相反数练习含答案

合集下载

相反数专项练习题有答案

相反数专项练习题有答案

相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8 3.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或12.a﹣b的相反数是()A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A.6B.﹣6 C. 0 D.﹣2 19.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A. a大于﹣a B. a小于﹣a C. a大于﹣a或a小于﹣a D.a不一定大于﹣a 21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0C.1D.223.下列各数中,互为相反数的是()A. +(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)]24.已知2x+4与﹣x﹣8互为相反数,则x的值为()A. 4 B.﹣4 C.0 D.﹣825.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“?”与“?”表示一种法则:(a?b)=﹣b,(a?b)=﹣a,如(2?3)=﹣3,则(2010?2011)?(2009?2008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.41.如果一个数的相反数大于它本身,则这个数为_________数.42.若a=+3.2,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣1.2;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣2.8);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B 和点C对应什么数?55.下列各数:2,0.5,,﹣2,1.5,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数?a+b与a﹣b的积为﹣2?58.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为8.4,求A 点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D 15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(a?b)=﹣b,(a?b)=﹣a,∴(2010?2011)?(2009?2008)=(﹣2011?﹣2008)=2011 28.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和531.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是﹣0.75与.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是3.1,﹣3.1.34.互为相反数在数轴上表示的点到原点的距离相等.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+3.2,则﹣a=﹣3.2;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3; 1.2的相反数是﹣1.2;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣2.8;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C 两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,0.5+(﹣)=0,1.5+(﹣),∴互为相反数的有:2和﹣2,0.5和﹣,1.5和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.57.根据题意可得:若a+b和a﹣b互为相反数,则a+b+a﹣b=0,解得:a=0,又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b 的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣2.5的相反数是2.5,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,4.5的相反数是﹣4.5.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为8.4,∴|2a|=8.4,∴a=±4.2,∵A>B,∴a>0,∴A、B两点所表示的数分别为:4.2,﹣4.2;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。

1.2.3 相反数—2024-2025学年人教版数学七年级上册课堂练习(含答案)

1.2.3 相反数—2024-2025学年人教版数学七年级上册课堂练习(含答案)

1.2.3相反数—2024-2025学年人教版数学七年级上册堂堂练1.-5的相反数是( )A. B. C.5 D.-52.从百年前的“奥运三问”到今天的“双奥之城”,2022年中国与奥运再次牵手,2022年注定是不平凡的一年.数字2022的相反数是( )A.2022B.-2022C.D.3.的相反数是( )A.2B.-2C.D.4.的相反数是( )A. B. C. D.25.下列各对数中,是互为相反数的是( )A.-2与3B.与C.4与-4D.5与6.中国人最早使用负数,可追溯到两千多年前的秦汉时期,的相反数是_________.7.化简:___________;___________;___________.8.如图,小明有8张写着不同数字的卡片,将这8张卡片上的数字在数轴上表示出来,再找出哪些数互为相反数.答案以及解析1.答案:C解析:-5的相反数是5.故选C.2.答案:B解析:2022的相反数是-2022;故选B.3.答案:B解析:去括号是2,2的相反数是-2,故选B.4.答案:C解析:是的相反数是.5.答案:C解析:根据只有符号不同的两个数叫做互为相反数进行判断:-2与3不是只有符号不同的两个数;与化简后都是-3;4与-4是只有符号不同的两个数,是互为相反数;5与符号相同,故选C.6.答案:2解析:,故答案为:2.7.答案:6,-6,-0.73解析:故答案为:6,-6,-0.738.答案:在数轴上表示如图所示:-3.5与3.5,-0.5与0.5互为相反数.。

七年级数学上册《相反数》同步练习(含解析)

七年级数学上册《相反数》同步练习(含解析)

