近及远地在空间传播出去。
这样就产生了电磁波。
平面电磁波:波振面为平面,且垂直于其传播方向的电磁波就是平面电磁波。
在与波传播方向垂直的平面上,各点场量或的大小、方向、位相都相同的电磁波叫做平面电磁波。
在自由空间传播的均匀平面电磁波(空间中没有自由电荷,没有传导电流),电场和磁场都没有和波传播方向平行的分量,都和传播方向垂直。
此时,电矢量E,磁矢量H和传播方向k两两垂直8、电磁波的极化电磁波极化是指电磁波电场强度的取向和幅值随时间而变化的性质,在光学中称为偏振。
如果这种变化具有确定的规律,就称电磁波为极化电磁波(简称极化波)。
9、相速、群速v 称为相速,每一等相位面沿传播方向运动的速度。
为频率与波长的乘积。
群速定义为/gv d dkω=.群速的定义基于两种情况:①无损耗介质②有损耗介质非常窄的频带。
一般情况下,相速与群速不相等,它是由于波包通过有色散的媒质,不同单色波分量以不同相速向前传播引起的。