相反数的概念及应用经典练习题

合集下载

人教版数学七年级上册123《相反数》训练习题(有答案)

人教版数学七年级上册123《相反数》训练习题(有答案)

《相反数》基础训练知识点1(相反数的意义)1.[2021四川广元中考]﹣15的相反数是()A.﹣5B.5C.﹣15D.152.给出下列说法:①﹣2是相反数;②2是相反数;③﹣2是2的相反数;④﹣2和2互为相反数.其中正确的有()A.1个B.2个C.3个D.4个3.[2021贵州贵阳中考]在1,﹣1,3,﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣24.[2021河北唐山开平区期中]如图,表示互为相反数的点是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.[2021重庆北碚区兼善教育集团联考]若一个数的相反数比它本身大,则这个数一定是()A.正数B.整数C.负数D.非负数6.(1)若a与﹣2互为相反数,则a= ;(2)若a的相反数是12018,则a= .7.给出下列说法:①只有符号不同的两个数一定互为相反数;②一个数的相反数一定是负数;③若两个数互为相反数,则这两个数一定一正一负.其中正确说法的序号为.8.给出下列说法:①如果两个数互为相反数,则它们的相反数也互为相反数;②在任何一个数前面添加“﹣”号,就变成原数的相反数;③+115与﹣2.2互为相反数;④﹣19与0.1互为相反数.其中错误说法的序号是.9.若A、B两点表示的数互为相反数,且这两点相距8个单位长度,B在A的左边,在数轴上标出A、B两点,并指出A、B两点表示的数.知识点2(多重符号的化简)10.下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与45D.+(﹣0.01)与﹣(﹣1100)11.观察下列各对有理数:①﹣(﹣5)与﹣(+5);②0与0;③﹣(﹣12)与﹣(﹣2);④23与32;⑤﹣1与﹣(﹣1).其中互为相反数的有. (填序号)12.﹣(﹣13)的相反数是.13.化简下列各数:(1)﹣(﹣6);(2)﹣(﹢2.5);(3)﹢(﹢1.8);(4)﹢(﹣12)(5)﹢[﹣(﹢7)];(6)﹣[﹢(﹣1)] (7)﹣[﹣(﹣2)];(8)﹣{﹣[﹢(﹣3)]} 参考答案1.D【解析】15与﹣15只有符号不同,它们是一对相反数,所以﹣15的相反数是15故选D.2.B【解析】相反数是成对出现的,单独的一个数不能说是相反数,所以①②错误,③④正确.故选B.3.A【解析】在1,﹣1,3,﹣2这四个数中,1与﹣1只有符号不同,所以1与﹣1互为相反数.故选A.4.B【解析】观察题中数轴,可知点B表示的数是2,点C表示的数是﹣2,因为2与﹣2互为相反数,所以表示互为相反数的点是点B和点C.故选B.5.C【解析】正数的相反数是负数,所以正数的相反数小于它本身;0的相反数为0,所以0的相反数等于它本身;负数的相反数是正数,所以负数的相反数大于它本身.结合本题条件,可知这个数一定是负数.故选C.6. (1)2;(2)﹣1 20187.①【解析】①的说法符合互为相反数的概念,所以①正确;因为0的相反数是0,而0没有正负之分,所以②③都错误.8.④【解析】在①中,两个数互为相反数,则它们的相反数也满足仅有符号不同.所以它们的相反数也互为相反数,所以①正确;在②中,在任何一个数前面添加“﹣”号,得到的新数和原数仅有符号不同,满足互为相反数的概念,所以②正确;在③中,因为+115=+2.2,+2.2与﹣2.2互为相反数,所以115与﹣2.2互为相反数,所以③正确;在④中,因为0.1=110,﹣19与110不互为相反数,所以﹣19与0.1不互为相反数,所以④错误.9.【解析】因为A,B两点表示的数互为相反数,且这两点相距8个单位长度,所以A,B两点到原点的距离都是4,又数轴上B在A的左边,在数轴上标出A,B两点,如图所示:点4表示的数是4,点B表示的数是﹣4.10.D【解析】选项A,因为﹣(+7)=﹣7,+(﹣7)=﹣7,所以﹣(+7)=+(﹣7),因此﹣(+7)与+(﹣7)不互为相反数,所以A不符合题意;选项B,因为﹣(+0.5)=﹣0.5,所以﹣0.5与﹣(+0.5)不互为相反数,所以B不符合题意;选项C,因为45=0.8. 1.25与0.8不互为相反数,所以C不符合题意;选项D,因为+(﹣0.01)=﹣0.01,﹣(﹣1100)=0.01,﹣0.01与0.01互为相反数,所以D符合题意.故选D.11.①②⑤【解析】因为﹣(﹣5)=5,﹣(+5)=﹣5,5与﹣5互为相反数,所以﹣(﹣5)与﹣(+5)互为相反数;0的相反数是它本身;因为﹣(﹣12)=12,﹣(﹣2)=2,1 2与2不互为相反数,所以﹣(﹣12)与﹣(﹣2)不互为相反数;因为23与32是两个不同的正数,所以23与32不互为相反数;因为﹣(﹣1)=1,﹣1与1互为相反数,所以﹣1与﹣(﹣1)互为相反数.因此互为相反数的有①②⑤.12.﹣13【解析】因为﹣(﹣13)=13,13的相反数是﹣13,所以﹣(﹣13)的相反数是﹣1 3 .13.【解析】(1)﹣(﹣6)=6.(2)﹣(+2.5)=﹣2.5.(3)﹢(﹢1.8)=1.8.(4)+(﹣12)=﹣12⑸+[﹣(+7)]=﹣7.(6)﹣[+(﹣1)]=1.(7)﹣[﹣(﹣2)]=﹣2.(8)﹣{﹣[+(﹣3)]}=﹣3.《相反数》提升训练1.[2021河北保定十三中课时作业]给出下列各数:+(﹣10),﹣(+15),﹣(﹣7),﹣[+(﹣9)],:﹣[﹣(﹣20)].其中负数有()A.0个B.2个C.3个D.4个2.[2021江西师大附中课时作业]下列说法正确的是()A.正数和负数互为相反数B.a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数3.[2021吉林九中课时作业]下列说法正确的有()①π的相反数是﹣3.14;②符号相反的两个数互为相反数;③﹣(﹣3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个4.[2021重庆巴蜀中学课时作业]如果一个数在数轴:上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.52或﹣52C.5或﹣52D.﹣5或525.[2021湖北襄阳四中课时作业]如图,数轴上一动点;A向左移动2个单位长度到达点B,再向右移动5个;单位长度到达点C.若点C表示的数为1,则与点A 表示的数互为相反数的是();A.﹣7B.3C.﹣3D.26.[2021山西大同二中课时作业](1)若a=2.5,则﹣a= ;(2)若﹣a=14,则a= ;(3)若﹣(﹣a)=10,则﹣a= ;(4)若a=﹣(+5),则﹣a= .7.[2021陕西咸阳彩虹中学课时作业]数轴上点A表示﹣3,B,C两点所表示的数互为相反数,且点B与点A的距离为3,则点C所表示的数是.8.[2021江西吉安一中课时作业]如图,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,请在数轴上标出原点O的位置.9.[2021河南郑州五十七中课时作业]小明在做题时,画了一个数轴,在数轴上原有一点A其表示的数是﹣3,由于粗心,小明把数轴的原点标错了位置,使点A 正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?10.[2021安徽合肥三十八中课时作业]已知表示数a的点在数轴上的位置如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若数a与其相反数相距20个单位长度,则a的值是多少?(3)在(2)的条件下,若表示数6的点与表示数a的相反数的点相距5个单位长度,则6的值是多少?参考答案1.C【解析】因为+(﹣10)=﹣10,﹣(+15)=﹣15,﹣(﹣7)=7,﹣[+(﹣9)]=9,﹣[﹣(﹣20)]=﹣20,所以负数有3个.故选C.2.C【解析】选项A,正数和负数不一定互为相反数,如1与﹣2不互为相反数,所以A错误;选项B,a的相反数不一定是负数,如a表示负数,则它的相反数是正数,所以B错误;选项D,若﹣a表示正数,则它的相反数是负数,所以D 错误.故选C.3.A【解析】①π的相反数是﹣π,故①错误;②符号相反的两个数不一定互为相反数,如+2与﹣3不互为相反数,故②错误;③﹣(﹣3.8)=3.8,3.8的相反数是﹣3.8,故③错误;④0的相反数等于0,故④错误.因此正确的说法有0个.故选A.4.B【解析】52与﹣52在数轴上对应点的距离是5个单位长度,且它们互为相反数.故选B.5.D【解析】因为点C表示的数为1,所以点S表示的数为﹣4,所以点4表示的数为所以与点4表示的数互为相反数的是2.故选D.6.(1)﹣2.5;(2)﹣14;(3)﹣10;(4)5【解析】(1)因为a与﹣a互为相反数,a=2.5,所以﹣a=﹣2.5.(2)因为﹣a=14,所以a=﹣14(3)因为﹣(﹣a)=10,所以a=10,所以﹣a=﹣10.(4)因为a=﹣(+5)=﹣5,所以﹣a=5.7.0或6【解析】数轴上点A表示﹣3,点B与点A的距离为3,所以点B所表示的数是0或﹣6.因为B,C两点所表示的数互为相反数,所以点C所表示的数是0或6.8.【解析】(1)点B(2)点C(3)原点O的位置如图所示.9.【解析】由题意知,当原点标错时,点4所表示的数是3,当原点标正确时,点4表示的数是﹣3,所以应将原点向右移动6个单位长度.10.【解析】(1)如图所示.(2)因为数a与其相反数相距20个单位长度,所以表示数a与﹣a的点到原点的距离都等于10.因为a是负数,所以a的值是﹣10.(3)由(2)知a=﹣10,所以数a的相反数为10.当表示数b的点在表示10的点的左侧时,b的值为5;当表示数b的点在表示10的点的右侧时,b的值为15,所以b的值是5或15.《相反数》典型例题相反数是只有符号不同的两个数.(1)从数轴上看,表示互为相反数的两个点,它们分别在原点的两旁且与原点的距离相等.(2)相反数是成对出现的,不能单独存在.(3)“+a”和“-a”互为相反数.这里a可以是正数、负数、也可以是0.我们来看看相反数的两种题型:知识点一:相反数的概念【例1】(1)2(1)7--的相反数是;(2)如果- a=+(-80.5),那么a= .【分析】(1)因为2(1)7--=217,所以此题就是求217的相反数;(2)已知a的相反数求原数的问题.【解】(1)因为2(1)7--=217,所以2(1)7--的相反数是-217.(2)因为-a=+(-80.5)= -80.5,所以a=80.5.变式练习:写出下列各数的相反数:4.5,-3,0,35,58-,-0.03,+7.参考答案:-4.5,3,0,35-,58,0.03,-7.知识点二:利用相反数的概念简化数的符号【例2】化简下列各数:(1)-(+3)(2)-(-2)(3)-(a)(4)+(-a).【分析】在一个数前面加上“+”号,所得数还是原来的数;在一个数前面加上“-”号,表示求这个数的相反数.如:(1)题表示求+3的相反数;(2)、(3)题表示求-2和a的相反数;(4)题表示仍为-a自身.【解】(1)-(+3)= -3;(2)-(-2)=+2;(3)-(a)= -a;(4)+(-a)= -a. 【说明】所谓简化一个数的符号,就是把多重符号化成单一符号,结果是正号则可省略不写.变式练习:化简下列各数:-(-68),-(+0.75),-(35-),-(+3.8).参考答案:68,-0.75,35,-3.8.。