人教版数学七年级上册第1章 1.2.3相反数同步练习一、单选题(共12题;共24分)1、﹣(﹣)的相反数是()A、﹣﹣B、﹣+C、﹣D、+2、下列的数中,负有理数的个数为()﹣,﹣(﹣2),﹣|﹣7|,|﹣|,﹣(+ ).A、2个B、3个C、4个D、5个3、下列说法正确的是()A、a一定是正数B、绝对值最小的数是0C、相反数等于自身的数是1D、绝对值等于自身的数只有0和14、﹣2017的相反数是()A、2017B、C、﹣D、05、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数6、一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数7、下列各组数中,互为相反数的是()A、2和B、﹣2和C、2 和﹣2.375D、+(﹣2)和﹣28、一个数的相反数等于它本身,这样的数一共有()A、1个B、2个C、3个D、4个9、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、410、在﹣中,负数有()A、1个B、2个C、3个D、4个11、如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A、﹣18B、18C、30D、﹣3012、下列各对数:﹣2与+(﹣2),+(+3)与﹣3,﹣(﹣)与+(﹣),﹣(﹣12)与+(+12),﹣(+1)与﹣(﹣1).其中互为相反数的有()A、0对B、1对C、2对D、3对二、填空题(共5题;共13分)13、当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.14、±=________;=________;|﹣|=________;π﹣3.14的相反数是________.15、的相反数是________,它的绝对值是________.16、计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.17、当x=________时,代数式与x﹣3的值互为相反数.三、解答题(共5题;共25分)18、a、b互为相反数,c、d互为倒数,|m|=2,且m<0,求2a﹣(cd)2007+2b﹣3m的值.19、把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.20、已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x2﹣(a+b+cd)x﹣cd.21、把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来. 2 ,﹣1.5,0,﹣4.22、如果与|y+1|互为相反数,求x﹣y的平方根.答案解析部分一、单选题1、【答案】C【考点】相反数,有理数的加减混合运算【解析】【解答】解:﹣(﹣)的相反数是﹣,故选C【分析】原式计算后,利用相反数定义判断即可.2、【答案】B【考点】相反数【解析】【解答】解:因为﹣(﹣2)=2,﹣|﹣7|=﹣7,|﹣|= ,﹣(+ )=﹣.所以负有理数有﹣,﹣|﹣7|,﹣(+ )共三个.故选B.【分析】先对各数进行化简,根据化简后的结果再确定负有理数的个数.3、【答案】B【考点】相反数,绝对值【解析】【解答】解:A、a既是正数,也可能是负数,还可能是0,故本选项错误;B、,绝对值最小的数是0;故本选项正确;C、相反数等于自身的数是0,故本选项错误;D、绝对值等于自身的数是非负数,故本选项错误.故选B.【分析】根据绝对值的性质,以及相反数的定义对各选项举反例验证即可得解.4、【答案】A【考点】相反数【解析】【解答】解:﹣2017的相反数是2017,故选:A.【分析】根据相反数的定义,可得答案.5、【答案】D【考点】相反数【解析】【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选D.【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.6、【答案】D【考点】相反数【解析】【解答】解:∵一个数的相反数是非负数,∴这个数是非正数,故选D.【分析】非负数包括正数和0,再根据相反数的定义得出即可.7、【答案】C【考点】相反数【解析】【解答】解:A、2与是互为倒数,故本选项错误;B、﹣2和相等,是互为负倒数,故本选项错误;C、2 和﹣2.375互为相反数,正确;D、∵+(﹣2)=﹣2,∴+(﹣2)与﹣2相等,不是互为相反数,故本选项错误.故选C.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.8、【答案】A【考点】相反数【解析】【解答】解:∵0的相反数等于0,故选:A.【分析】根据只有符号不同的两个数互为相反数,一个数的相反数等于它本身,可得这个数.9、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.10、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.11、【答案】C【考点】相反数,整式的加减【解析】【解答】解:∵果a,b互为相反数,∴a+b=0,∴(6a2﹣12a)﹣6(a2+2b﹣5)=6a2﹣12a﹣6a2﹣12b+30=﹣12a﹣12b+30=﹣12(a+b)+30=﹣12×0+30=30,故选C.【分析】根据a,b互为相反数,然后对题目中所求式子化简,即可解答本题.12、【答案】D【考点】相反数【解析】【解答】解:﹣2与+(﹣2)不是相反数,+(+3)与﹣3互为相反数,﹣(﹣)与+(﹣)互为相反数,﹣(﹣12)与+(+12)是同一个数,﹣(+1)与﹣(﹣1)互为相反数,故选:D.【分析】根据相反数的意义,只有符号不同的数为相反数.二、填空题13、【答案】4【考点】相反数,解一元一次方程【解析】【解答】解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4【分析】利用互为相反数两数之和为0列出方程,求出方程的解得到x的值,代入原式计算即可得到结果.14、【答案】;﹣3;;3.14﹣π【考点】相反数,绝对值,平方根【解析】【解答】解:±= ;=﹣3;|﹣|= ;π﹣3.14的相反数是3.14﹣π,故答案为:,﹣3,,3.14﹣π.【分析】根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.15、【答案】3﹣;【考点】相反数,绝对值【解析】【解答】解:根据相反数的概念有的相反数是﹣(),即3﹣;根据绝对值的定义:的绝对值是.【分析】分别根据相反数、绝对值的概念即可求解.16、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.17、【答案】【考点】相反数,一元一次方程的应用【解析】【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x= .故填.【分析】紧扣互为相反数的特点:互为相反数的和为0.三、解答题18、【答案】解:由题意知:a+b=0,cd=1,m=﹣2.原式=2(a+b)﹣(cd)2007﹣3m=2×0﹣1﹣3×(﹣2)=5【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】先依据相反数、倒数、绝对值的性质得到a+b、c d、m的值,然后代入计算即可.19、【答案】解:这几个数分别为,2.5,﹣2.5,0,+3.5,﹣3.5,1 ,﹣1 ,根据负数的绝对值越大则负数的值越小可得:﹣3.5<﹣2.5<﹣1 <0<1 <2.5<3.5【考点】数轴,相反数,有理数大小比较【解析】【分析】负数的绝对值越大则负数的值越小,由此可得出答案.20、【答案】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是3,∴a+b=0,cd=1,x=±3.当x=3时,原式=32﹣(0+1)×3﹣1=9﹣3﹣1=5;当x=﹣3时,原式=(﹣3)2﹣(0+1)×(﹣3)﹣1=9+3﹣1=11【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据题意可知a+b=0,cd=1,x=±3,然后代入计算即可.21、【答案】解:﹣4<﹣2 <﹣1.5<0<1.5<2 <4【考点】数轴,相反数,有理数大小比较【解析】【分析】先在数轴上表示各个数和相反数,再比较即可.22、【答案】解:∵与|y+1|互为相反数,∴x﹣3=0,y+1=0,解得,x=3,y=﹣1,∴,即x﹣y的平方根是±2.【考点】相反数,二次根式的非负性,绝对值的非负性【解析】【分析】根据非负数的性质和题目中与|y+1|互为相反数,可以得到x、y的值,从而可以求得x﹣y的平方根.。

湘教版七年级上册数学第一章第二节相反数练习题(附答案)

湘教版七年级上册数学第一章第二节相反数练习题(附答案)

湘教版七年级上册数学第一章第二节相反数练习题(附答案)一、单选题1.下列各对数中,互为相反数的()A.﹣(﹣2)和2B.﹣(﹣5)和+(﹣5)C.12和﹣2D.+(﹣3)和﹣(+3)2.下列各对数中,互为相反数的是()A.-2与12B.-2与−12C.2与−12D.12与−123.点A在数轴上的位置如图所示,则点A表示的数的相反数为()A.4B.−4C.14D.−144.−15的相反数是()A.−15B.15C.-5D.55.下列各组数中,互为相反数的是()A.43和−34B.13和−0.333C.a和−a D.14和46.-2的相反数是()A.-2B.-12C.2D.2或-27.−15的相反数是()A.15B.﹣5C.5D.125 8.2021的相反数是()A.12021B.−2021C.−12021D.|−2021|9.有理数−23的相反数是()A.32B.−32C.23D.−2310.−13的相反数是()A.3B.−3C.13D.±13二、填空题11.2022的相反数为.12.−14的相反数是 .13.若−35与x 互为相反数,则x = .14.若点A 、B 、C 、D 在数轴上的位置如图所示,则-3的相反数所对应的点是 .15.−2021的相反数是 .16.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是 .17.−12022的相反数是 . 18.已知3a - 4与-5互为相反数,则a 的值为 . 19.-2022的相反数是 .20. 若a+2的相反数是-5,则a=三、计算题21.化简下列各数:(1)+(﹣3); (2)﹣(+5); (3)﹣(﹣3.4); (4)﹣[+(﹣8)]; (5)﹣[﹣(﹣9)].22.化简下列各数.(1)-(+3.5) (2)-{-[+(- 23)]}四、解答题23.已知数轴上点 A 表示的数-1比6大,点 B 、 C 表示互为相反数的两个数,且点 C 与点 A间的距离为2,求 B 、 C 表示的数24.若x 的相反数是3,|y|=5,求x -y 的值. 25.已知3m+7与﹣10互为相反数,求m 的值.26.如图,点A .B 和线段MN 都在数轴上,点A .M 、N 、B 对应的数字分别为﹣1、0、2、11.线段MN 沿数轴的正方向以每秒1个单位的速度移动,移动时间为t 秒.(1)用含有t的代数式表示AM的长为.(2)当t=秒时,AM+BN=11.(3)若点A.B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t 的值,若不相等,请说明理由.答案1.B 2.D 3.B 4.B 5.C 6.C 7.A 8.B 9.C 10.C 11.-2022 12.14 13.35 14.A 15.2021 16.−2 17.12022 18.3 19.2022 20.321.(1)解: +(−3)=−3 (2)解: −(+5)=−5(3)解: −(−3.4)=3.4 (4)解: −[+(−8)]=−(−8)=8 (5)解: −[−(−9)]=−(+9)=−922.(1)解:原式=-3.5 (2)解:原式= −[−(−23)]=−(+23)=−23 23.解:因为点 A 表示的数比-1大6,所以点 A 表示的数是5, 因为点 C 与点 A 间的距离为2, 所以点 C 表示的数为3或7,因为点 B 、 C 表示互为相反的两个数,所以当点C 表示的数是3时,点B 表示的数为-3, 当点C 表示的数是7时,点B 表示的数为-7.24.解:∵x 的相反数为3, ∴x=-3,∵|y|=5,∴y=5或-5,∴x-y=-3-5=-8,或x-y=-3-(-5)=-3+5=2,所以,x-y 的值是-8或2.25.解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m 的值为126.(1)t+1(2)192(3)解:假设能相等,则点A 表示的数为2t ﹣1,M 表示的数为t ,N 表示的数为t+2,B 表示的数为11﹣t ,∴AM=|2t ﹣1﹣t|=|t ﹣1|,BN=|t+2﹣(11﹣t )|=|2t ﹣9|, ∵AM=BN ,∴|t ﹣1|=|2t ﹣9|,解得:t 1=103,t 2=8.故在运动的过程中AM 和BN 能相等,此时运动的时间为 103秒和8秒.。