相反数(4种题型)-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

相反数(4种题型)-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

相反数(4种题型)【知识梳理】一、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称). (2)互为相反数的两数和为0.二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【考点剖析】题型一:相反数的代数意义例1.写出下列各数的相反数:16,-3,0,-12015,m,-n.解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0.解:-16,3,0,12015,-m,n.方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0.【变式1】相反数不大于它本身的数是( )A .正数B .负数C .非正数D .非负数【答案】D【详解】解:设这个数为a ,根据题意,有-a ≤a ,所以a ≥0.故选D .【变式2】若a ,b 互为相反数,则下列等式不一定成立的是( )A .1a b =−B .=−a bC .=−b aD .0a b +=【答案】A【分析】由题意直接根据相反数的定义和性质,进行分析即可得出答案.【详解】解:A. 1a b =−,注意b ≠0,此选项当选;B. =−a b ,此选项排除;C. =−b a ,此选项排除;D. 0a b +=,此选项排除.故选:A.【变式3】如果m 的相反数是最大的负整数,n 的相反数是它本身,则m n +的值为( )A .1B .0C .2D .-1【答案】A【分析】先根据相反数的定义确定、n 的值,再代入m +n ,计算即可求出其值.【详解】∵m 的相反数是最大的负整数,n 的相反数是它本身,∴m =1,n = 0,∴m +n =1+0=1,故A 选项是正确答案.【变式4】下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数【答案】B【详解】解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D.在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B.【变式5】已知+(﹣73)的相反数是x,﹣(+3)的相反数是y,z的相反数是z,求x+y+z的相反数.【答案】16 3−【分析】根据相反数的概念求出x,y,z的值,代入x+y+z即可得到结果.【详解】解:∵+(73−)的相反数是x,-(+3)的相反数是y,z相反数是z,∴x=73,y=3,z=0,∴x+y+z=73+3+0=163,∴x+y+z的相反数是163−.【变式6】5x+与–7互为相反数,求x的值.【答案】2.试题分析:根据相反数的意义得出(x+5)+(-7)=0,求出x即可.试题解析:解:∵x+5与-7互为相反数,∴(x+5)+(-7)=0,解得:x=2.题型二:相反数的几何意义例2. (1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A和点B A在点B的左侧,并且这两个数的距离是12.8,则A=______,B=______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A和点B分别表示互为相反数的两个数,∴原点到点A与点B的距离相等,∵A、B两点间的距离是12.8,∴原点到点A和点B的距离都等于6.4.∵点A 在点B的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【变式1】互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .【答案】5.5与-5.5【详解】解:设一个正数为x,则x-(-x)=11,解得,x=5.5,∴-x=-5.5,故答案为5.5和-5.5.题型三:相反数与数轴相结合的问题例3.如图,图中数轴(缺原点)的单位长度为1,点A、B表示的两数互为相反数,则点C所表示的数为( )A.2 B.-4 C.-1 D.0解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C所表示的数,同时牢记互为相反数的两个点到原点的距离相等.【变式1】结合数轴思考:0的相反数是_____.一个正数的相反数是一个___.一个负数的相反数是一个___.一个数的相反数是它本身的数是 ______.【答案】0 负数正数 0【变式2】如图,已知A,B,C,D四个点在数轴上.(1)若点A和点C表示的数互为相反数,则原点在点_____的位置;(2)若点B和点D表示的数互为相反数,则原点在点_____的位置;(3)若点B和点C表示的数互为相反数,请在数轴上表示出原点的位置.【答案】(1)B;(2)C;(3)见解析.【分析】(1)根据相反数的定义可求原点;(2)根据相反数的定义可求原点;(3)根据相反数的定义可求原点,再在数轴上表示出原点O的位置即可.【详解】(1)若点A和点C表示的数互为相反数,则原点为B;(2)若点B和点D表示的数互为相反数,则原点为C;(3)如图所示:题型四:化简多重符号例4.化简下列各数.(1)-(-8)=________; (2)-(+1518)=________; (3)-[-(+6)]=________; (4)+(+35)=________. 解:(1)-(-8)=8;(2)-(+1518)=-1518; (3)-[-(+6)]=-(-6)=6;(4)+(+35)=35. 【变式1】﹣(﹣6)的相反数是( )A .15B .13C .﹣6D .6【答案】C 【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C .【变式2】化简下列各数:③ -(-82) = ________ ②-|-5| = _______③()100−+−⎡⎤⎣⎦ = ________ ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦= ___________. 【答案】82 -5 100 135− 【分析】分别根据相反数的定义进行化简即可.【详解】解:①-(-82)=82,②-|-5|=-5,③()100−+−⎡⎤⎣⎦=100, ④135⎡⎤⎛⎫−−− ⎪⎢⎥⎝⎭⎣⎦=135−.故答案为:82,-5,100,135−.【过关检测】一、单选题 1.(2023·陕西榆林·统考二模)下列各数中,相反数是它本身的数是( )A .2−B .1−C .0D .1 【答案】C【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.(2023秋·山东滨州·七年级统考期末)若不为0的有理数a 与b 互为相反数,同学们化简a b +后得出了下列不同的结果:①2b −;②2a −;③2a ;④0.其中结果错误的个数为( )A .1B .2C .3D .4 【答案】C【分析】根据互为相反的两个数的和是0即可得到正确选项.【详解】解:∵不为0的有理数a 与b 互为相反数,∴0a b +=,∴①②③错误,④正确;故选C .【点睛】本题考查了相反数的定义和性质,熟记相反数的性质以及定义是解题的关键.3.(2023·河北唐山·统考二模)()3−+=( )A .3−B .3C .2−D .1 【答案】A【分析】根据相反数的定义解答即可.【详解】解:()33−+=−,故选:A .【点睛】本题考查了相反数的定义,知道“只有符号不同的两个数叫做互为相反数”是解题的关键. 4.(2023·浙江·七年级假期作业)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .2−B .0C .1D .4【答案】C【分析】首先确定原点位置,进而可得C 点对应的数.【详解】解:点A 、B 表示的数互为相反数, ∴原点在线段AB 的中点处,∴点C 对应的数是1.故选:C .【点睛】此题主要考查了数轴,关键是正确确定原点位置.5.(2023秋·江苏无锡·七年级统考期末)在()2.5−+,()2.5−−,()2.5+−,()2.5++中,正数的个数是( )A .1B .2C .3D .4 【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:()2.5 2.5−+=−Q ,()2.5 2.25−−=,()2.5 2.5+−=−,()2.5 2.5++=,∴正数的个数是2个,故选B .【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【答案】C【分析】根据只有符号不同的两个数互为相反数,0的相反数是0;即可解答.【详解】解:A 、0与0互为相反数,不符合题意;B 、12与0.5−互为相反数,不符合题意;C 、6与16互为倒数,不是相反数,符合题意;D 、a 与 –a 互为相反数,不符合题意;故选C .【点睛】本题考查了相反数,解决本题的关键是熟记相反数的定义. 7.(2023·浙江·七年级假期作业)下列说法中正确的个数为( )①符号不相同的两个数互为相反数;②一个数的相反数一定是负数;③两个相反数的和等于0;④若两个数互为相反数,则这两个数一定一正一负.A .1个B .2个C .3个D .4个【答案】A 【分析】根据相反数的定义和性质,逐一判断,即可.【详解】∵只有符合不同的两个数叫做相反数∴2+,1−不是相反数∴①错误;∵1−的相反数是1,∴②一个数的相反数一定是负数,错误;∵互为相反数的两个数,相加等于0,∴③两个相反数的和等于0,正确;∵0的相反数是0,∴④错误;∴正确的只有③.故选:A .【点睛】本题考查相反数的知识,解题的关键是掌握相反数的定义和性质.8.(2022秋·江苏南通·七年级校联考期末)有理数a b ,在数轴上的位置如图所示,则数a b a b −−,,,的大小关系为()A .a b b a −<−<<B .a b a b −<<<−C .a b b a −<<−<D .a b a b −<−<<【答案】C【分析】先根据相反数的意义把a −,b −在数轴上表示出来,然后根据数轴上右边的数比左边的数大即得答案. 【详解】解:由题意可得a b a b −−,,,在数轴上的位置如图所示:则a b a b −−,,,的大小关系为a b b a −<<−<, 故选:C【点睛】本题考查了相反数的意义、数轴以及有理数的大小比较,属于基础题型,掌握解答的方法是关键.【分析】根据0a b +=,结合数轴,即可求解.【详解】解:∵点A 、B 分别表示数a 、b ,且0a b +=,A 、B 两点间的距离为6,∴26b a a a a −=−−=−=∴3a =−,故选:C .【点睛】本题考查了求数轴上两点距离,相反数的意义,数形结合是解题的关键.10.(2022秋·云南红河·七年级校考阶段练习)如图,数轴上点A 、B 、C 、D 表示的数中,表示互为相反数的两个点是( )A .点B 和点C B .点A 和点C C .点B 和点D D .点A 和点D【答案】D【分析】一对相反数在数轴上的位置特点:分别在原点的左右两旁,并且到原点的距离相等.【详解】解:点A 和点D 分别在原点的左右两旁,到原点的距离相等,∴它们表示的两个数互为相反数.故选D .【点睛】本题主要考查一对相反数在数轴上的位置特点,灵活运用所学知识求解是解决本题的关键.二、填空题11.(2022秋·广东广州·七年级校考阶段练习)如果2a −=−,那么=a ________.【答案】2【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数化简即可.【详解】解:∵2a −=−,∴2a =,故答案为:2.【点睛】本题考查了相反数,解题的关键是掌握相反数的定义.【答案】1【分析】根据题意求得a 与b 的关系,c ,d 的值,代入代数式求值.【详解】∵a ,b 互为相反数,∴0a b +=,∵c 是最小的非负数,∴0c =,∵d 是最小的正整数,∴1d =.∴()0101a b d d c ++−=+−=.【点睛】本题主要考查互为相反数的定义,掌握相反数的定义是解题的关键.13.(2023·浙江·七年级假期作业)化简下列各数的符号:()1.3−−=______,()3−+−=⎡⎤⎣⎦______.【答案】 1.3 3【分析】根据相反数的性质,即可求解.【详解】解:()1.3 1.3−−=; ()()333−+−=−−=⎡⎤⎣⎦. 故答案为:1.3,3【点睛】本题考查了相反数,熟练掌握在一个数的前面加上负号就是这个数的相反数,在一个数的前面加上正号是原数是解题的关键. 14.(2023秋·福建泉州·七年级统考期末)已知有理数a 在数轴上的位置如图所示,则a−___________3.(填“>”、“<”或“=”)【答案】<【分析】结合数轴得出a 的符号,再根据相反数的定义即可得到a −的值.【详解】解:由数轴可知,1a −-2<< ,∴12a −<<,∴3a −<故答案:<.【点睛】本题主要考查相反数和数轴,根据数轴得到数的正负和比较大小是解题的关键.15.(2023·全国·七年级假期作业)如果4a −和2−互为相反数,那么=a ___________.【答案】6【分析】根据相反数的定义求解即可.【详解】∵4a −和2−互为相反数∴42a −=解得6a =故答案为6.【点睛】本题主要考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解题的关键.16.(2023·浙江·七年级假期作业)如图,数轴上点A 所表示的数的相反数是_________.【答案】3【分析】根据数轴得出A 点表示的数,根据相反数的定义即可求解.【详解】解:∵A 点表示的数为3−,∴数轴上点A 所表示的数的相反数是3,故答案为:3.【点睛】本题考查了相反数的定义,在数轴上表示有理数,数形结合是解题的关键.17.(2023·浙江·七年级假期作业)已知23x +与5−互为相反数,则x 等于______.【答案】1【分析】根据互为相反数的两个数的和为0列式计算即可.【详解】∵23x +与5−互为相反数,∴()2350x ++−=解得1x =.故答案为:1.0是解题的关键.【答案】 a b −− 12−/32−【分析】根据相反数的定义即可求解.【详解】解:a b +的相反数是()a b a b −+=−−,112⎛⎫−− ⎪⎝⎭的相反数是111122⎡⎤⎛⎫−−−=− ⎪⎢⎥⎝⎭⎣⎦, 故答案为:①a b −−,②112−.【点睛】本题考查求一个数的相反数,掌握相反数的定义是解题的关键.