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。

这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。

这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。

这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。

这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。

如果x = -5,请计算小明和小红的体重。

小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。

这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

相反数专项练习题有答案

相反数专项练习题有答案

相反数专项练习题有答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣83.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2 C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或12.a﹣b的相反数是()A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A .6 B.﹣6 C.0 D.﹣219.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A.a大于﹣a B.a小于﹣a C.a大于﹣a或a小于﹣a D.a不一定大于﹣a21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0 C.1 D.223.下列各数中,互为相反数的是()A.+(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)]24.已知2x+4与﹣x﹣8互为相反数,则x的值为()A. 4 B.﹣4 C.0 D.﹣825.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“”与“”表示一种法则:(ab)=﹣b,(ab)=﹣a,如(23)=﹣3,则(20102011)(20092008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣,8,,﹣,,﹣中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.41.如果一个数的相反数大于它本身,则这个数为_________数.42.若a=+,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C对应什么数?55.下列各数:2,,,﹣2,,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数a+b与a﹣b的积为﹣258.在数轴上表示下列各数:0,﹣,﹣3,+5,,及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为,求A点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小是多少(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数有几种移动方法(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A 17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A 25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(ab)=﹣b,(ab)=﹣a,∴(20102011)(20092008)=(﹣2011﹣2008)=201128.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和531.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣,8,,﹣,,﹣中,互为相反数的是﹣与.33.在数轴上,若点A,B互为相反数,并且这两点的距离为,则这两点所表示的数是,﹣.34.互为相反数在数轴上表示的点到原点的距离相等.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+,则﹣a=﹣;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3;的相反数是﹣;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为 2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,+(﹣)=0,+(﹣),∴互为相反数的有:2和﹣2,和﹣,和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.57.根据题意可得:若a+b和a﹣b互为相反数,则a+b+a﹣b=0,解得:a=0,又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣的相反数是,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,的相反数是﹣.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为,∴|2a|=,∴a=±,∵A>B,∴a>0,∴A、B两点所表示的数分别为:,﹣;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。

相反数专项练习60题(有答案)

相反数专项练习60题(有答案)

相反数专项练习60题(有答案)1.﹣2009的相反数是()A .2009 B.C.﹣D.﹣20092.下列化简,正确的是()A.﹣(﹣3)=﹣3 B.﹣[﹣(﹣10)]=﹣10 C.﹣(+5)=5 D.﹣[﹣(+8)]=﹣8 3.的相反数是()A .B.C.D.4.如果a+b=0,那么a与b之间的关系是()A .相等B.符号相同C.符号相反D.互为相反数5.一个数的相反数是最大的负整数,则这个数是()A .﹣1 B.1 C.0 D.±16.在数轴上将点A向右移动10个单位,得到它的相反数,则点A表示的数为()A .10 B.﹣10 C.﹣5 D.57.一个数在数轴上向右移动6个单位长度后得到它的相反数的对应点,则这个数的相反数是()A .﹣3 B.3 C.6 D.﹣68.下列说法正确的是()A.最大的负数是﹣1 B.数轴上9与11之间的有理数是10C.一个数不是负数就是正数D.互为相反数的两个数和为09.在数轴上表示数a的点在原点左侧,并且到原点的距离为2个单位,则数a的相反数是()A .﹣2 B.2 C.﹣D.10.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A .5或﹣5 B.或C.5或D.﹣5或A .a﹣b B.b﹣a C.﹣a﹣b D.不能确定13.一个数的相反数是非负数,那么这个数是()A .非正数B.正数C.零D.负数14.若m,n互为相反数,则下列结论不正确的是()A .m+n=0 B.m=﹣n C.|m|=|n| D.15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A .4 B.﹣4 C.8 D.﹣816.已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相反数.其中正确的个数是()A .1个B.2个C.3个D.4个17.一个数的相反数比它的本身小,则这个数是()A .正数B.负数C.正数和零D.负数和零18.3的相反数与﹣3的差是()A .6 B.﹣6 C.0 D.﹣219.a﹣2的相反数是()A .a+2 B.﹣a﹣2 C.﹣a+2 D.﹣|a﹣2|20.a代表有理数,那么,a和﹣a的大小关系是()A. a大于﹣a B. a小于﹣a C. a大于﹣a或a小于﹣a D.a不一定大于﹣a 21.a﹣b+c的相反数是()A .a﹣b﹣c B.﹣a﹣b+c C.b﹣a+c D.b﹣a﹣c22.设a是最小的正整数,b是最大的负整数,c的相反数等于它本身,则a﹣b+c的值是()A .﹣1 B.0 C.1 D.223.下列各数中,互为相反数的是()A. +(﹣9)和﹣(+9)B.﹣(﹣9)和+(+9)C.﹣(﹣9)和+(﹣9)D.﹣(﹣9)和﹣[+(﹣9)] 24.已知2x+4与﹣x﹣8互为相反数,则x的值为()25.如果2x+3的值与1﹣x的值互为相反数,那么x=()A .﹣6 B.6 C.﹣4 D.426.相反数等于它本身的数是_________.27.用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2010⇒2011)⇐(2009⇒2008)=_________.28.a的相反数是﹣(+2),则a=_________.29.如x=﹣9,则﹣x=_________;如果x<0,那么﹣3x_________0.30.在3×(_________)+5×(_________)=10的括号内分别填上一个数,使这两个数互为相反数.31.请任意写出一对相反数,并赋予它们实际意义:_________.32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是_________.33.在数轴上,若点A,B互为相反数,并且这两点的距离为6.2,则这两点所表示的数是_____,______.34.互为相反数在数轴上表示的点到_________的距离相等.35.已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=_________.36.如果两个数只有_____不同,那么我们称其中一个数为另外一个数的相反数.37.判断正误:(1)符号相反的数叫相反数;(_________)(2)数轴上原点两旁的数是相反数;(_________)(3)﹣(﹣3)的相反数是3;(_________)(4)﹣a一定是负数;(_________)(5)若两个数之和为0,则这两个数互为相反数;(_________)(6)若两个数互为相反数,则这两个数一定是一个正数一个负数.(_________)38.