三、解答题【答案】(1)68(2)0.75−(3)35(4)3.6【分析】(1)先去括号,然后根据负号的个数为偶数个,即可化简求值;(2)先去括号,然后根据负号的个数为奇数个,即可化简求值;(3)先去括号,然后根据负号的个数为偶数个,即可化简求值;(4)先去括号,然后根据负号的个数为偶数个,即可化简求值.【详解】(1)解:()6868−−=; (2)解:()0.750.75−+=−; (3)解:3355⎛⎫−−=⎪⎝⎭;(4)解:()3.6 3.6⎡⎤−+−=⎣⎦. 【点睛】本题考查了多重符号化简,解题关键是掌握若一个数前有多重符号,则由该数前面的符号中“−”的个数来决定,即奇数个“−”符号则该数为负数,偶数个“−”符号,则该数为正数.20.(2021秋·陕西渭南·七年级统考阶段练习)在数轴上,点A 表示的数是23a +,点B 表示的数是4,若点A 、B 位于原点两侧且到原点的距离相等,求a 的值.【答案】2−【分析】根据原点两侧且到原点的距离相等对应的数是相反数,可得234a +=−,求出即可;【详解】解:因为点A 、B 位于原点两侧且到原点的距离相等,所以234a +=−,解得2a =−.【点睛】本题考查数轴上表示相反数的点的特征,位于原点两侧且到原点的距离相等,解题关键是判断出相反数的关系. 21.(2023·浙江·七年级假期作业)在一条不完整的数轴上有A 、B 两点,A 、B 表示的两个数a 、b 是一对相反数.(1)如果A 、B 之间的距离是3,写出a 、b 的值(2)有一点P 从B 向左移动5个单位,到达Q 点,如果Q 点表示的数是2−,写出a 、b 的值【答案】(1) 1.5a =−、 1.5b =;(2)3a =−,3b =【分析】(1)由相反数的定义及两点间的距离公式可得a 、b 的值;(2)求出OB 、OA 的长即可求出a 、b 的值.【详解】(1)∵点A 、B a ,()b a b <,且A 、B 之间的距离为3,∴ 1.5a =−、 1.5b =;(2)∵5BQ =,2O Q =, ∴3OB =,∴3OA =,∴3a =−,3b =【点睛】本题考查了数轴和相反数,关键是掌握只有符号不同的两个数叫做互为相反数.22.(2022秋·辽宁抚顺·七年级校考阶段练习)如图,一个单位长度表示2,解答下列问题:(1)若点B 点D 所表示的数互为相反数求点D 所表示的数;(2)若点A 与点B 所表示的数互为相反数,求点D 所表示的数;(3)若点B 与点F 所表示的数互为相反数,求点D 所表示的数的相反数,【答案】(1)4(2)9(3)2−【分析】(1)“B 与D 所表示的数互为相反数”由B 与D 之间有四个单位长度得点C 所表示的数是原点,由此得点D 表示的数为4.(2)方法同(1)可得点D 表示的数为5.(3)方法同(1)可得点D 表示的数为2,它的相反数为-2.【详解】(1)∵B 与D 所表示的数互为相反数,且B 与D 之间有4个单位长度,一个单位长度表示2, ∴可得点D 所表示的数为4;(2)∵A 与B 所表示的数互为相反数,且它们之间距离为2,则B 表示的数为1,一个单位长度表示2, ∴点D 表示的数为9;(3)∵B 与F 所表示的数互为相反数,B 、F 两点间距离为12,∴C 、D 中间的点为原点,∴D 表示的数为2,它的相反数为2−.【点睛】在答题中要注意数轴的一个单位长度是多少,同时要根据两点之间单位长度来确定点所表示的数字. 23.(2021秋·河南南阳·七年级校考阶段练习)数轴上有三个数A ,B ,C .写出,,,0,,,A B C A B C −−−,7个数的大小关系.【答案】0A C B B C A −−−<<<<<<【分析】如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,再利用数轴比较大小即可.【详解】解:如图,利用相反数的含义在数轴上分别描出,,A B C −−−对应的点,∴0A C B B C A −−−<<<<<<.【点睛】本题考查的是相反数的含义,利用数轴比较有理数的大小,掌握“利用相反数的含义在数轴上分别描出,,A B C −−−对应的点”是解本题的关键.【答案】3或3【分析】根据互为相反数的两数之和为0,互为倒数的两数之积为1,绝对值为2的数为2或2−,得到关系式,代入所求式子中计算即可求出值.【详解】∵a ,b 互为相反数,x ,y 互为倒数,c 的绝对值是2,∴0a b +=,1xy =,2c =或2c =−,当2c =时,121012333a b xy c ++−=+−=, 当2c =−时,125012333a b xy c ++−=++=, ∴代数式123a b xy c ++−的值为:13或53 【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握相反数、绝对值及倒数定义是解答本题的关键.【答案】(1)4−,2(2)2或10(3)2,6【分析】(1)根据相反数到原点的距离相等,即可得出点B 和点C 表示的数,再根据单位长度为1,即可解答;(2)当点B 为原点,则可得点A 和点D 表示的数,根据点M 到点A 的距离是点M 到点D 的距离的2倍,分为点M 在点A 和点D 之间和点M 在点D 的右边两种情况,进行分类讨论即可;(3)设经过t 秒后相遇,根据题意找出等量关系列出方程求解即可.【详解】(1)解:∵点B ,D 表示的数互为相反数,点B 和点D 距离4个单位长度,∴点B 和点D 距离原点2个单位长度,∴点B 表示2−,点D 表示2,∵点A 在点B 左边两个单位长度,∴点A 表示的数为:224−−=−,故答案为:4−,2.(2)∵点B 为原点,∴点A 表示2−,点D 表示4,①当点M 在点A 和点D 之间时:点M 到点A 的距离为:(2)2M M −−=+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:2M =,②当点M 在点D 右边时:点M 到点A 的距离为:(2)2M M −−+,点M 到点D 的距离为:4M −,∴()224M M +=−,解得:10M =,故答案为:2或10.(3)由图可知,点B 和点C 距离3个单位长度,设经过t 秒后相遇,∵B 、C 两点分别以2个单位长度/秒和0.5个单位长度/秒同时向右运动,∴()20.53t −=,解得:2t =,此时点P 表示的数为:2226+⨯=,故答案为:2,6.【点睛】本题主要考查了用数轴上的点表示数,解题的关键是掌握有理数和数轴上的点是一一对应的关系,根据题意进行分类讨论.【答案】(1)2−; (2)5;(3)B 点向左平移一个单位;(4)3,3−;(5)A 点移动到B 点右侧.【分析】(1)由图可知,A 点表示的数为1−,B 点表示的数2,所以将A点向左平移12个单位长度后,表示的数是32−; (2)B 点向右平移3个单位长度后,表示的数是5;(3)A 点的相反数是1,故B 点向左平移一个单位后表示的是为1,与A 点表示的数互为相反数;(4)根据两点间的距离公式可求A 和B 的距离,根据数轴的定义可知原点移到B 点,A 点表示的数;(5)根据数轴上右边的数大于左边的数即可得到答案.【详解】(1)解:13122−−=−,即表示的数是32−故答案为:32−; (2)解:235+=,即表示的数是5,故答案为:5;(3)解:A点的相反数是1,B∴点向左平移一个单位后与A点表示的数互为相反数,(4)解:()213−−=,即A点和B点相距3个单位长度,∴将图中数轴的原点移到B点,A点表示的数是3−,故答案为:3,3−;(5)解:A点表示的数永远都大于B点表示的数,即A点移动到B点右侧.【点睛】本题考查了数轴,相反数,熟练掌握数轴的相关知识是解题关键.。

1.2.3相反数知识梳理与同步练习人教版2024—2025学年七年级上册

1.2.3相反数知识梳理与同步练习人教版2024—2025学年七年级上册

1.2.3相反数知识梳理与同步练习人教版2024—2025学年七年级上册一、知识梳理1.正数的相反数是负数,负数的相反数是正数,零的相反数是零2.相反数是成对存在的,且每一对相反数是关于原点对称,且每一对相反数到原点的距离相等3.如果两个有理数a 和b 互为相反数,则一定有0b a =+,同时若两个有理数相加等于零即0b a =+,则a 和b 互为相反数。

如果两个有理数a 和b 互为倒数,则1b a =•4.相反数等于本身的数是0,倒数等于本身的数有1和-1。

5.多重符号的化简规则:一个正数前面不管前面有多少个“+”号,可以把正号都去掉,一个正数前面有偶数个“—”号,也可以把“—”号一起去掉,一个正数前面有奇数个“—”号,则化简符号后只会剩下一个“—”号。

结论:“+”的个数不影响化简结果,可以直接省略,一个正数前面有偶数个“—”,结果为正,有奇数个“—”,结果为负。

二、典型例题例1:2-的相反数_________,()3--的相反数_________例2:数轴上表示互为相反数的两个点,相互之间的距离为8,则这两个数为___ 例3:四个不相等的整数d ,c ,b ,a ,且d c b a <<<,它们的积9abcd =则=a _________,=b ________=c ________,=d _________。

例4:已知7m 3-和6m 2+-互为相反数,则这两个数分别为________ 例5:已知5n 6-与7-互为相反数,则=n ________例6:化简()[]=---100_________ ()[]{}=+---100_________ ()[]=-+-100_________ ()[]{}=-++-100_________ 例7:如下图,已知有理数a 、b 在数轴上的位置,请在下图标出a -,b -的位置,并利用数轴比较b ,b ,a ,a --的大小,并用“<”号把它们连接起来。

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。

这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。

这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。

这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。

这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。

如果x = -5,请计算小明和小红的体重。

小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。

这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

1.2 数轴、相反数和绝对值(二)-相反数(解析版)

1.2 数轴、相反数和绝对值(二)-相反数(解析版)