已知a、b互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=_________.39.下列说法:①若a、b互为相反数,则a+b=0;②若a+b=0,则a、b互为相反数;③若a、b互为相反数,则=﹣1;④若=﹣1,则a、b互为相反数.其中正确的结论是_________.40.如果a的相反数是最大的负整数,b的相反数是最小的正整数,则a+b=_________.42.若a=+3.2,则﹣a=_____;若a=﹣,则﹣a=__;若﹣a=1,则a=___;若﹣a=﹣2,则a=______.43.一个数a的相反数是非负数,那么这个数a与0的大小关系是a_________0.44.+3的相反数是_________;_________的相反数是﹣1.2;﹣1与_________互为相反数.45.若m,n互为相反数,则m﹣1+n=_________.46.一个数的相反数是最大的负整数,这个数是_________.47.已知有理数a,b在数轴上的位置如图所示,那么a,b,﹣a,﹣b的大小关系是_________.(用“>”连接)48.相反数>﹣3的自然数有_________.49.已知5a+7与此1﹣2a互为相反数,那么(7+3a)2008=_________.50.已知4﹣m与﹣1互为相反数,求m的值.51.数轴上A点表示+7,B、C两点所表示的数是相反数,且C点与A点的距离为2,求B点和C点各对应什么数?52.化简下列各数:(1)﹣(﹣100);(2)﹣(﹣5);(3)+(+);(4)+(﹣2.8);(5)﹣(﹣7);(6)﹣(+12).53.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是﹣2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在﹣2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度?54.数轴上A点表示﹣5,B,C两点所表示的数互为相反数,且点B到点A的距离为4,求点B和点C对应什么数?55.下列各数:2,0.5,,﹣2,1.5,﹣,﹣,互为相反数的有哪几对?56.a的相反数是2b+1,b的相反数是3,求a2+b2的值.57.如果a,b表示有理数,在什么条件下,a+b和a﹣b互为相反数?a+b与a﹣b的积为﹣2?58.在数轴上表示下列各数:0,﹣2.5,﹣3,+5,,4.5及它们的相反数.59.(1)若数轴上的点A和点B表示两个互为相反数的数,并且这两个数间的距离为8.4,求A点和B点表示的数是什么.(A>B)(2)数轴上如果A点表示的数是﹣5,A点与B点的距离是6,写出B点表示的数.(3)数轴上如果A点表示的数是a,A点与B点的距离是m,写出B点表示的数.60.如图,在数轴上有三点A、B、C,请据图回答下列问题:(1)将点B向左平移3个单位后,三个点所表示的数谁最小?是多少?(2)怎样移动A、B两个点中的一个,才能使这两点表示的数为互为相反数?有几种移动方法?(3)怎样移动A、B、C中的两个点,才能使三个点所表示的数相同,有几种移动方法?相反数专项练习60题参考答案:1.A2.B 3.D 4.D 5.B6.C7.A 8.D 9.B 10.D11.设这个数是a,则它的相反数是﹣a.根据题意,得|a﹣(﹣a)|=5,2a=±5,a=±.故选B12.根据相反数的定义,得a﹣b的相反数是﹣(a﹣b)=b﹣a.故选B.13.一个数的相反数是非负数,那么这个数是非正数.故选A14.由相反数的性质知:m+n=0,m=﹣n;由于相反数是一对符号相反,但绝对值相等的数,所以|m|=|n|;故A、B、C均成立;D中,由于0与0互为相反数,但是0作除数没有意义,所以D的情况不一定成立;故选D15.一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,即这个数和它的相反数在数轴上对应的点的距离是8个单位长度.且这两个点到原点的距离相等,这个点在原点的左侧,所以,这个数是﹣4.故选B.16.a表示负数时,①错误;a表示负数时,﹣a就是正数,②错误;a=0时既不是正数也不是负数,③错误;a与﹣a互为相反数,这是相反数的定义,④正确.所以只有一个正确.故选A17.根据相反数的定义,知一个数的相反数比它的本身小,则这个数是正数.故选A.18.3的相反数是﹣3,﹣3与﹣3的差即﹣3﹣(﹣3)=0.故选C19.根据相反数的定义,得a﹣2的相反数是﹣(a﹣2)=2﹣a.故选C.20.令a=0,A、a=﹣a,故本选项错误;B、a=﹣a,故本选项错误;C、a=﹣a,故本选项错误;D、a不一定大于﹣a,故本选项正确.