1.2数轴、相反数和绝对值(二)—相反数相反数的概念题型一:找一个数的相反数【例题1】(2021·安徽合肥市五十中学新校九年级二模)100的相反数是( ).A .100B .100-C .1100D .1100-【答案】B【分析】只有符号相反的两个数,互为相反数.所以100的相反数是-100.【详解】解:100的相反数是-100.故选:B .【点睛】本题考查了相反数的定义,解题时注意相反数与倒数,绝对值定义的区别.变式训练【变式1-1】(2021·合肥市第四十二中学九年级三模)2的相反数是( )A .2B .12C .2-D .12-【答案】C【分析】根据相反数的定义计算判断即可【详解】∵2的相反数是-2,故选C【点睛】本题考查了求一个数的相反数,准确理解相反数的定义是解题的关键.1【变式1-2】(2021·安徽池州市·九年级二模)与2021和为0的数是()A.-2021B.2021C.0D.1 2021【答案】A【分析】根据互为相反数的两个数的和为0解答即可.【详解】解:因为2021的相反数是-2021,故-2021与2021和为0.故选:A.【点睛】本题主要考查了有理数与相反数,熟记相反数的定义是解答本题的关键.【变式1-3】(2021·全国七年级专题练习)画出数轴,把下列各数及它们的相反数表示在数轴上,并将这些数按从小到大的顺序用“<”连接.2,0,-12,-3.【答案】数轴见解析,11 3202322-<-<-<<<<【分析】先求出各数的相反数,再在数轴上表示出来,根据数轴上的位置,用“<”连接即可.【详解】解:2的相反数是-2,0的相反数是0,-12的相反数是12,-3的相反数是3,在数轴是表示如图所示,用“<”连接如下:113202322-<-<-<<<<.【点睛】本题考查了相反数的意义和在数轴上表示数以及有理数的大小,解题关键是准确求出各数的相反数,在正确的在数轴上表示出来,利用数轴比较大小.题型二:判定两个数是否互为相反数【例题2】20.(2020·安徽蚌埠市·七年级月考)下面每组中的两个数互为相反数的是()A.-15和5B.-2. 5和212C.8和-(-8)D.13和0.333【答案】B【详解】只有符号不同的两个数是互为相反数,B项中212=2.5C选项中-(-8)=8;D选项中0.333=333 1000故B 项正确故选:B 变式训练【变式2-1】(2021·江苏苏州市·九年级专题练习)-1是1的( )A .倒数B .相反数C .绝对值D .相反数的绝对值【答案】B【分析】根据相反数的定义判断即可.【详解】解:-1是1的相反数,故选:B .【点睛】本题考查了相反数的定义,解题关键是理解相反数的定义,准确进行判断.【变式2-2】(2020·四川省自贡市贡井区成佳中学校七年级月考)下列各对数中,互为相反数的是( )A .()5+-与5-B .()5++与5-C .()5--与5D .5与()5++【答案】B【分析】依据相反数的概念求值,并要注意符号的变化.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【详解】解:A 、+(-5)=-5,选项不符合;B 、+(+5)=5,5与-5互为相反数,选项符合;C 、-(-5)=5,选项不符合;D 、+(+5)=5,选项不符合.故选:B .【点睛】此题主要考查相反数的概念及定义.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【变式2-3】(2021·河南三门峡市·七年级期末)在0和0,34和34-,13和3这三对数中,互为相反数的有( )A .3对B .2对C .1对D .0对【答案】B【分析】只有符号不同的两个数叫做互为相反数.【详解】互为相反数的是: 0和0,34和-34,共有2对,故选: B.【点睛】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.相反数的性质题型三:相反数的性质【例题3】(2019·安徽合肥市·七年级期末)若7-2x 和5 -x 的值互为相反数,则x 的值为( )A .4B .2C .92D .72【答案】A【分析】互为相反数,就是两数和为0,因此有:(7-2x )+(5-x )=0,解出即可.【详解】解:根据相反数的意义可得:(7-2x )+(5-x )=0,解得:x=4;故选:A .【点睛】此题主要考查了学生相反数的概念,并依此概念列出等量关系.变式训练【变式3-1】(2021·安徽九年级专题练习)若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =_____.【答案】2【分析】由互为相反数两数之和为0列出方程1﹣8x +9x ﹣3=0,求出方程的解即可得到结果.【详解】解:根据题意得:1﹣8x +9x ﹣3=0,移项合并得:x =2,故答案为2【变式3-2】(2019·安徽阜阳市·七年级期末)若2(a+3)的值与2互为相反数,则a 的值为______.【答案】-4【分析】根据相反数的意义,可得答案.【详解】由题意,得2(a+3)+2=0,解得a=-4,故答案为-4.【点睛】本题考查了相反数,利用相反数的意义是解题关键.2【变式3-3】(2020·南昌市心远中学七年级期中)若2m +的相反数是3,那么m -=_____.【答案】5【分析】根据相反数的概念求解即可.【详解】解:∵ 2m +的相反数是3,∴m+2+3=0∴m=﹣5,∴﹣m=5. 故答案为:5.【点睛】本题考查相反数的定义,解答本题需要熟练掌握相反数的概念.多重符合化简题型四:多重符合化简【例题4】(2020·临沂第十七中学七年级月考)化简下列各数:(1)1-(-2=________________; (2)-(+3.5)=_____________; (3)+(-4)=_______________;【答案】12-3.5 -4【分析】根据多重符号的化简规律进行化简即可.【详解】解:11-(-)=22,-(+3.5)=-3.5,+(-4)=-4;故答案为:12,-3.5,-4【点睛】本题考查符号的化简.化简符号的规律是:非0数的正负与前边的正号的个数无关,而与负号的个数有关,当有奇数个负号时,值是负数,当有偶数个负号时,值是正数.变式训练【变式4-1】(2020·宜昌市第九中学七年级期中)化简: ()3éù--+ëû =______; ()7éù+-+=ëû _______;-(-6)的相反数为___.【答案】3-7-6【分析】根据去多重括号的方法求解即可.3【详解】解:()3éù--+ëû=-(-3)=3;()7+(7)7éù+-+=-=-ëû∵-(-6)=6,6的相反数是-6,∴-(-6)的相反数是-6,故答案为:3;-7;-6.【点睛】本题考查了去多重括号及相反数,理解相反数的意义是解题关键.【变式4-2】(2019·安徽蚌埠市·七年级月考)-(-5)的相反数是_________.【答案】-5【分析】根据相反数的概念,只有符号不同的两数互为相反数,可直接判断.【详解】解:-(-5)的相反数是:[5---()]=-5 故答案为:-5【点睛】此题主要考查了相反数的概念,关键是明确相反数的特点:互为相反数是两数之间的关系,且只有符号不同的两数互为相反数.【变式4-3】(2020·上饶市广信区第七中学七年级期中)化简式子314éùæö-+-=ç÷êúèøëû_________.【答案】314【分析】根据有奇数个“−”号结果为负,有偶数个“−”号,结果为正解答.【详解】解:333(1(1)1444éù-+-=--=êúëû故答案为:314【点睛】本题考查的是相反数的概念,掌握求一个数的相反数的方法就是在这个数的前边添加“−”,有奇数个“−”号结果为负,有偶数个“−”号,结果为正是解题的关键.相反数与数轴的综合题型五:相反数与数轴的综合【例题5】(2021·山东淄博市·七年级期末)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C4表示的数互为相反数,则图中点B对应的数是()A.-1B.0C.1D.3【答案】C【分析】根据点A、C表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解.【详解】解:根据点A、C表示的数互为相反数,可得图中点D为数轴原点,,∴点B对应的数是1,故选:C.【点睛】本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.变式训练【变式5-1】(2020·广东广州市·七年级期中)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式5-2】(2020·浙江七年级期末)如图,已知四个有理数m,n,p,q在一条缺失了原点和刻度的数轴上对应的点分别为M,N,P,Q,且m与p是相反数,则在m,n,p,q四个有理数中,绝对值最小的一个是_________.【答案】q【分析】根据题意得到m与p化为相反数,且中点为坐标原点,即可找出绝对值最小的数.【详解】解:∵m与p是相反数,∴m+p=0,则原点在线段MP的中点处,∴绝对值最小的数是q,故答案为:q.【点睛】此题考查了有理数大小比较,数轴,以及绝对值,熟练掌握各自的性质是解本题的关键.【变式5-3】(2020·浙江七年级期末)如图,数轴的单位长度为1,点A,B表示的数互为相反数,若数轴上有一点C到点B的距离为8个单位,则点C表示的数是__________.【答案】11或-5【分析】由点A、B在数轴上的位置,点A,B表示的数互为相反数,可求出点A、B所表示的数,再利用数轴上两点之间的距离公式求出结果即可.【详解】解:由点A、B在数轴上的位置,得AB=6,∵点A,B表示的数互为相反数,∴点A表示的数为-3,点B表示的数为3,设点C表示的数为x,则|x-3|=8,解得x=11或-5.故答案为:11或-5.【点睛】本题考查数轴,掌握数轴上两点之间距离公式是正确解答的关键.【真题1】(2021·湖南中考真题)-2021的相反数是()A.2021B.-2021C.12020D.12020-【答案】A【分析】直接利用相反数的定义得出答案.【详解】解:-2021的相反数是:2021.故选:A.【点睛】本题主要考查了相反数,正确掌握相关定义是解题关键.【真题2】(2021·吉林长春市·中考真题)()2--的值为()A.2-B.2C.12-D.12【答案】B【分析】根据相反数概念求解即可.【详解】化简多重负号,就看负号的个数,此时有两个符号,偶数个则为正,故选:B.【点睛】本题考查了多重负号的化简问题,掌握基本法则是解题关键.【真题3】(2018·辽宁本溪市·中考真题)如果a与1互为相反数,则|a+2|等于()A.2B.-2C.1D.-1【答案】C【分析】由相反数的定义得出a的值,再带入代数式中即可求解.【详解】由a与1互为相反数,得a+1=0,即a=-1,故|a+2|=|-1+2|=1.故选C【点睛】此题考查了相反数的定义,熟知相反数的定义是解决此题的关键.【真题4】(2020·湖南郴州市·中考真题)如图表示互为相反数的两个点是()A.点A与点B B.点A与点D C.点C与点B D.点C与点D【答案】B【分析】根据一个数的相反数定义求解即可.【详解】解:在-3,-1,2,3中,3和-3互为相反数,则点A与点D表示互为相反数的两个点.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.【拓展1】(2020·浙江七年级单元测试)如图,在单位长度是1的数轴上,点A和点C所表示的两个数互为相反数,则点B表示的数是______.【答案】﹣2【分析】根据图示,点A和点C之间的距离是6,据此求出点C表示的数,即可求得点B表示的数.【详解】∵点A和点C所表示的两个数互为相反数,点A和点C之间的距离是6∴点C表示的数是﹣3,∵点B与点C之间的距离是1,且点B在点C右侧,∴点B表示的数是﹣2故答案为﹣2【点睛】本题为考查数轴和相反数的综合题,稍有难度,根据题意认真分析,熟练掌握数轴和相反数的相关知识点是解答本题的关键.【拓展2】(2018·云南大理白族自治州·七年级期中)已知数轴上有两点A和B,它们对应的数分别为-6,5.点P为数轴上一动点,其对应的数为m.(1)若点P到点A和点B的距离相等求出点P对应的数M的值.(2)数轴上是否存在点P,使点P到点A和点P到点B的距离之和为15?若存在,请直接写出M的值,若不存在,请说明理由.【答案】(1)-0.5;(2)存在M为-8或7.【解析】试题分析:(1)由题意可得|-6-M|=|5-M|,解出M的值即可;(2)假设M存在,由题意可得|M-(-6)|+|M-5|=15,对M的范围进行分类讨论,求出M的值.试题解析:(1)由题意得:|-6-M|=|5-M|,解得M=-0.5;(2)假设M存在,由题意得:|M-(-6)|+|M-5|=15,即|M+6|+|M-5|=15,①M<-6时,|M+6|+|M-5|=-M-6-M+5=-2M-1=15,解得M=-8;②-6≤M≤5时,|M+6|+|M-5|=M+6-M+5=11,M无解;③M>5时,|M+6|+|M-5|=M+6+M-5=2M+1=15,M=7.所以存在M为-8或7.点睛:若数轴上两个点表示的数分别为a、b,那么这两个点的距离为|a-b|.。

2024年七年级数学(新版)专题 相反数(知识讲解)

2024年七年级数学(新版)专题 相反数(知识讲解)

2024年七年级数学(新版)专题《相反数》【学习目标】1.理解相反数的概念;2.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;3.掌握多重符号的化简;4.通过数形结合思想数轴上表示一个数的相反数.【要点梳理】要点一、相反数概念1.定义:只有符号不同的两个数互为相反数;0的相反数是0.(或若两个有理数a、b 的和为0,则这两个数互为相反数,即a+b=0,则a、b 互为相反数)。

特别说明:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点二、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4.特别说明:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5.(2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】【知识点一】相反数的定义例1.判断下列说法是否正确:(1)3-是相反数;(2)3+是相反数;(3)3是3-的相反数;(4)3-与3+互为相反数.【答案】(1)不正确;(2)不正确;(3)正确;(4)正确.【分析】根据相反数的定义“只有符号不同的两个数互为相反数”即可判断.解:相反数是针对两个数来定义的,故(1)、(2)均错误;3是-3的相反数,(3)正确;-3与+3互为相反数,(4)正确;故答案为:(1)不正确;(2)不正确;(3)正确;(4)正确.【点拨】本题考查相反数的定义,属于基本概念题,熟练掌握相反数的定义是解决本题的关键.举一反三.【变式1】求出下列各数,并在数轴上把它们表示出来:(1)3的相反数;(2)2-的相反数;(3)112-的相反数的相反数;(4)0的相反数.【答案】(1)3-,在数轴上表示见分析;(2)2,在数轴上表示见分析;(3)112-,在数轴上表示见分析;(4)0,在数轴上表示见分析.【分析】各小题先根据相反数的概念分别求出相反数,再画出数轴.解:(1)3的相反数为-3;数-3在数轴上表示为:(2)-2的相反数为2;数2在数轴上表示为:(3)112-的相反数的相反数为112-,;数112-在数轴上表示为:(4)0的相反数为0;数0在数轴上表示为:【点评】本题考查了相反数的概念和数轴,熟记相反数的概念是解题的关键.【变式2】如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示-4,点G表示8(1)点D表示的有理数是______;表示原点的是点_______.(2)与点B表示的有理数互为相反数的点是________.(3)图中的数轴上另有点M到点A、点G距离之和为14,则这样的点M表示的有理数是_______.【答案】(1)2,C;(2)D;(3)-5或9.【分析】(1)求出数轴上A G、两点的距离,再根据相邻两点之间的距离都相等,且A与G之间间隔为6段,即可求出每段的长度,由此即可求出D点表示的有理数和表示原点的点;(2)由B点与A点间隔为1段,即可求出B点表示的有理数,从而可求出它的相反数的值,进而即可得到与点B表示的有理数互为相反数的点;(3)设M表示的数是x,则分类讨论①当M在A的左边时;②由1214AB=<,M不可能在A、G之间;③当M在G的右侧时,再根据数轴上两点的距离的求法,可列出关于x的等式,求出x即可.解:(1)∵A表示-4,点G表示8,AG=--=.∴8(4)12∵相邻两点之间的距离都相等,A与G之间间隔为6段,∴相邻两点之间的距离为1262÷=.∵D点与A点间隔为3段,=-+⨯=.∴D点表示的有理数是4232-+⨯=,∵4220∴表示原点的点与A点间隔为2段,∴表示原点的是点C;故答案为:2,C.(2)∵B点与A点间隔为1段,∴B点表示的有理数是4212=-+⨯=-.∵-2的相反数是2,-+⨯=,又∵4232∴与点B表示的有理数互为相反数的点与A点的间隔为3段,∴与点B表示的有理数互为相反数的点为D点;故答案为:D .(3)设M 表示的数是x ,分类讨论①当M 在A 的左边时,有()4814x x --+-=,解得:5x =-;②∵1214AB =<,∴M 不可能在A 、G 之间.③当M 在G 的右侧时,有()()4814x x ++-=,解得:9x =;综上,可知M 点表示-5或9.故答案为:-5或9.【点拨】本题考查了数轴上的点与有理数的关系问题,相反数.建立分类讨论的数学思想是解题关键.【知识点二】判断是否互为相反数例2.有理数:13-,2-,12-,2(1)将上面各数在数轴上表示出来,并把这些数用“<“连接.(2)在上面的数中是否有相反数?若有,请写出来.【答案】(1)作图见分析,112223-<-<-<;(2)有相反数,2-、2互为相反数【分析】(1)根据数轴的性质作图,即可得到答案;(2)根据数轴和相反数的性质分析,即可得到答案.解:(1)数轴表示如下:112223-<-<-<;(2)根据(1)的结论,得2-、2到原点的距离相等,符号相反∴2-、2互为相反数.【点拨】本题考查了有理数的知识;解题的关键是熟练掌握数轴、有理数大小比较、相反数的性质,从而完成求解.举一反三.【变式1】用尺子画出数轴并回答:(1)把下列各数表示在数轴上:11,0,2,4,2.52--;(2)上述数中互为相反数的一组数是,它们之间有个单位长度,它们关于对称.【答案】(1)见分析;(2)122-与2.5;5;原点【分析】(1)先画出数轴,注意数轴的三要素,再根据在数轴上表示数的方法,在数轴上表示出所给的各数即可;(2)根据相反数的定义,绝对值相同,符号不同的两个数互为相反数;互为相反数的两个数到原点的距离相等,再利用数轴上两点之间的距离,求出两数之间的距离即可.解:(1)如图所示,;(2)结合数轴,根据相反数的定义可知,数122-与数2.5互为相反数;两点之间的距离为5;它们关于原点对称,故答案为:122-与2.5;5;原点.【点拨】本题考查了在数轴上表示数的方法,数轴的特征,相反数的定义等知识,此为基础知识,要熟练掌握.【变式2】在数轴上把下列各数表示出来:|-3.5|、-3.5、0、2、-0.5、-213、12、73,并按从小到大的顺序用“<”号连接起来,再找出哪些数互为相反数.【答案】见分析,-3.5<-213<-0.5<0<12<2<73<|-3.5|【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来;最后找出哪些数互为相反数即可.解:|-3.5|=3.5,﹣3.5<﹣213<﹣0.5<0<12<2<73<3.5,﹣3.5与3.5,﹣0.5与12互为相反数.【点拨】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【知识点三】化简多重符号例3.填空:①+(﹣2)=_____;②﹣(﹣317)=_____;③﹣(+4.3)=_____;④+(+5.2)=_____;⑤﹣[﹣(﹣213)]=_____;⑥﹣[﹣(+1)]=_____.观察以上结果,总结以下规律:正数的相反数是_____,负数的相反数是_____,一个数的相反数的相反数是_____.【答案】①-2;②137;③-4.3;④5.2;⑤123-;⑥1;负数;正数;这个数.【分析】根据相反数多重符号化简规则进行化简即可解:①+(﹣2)=__-2___;②﹣(﹣317)=_137____;③﹣(+4.3)=_-4.3____;④+(+5.2)=__5.2___;⑤﹣[﹣(﹣213)]=_123-____;⑥﹣[﹣(+1)]=_1____.观察以上结果,总结以下规律:正数的相反数是__负数___,负数的相反数是__正数___,一个数的相反数的相反数是__这个数___.故答案为:①-2;②137;③-4.3;④5.2;⑤123-;⑥1;负数;正数;这个数.【点拨】本题考查相反数的多重符号化简,掌握相反数的多重符号化简规则,一个数前面有多重符号,正号直接省略,负号看个数,奇数个负号结果为负,偶数个负号结果为正是解题关键.举一反三.【变式1】﹣{﹣[+(﹣2 3)]}.【答案】﹣2 3.【分析】根据相反数符号化简即可得解.解:﹣{﹣[+(﹣23)]}.=+(﹣23),=﹣23.【点拨】本题考查相反数符号化简,掌握相反数的符号法则是解题关键.【变式2】若0a <,化简{[()]}a --+-,再确定它的符号.【答案】a -,符号为正【分析】直接利用去括号法则进而化简得出答案.解:{[()]}()a a a --+-=+-=-,因为0a <,则0a ->,即它的符号为正.【点拨】此题主要考查了相反数,正确掌握去括号法则是解题关键.【知识点四】相反数的应用例3.如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.(1)若点A 和点C 表示的数互为相反数,则原点为;(2)若点B 和点D 表示的数互为相反数,则原点为;(3)若点A 和点D 表示的数互为相反数,则在数轴上表示出原点O 的位置.【答案】(1)B ;(2)C ;(3)见分析【分析】(1)(2)根据相反数的定义可求原点;(3)根据相反数的定义可求原点,再在数轴上表示出原点O 的位置即可.解:(1)若点A 和点C 表示的数互为相反数,则原点为B ;(2)若点B 和点D 表示的数互为相反数,则原点为C ;(3)如图所示:故答案为:B ;C .举一反三.【变式1】已知41a -与(14)a -+互为相反数,求a 的值.【答案】5【分析】根据互为相反数的两个数之和为0,得出方程,解出a 即可.解:由题意得()()41140⎡⎤-+-+=⎣⎦a a 化简得3150-=a 解得5a =所以a 的值为5.【点拨】本题考查相反数的性质,根据性质列出方程是关键.【变式2】已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?<-<<-;(2)-8;(3)4【答案】(1)数轴见分析,b a a b【分析】(1)根据相反数的定义作图,再根据数轴右边的数大于左边的数排列即可;(2)先得到b表示的点到原点的距离为8,然后根据数轴表示数的方法即可确定b表示的数;(3)先得到-b表示的点到原点的距离为8,再利用数a表示的点与数的相反数表示的点相距4个单位长度,则a表示的点到原点的距离为4,然后根据数轴表示数的方法确定a 表示的数.解:(1)a,b的相反数的位置表示如图:<-<<-;∴b a a b(2)∵数b与其相反数相距16个单位长度,则b表示的点到原点的距离为8∴b表示的数是-8;(3)∵-b表示的点到原点的距离为8,而数a表示的点与数b的相反数表示的点相距4个单位长度∴a表示的点到原点的距离为8-4=4∴a表示的数是4.【点拨】本题考查了相反数和数轴的应用,灵活应用相反数的定义和数形结合思想是解答本题的关键.。