故选D.21.a﹣b+c的相反数是﹣(a﹣b+c)=﹣a+b﹣c=b﹣a﹣c.故选D.22. ∵a是最小的正整数,∴a=1,又b是最大的负整数,∴b=﹣1,又c的相反数等于它本身,∴c=0,∴a﹣b+c=1﹣(﹣1)+0=2,故选D.23.A+(﹣9)=﹣9,﹣(+9)=﹣9,符号相同,故错误,B﹣(﹣9)=9,+(+9)=9,符号相同,故错误,C﹣(﹣9)=9,+(﹣9)=﹣9,符号不同,故正确,D﹣(﹣9)=9,﹣[+(﹣9)]=9,符号相同,故错误,故选C.24.∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A25.∵2x+3的值与1﹣x的值互为相反数,∴2x+3+1﹣x=0,∴x=﹣4.故选C26.相反数等于它本身的数是0.27.∵(a⇒b)=﹣b,(a⇐b)=﹣a,∴(2010⇒2011)⇐(2009⇒2008)=(﹣2011⇐﹣2008)=201128.a的相反数是﹣(+2),则a= 2 .29.如x=﹣9,则﹣x= 9 ;如果x<0,那么﹣3x >0.30.根据题意可设这两个数为x与﹣x,则有3x+5×(﹣x)=10,解得:x=﹣5,∴这两个数分别为﹣5和5 31.请任意写出一对相反数,并赋予它们实际意义:小刚向北走了50米,记作+50米,那么小刚向南走了50米,记作﹣50米,即+50和﹣50互为相反数..32.在有理数:﹣0.75,8,,﹣,,﹣0.125中,互为相反数的是﹣0.75与.35.∵a与b互为相反数,∴a=﹣b.∵b与c互为相反数,∴b=﹣c,∴a=﹣(﹣c)=c.∵c=﹣6,∴a=﹣6.故答案为:﹣636.如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数.37.(1)符号相反,绝对值相等的两个数叫互为相反数,故错误;(2)数轴上分别在原点两旁且到原点距离相等的两个数叫互为相反数,故错误;(3)﹣(﹣3)的相反数是﹣3,故错误;(4)当a=0时,﹣a=0,故﹣a不一定是负数,故错误;(5)若两个数之和为0,则这两个数互为相反数,故正确;(6)若两个数互为相反数,则这两个数可能都是0,故错误.故答案为×;×;×;×;√;×38.∵a、b互为相反数,∴a+b=0,∴a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b=(a+b)+2(a+b)+3(a+b)+…+50(a+b)=0.故答案为:039.①互为相反数的两个数的和为0,故本小题正确;②若a+b=0,则a、b互为相反数,故本小题正确;③当b=0时,无意义,故本小题错误;④若=﹣1,则a、b互为相反数,故本小题正确.故答案为:①②④.40.∵最大的负整数为﹣1,∴a的相反数为﹣1,则a=1,∵最小的正整数为1,∴b的相反数为1,则b=﹣1,则a+b=1+(﹣1)=0.41.负数的相反数是一个正数,大于它本身.故这个数是负数.故答案为:负42.若a=+3.2,则﹣a=﹣3.2;若a=﹣,则﹣a=;若﹣a=1,则a=﹣1;若﹣a=﹣2,则a=2.43.由题意得,﹣a≥0,∴a≤0.故答案为:≤44.+3的相反数是﹣3; 1.2的相反数是﹣1.2;﹣1与1互为相反数.45.由题意得:m﹣1+n=(m+n)﹣1=0﹣1=﹣1.故答案为:﹣146.一个数的相反数是最大的负整数,这个数是1.47.根据图形可知:|a|>|b|,a<0,b>0,∴﹣a>b>﹣b>a.48.>﹣3的自然数有﹣2,﹣1,0,1,2,3等无数个数,但相反数>﹣3的自然数则就只有三个了.因为这些数的相反数除0,1,2这三个外就都是负数了,都不符合题意.所以答案:0、1、2.49.∵5a+7与1﹣2a互为相反数,∴5a+7+1﹣2a=0,解得a=﹣.∴(7+3a)2008=(7﹣3×)2008=1.50.根据概念(﹣1)+(4﹣m)=0,解得m=3.51.∵A点表示+7,C点与A点的距离为2,∴C点对应数为+5或+9,又B、C两点所表示的数是相反数,∴当C点对应数+5时,B点对应数﹣5;当C点对应数+9时,B点对应数﹣9.52.(1)100;(2)5;(3);(4)﹣2.8;(5)7;(6)﹣1253.向右移动4个单位长度.正确画数轴为:54.∵数轴上A点表示﹣5,且点B到点A的距离为4,∴B点有两种可能﹣9或+1.又∵B,C两点所表示的数互为相反数,∴C点也有两种可能9或﹣1.故答案为:B:﹣9或+1;C:9或﹣1.55.由题意得:2+(﹣2)=0,0.5+(﹣)=0,1.5+(﹣),∴互为相反数的有:2和﹣2,0.5和﹣,1.5和﹣.56.∵a的相反数是2b+1,b的相反数是3,∴,解得.∴a2+b2=52+(﹣3)2=34.又a+b与a﹣b的积为﹣2,则(a+b)(a﹣b)=a2﹣b2=﹣2,故当b2比a2大2时,a+b与a﹣b的积为﹣2.故a=0时,a+b和a﹣b互为相反数,当b2比a2大2时a+b与a﹣b的积为﹣2.58.0的相反数是0,﹣2.5的相反数是2.5,﹣3的相反数是3,+5的相反数是﹣5,1的相反数是﹣1,4.5的相反数是﹣4.5.在数轴上可表示为:59.(1)设A点表示的数为a,则B点表示的数为﹣a,∵这两个数间的距离为8.4,∴|2a|=8.4,∴a=±4.2,∵A>B,∴a>0,∴A、B两点所表示的数分别为:4.2,﹣4.2;(2)设B点表示的数是b,则|﹣5﹣b|=6,解得b=﹣11或b=1,故B点表示的数为﹣11或1;(3)设B点表示的数是b,则|a﹣b|=m,故b=a±m,故B点表示的数为a+m或a﹣m.60.(1)将点B向左平移3个单位后,三个点所表示的数B最小,是﹣2﹣3=﹣5;(2)有两种移动方法:①A不动,B右移6个单位;②B不动,A右移6个单位;(3)有三种移动方法:①A不动,把B左移2个单位,C左移7个单位;②B不动,把A右移2个单位,C左移5个单位③C不动,把A右移7个单位,B右移5个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相反数练习
一. 选择题
1.下列说法中,正确的是( C )
A.一个数的相反数一定是负数 B .两个符号不同的数一定是相反数
C .相反数等于它本身的只有0
D .C 的相反数是3
2.下列各数中,互为相反数的共有( c )组
①18和-18; ②-(-1)和+(-1);③-(-2)和+(+2);④-(+1.5)和+(-1.5) A. 4 B. 3 C. 2 D. 1
3.下列说法正确的是( c )
A .符号不同的两个数互为相反数 B. 0. 37与37100
互为相反数 C .x 的相反数是-x D. + 1的相反数等于它本身
4.一个数的相反数小于原数,这个数是( A )
A .正数
B .负数 C.零 D. 正分数
5.某个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为1个单位长度,则 这个数是( C )
A. 18或-18
B. 14或-14
C. 12或-12
D. -1或1 6.下列叙述正确的是( C )
A .符号不同的两个数互为相反数 B.一个数的相反数一定是负数
C.324与2.75都是114
的相反数 D. 0没有相反数 7.下列各数互为倒数的是( C )
A. 0. 12和-8
B.5和-5
C.1和1
D.-132和+27
※8.若a 与
8b
(b ≠0)互为相反数,那么a 的倒数是( B ) A .-8b B.-8b C. 8b D. 8b 9.数轴上A 点表示+7, B 、C 两点表示的数互为相反数,且C 点与A 点的距离是2个单位 长度,则B 点所表示的数为( D )
A .±5 B.±9 C. 5或-9 D. - 5或-9
※10.若2x 与2-x 互为相反数,则x 等于( B )
A. 0 B .-2 C. 23 D.12
二.填空题
11. -(-10)的相反数是 -10.
12. -4.5和它的相反数之间,整数有 9 个.
13.如果-x=12,则x= -12
14.如果a=-13,那么-a=13
15.两个数互为相反数,在数轴上表示这两个数的点到原点的距离相等
16.比4的相反数还小2的数,这个数的相反数是6
※17. -9的相反数是9;3-x 的相反数是 X-3;若-〔-(x+y)〕是负数,则x+y <0.
18.如果-a=-9,那么-a 的相反数是9
19.a-1的相反数是6,则a 的值是 -5
※20.已知a 、b 互为相反数,则2a +2b +1=1.
三、解答题
21.化简多重符号.
(1)-(+5)=-5 (2) -(-5)=5
(3)+(-3.2)=-3.2 (4) -[-(-5)]=-5
(5)-{-〔-(-3.5)]}=3.5 (6) -﹛-〔+(- 4) ]}=-4
22.若2m 与m-1互为相反数,试求m 的值 ()3
1m 0
1-m m 21-m 2=
∴=+∴互为相反数
与m
※23. 已知a 和b 互为相反数,m 和n 互为倒数,c= -(+2),求2a+2b+mn c 的值。

()
()2
1-2
-102c
mn b a 2c
mn 222
-c 2-c 1
mn n m 0
a =+⨯=++=++∴=∴+==∴=+∴)(互为倒数
与互为相反数
与解:
b a b a b。

相关文档
最新文档