相反数的练习题

相反数的练习题

相反数的练习题相反数是数学中一个基本的概念,它与数轴上的正负数有着密切的关系。

通过练习相反数的题目,我们可以更好地理解这个概念,并培养我们的计算能力和逻辑思维。

下面,我将给大家提供一些有趣的相反数练习题,希望能帮助大家更好地掌握这个概念。

1. 假设有一个数a,它的相反数是-12,那么a是多少?解析:根据相反数的定义,一个数的相反数是指与它的绝对值相等但符号相反的数。

所以,如果相反数是-12,那么原数a的绝对值就是12,而符号是与相反数相反的,即正号。

因此,a=12。

2. 如果一个数的相反数是它的2倍,那么这个数是多少?解析:设这个数为x,根据题意,它的相反数是-2x。

根据相反数的定义,-2x 的绝对值是2x,而符号是与原数相反的,即负号。

所以,-2x=-2x,解方程可得x=0。

因此,这个数是0。

3. 如果一个数的相反数是它的3倍,那么这个数是多少?解析:设这个数为y,根据题意,它的相反数是-3y。

根据相反数的定义,-3y 的绝对值是3y,而符号是与原数相反的,即负号。

所以,-3y=-3y,解方程可得y=0。

因此,这个数是0。

4. 如果一个数的相反数是它的一半,那么这个数是多少?解析:设这个数为z,根据题意,它的相反数是-z/2。

根据相反数的定义,-z/2的绝对值是z/2,而符号是与原数相反的,即负号。

所以,-z/2=-z/2,解方程可得z=0。

因此,这个数是0。

通过以上的练习题,我们可以看到,相反数与原数之间有着特定的关系。

无论原数是正数还是负数,它们的相反数的绝对值都是相等的,只是符号相反。

这个规律对于我们进行数学运算和解方程非常重要。

除了进行基本的计算外,我们还可以通过相反数的练习题来培养我们的逻辑思维能力。

在解题过程中,我们需要根据相反数的定义,运用数学知识进行推理和计算。

这样的练习不仅可以提高我们的计算能力,还可以培养我们的逻辑思维和问题解决能力。

此外,相反数还有一些有趣的性质。

例如,任何一个数与它的相反数相加,结果都是0。

绝对值与相反数知识点以及专项训练(含答案解析)

绝对值与相反数知识点以及专项训练(含答案解析)

绝对值与相反数知识点以及专项训练知识点1:相反数的概念1. 定义:两个数相加和等于0,那么这两个数就互为相反数。

比如:a +b =0,a 、b 互为相反数。

换句话说:如果两个数只有符号不同,那么称其中的一个数为另一个数的相反数.特别地,0的相反数是0.举例:5的相反数是-5;-3的相反数是3; 2. 互为相反数的两个数在数轴上的位置关系:互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).知识点2:简单的多重符号的化简(只涉及到正、负号)多重符号的化简我们只需要看这个数前面有多少个“负号”。

① 如果有奇数个负号,那么化简后的结果:只需要在这个数的前面加一个负号即可;举例:-[-(-5)]=-5 ; -{-[-(+3)]}=-3.② 如果有偶数个负号,那么化简后的结果:就是这个数。

举例:+[-(-9)]=9 ; -{-[-(-10)]}=10.知识点3:绝对值1. 定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

比如:5的绝对值是5;-3的绝对值是3;0的绝对值是0. 记作: |5|=5; |-3|=3; |0|=0. 2. 绝对值的代数意义:如何去掉绝对值: 判断该数是非正数还是非负数;非负数的绝对值是它本身;|a |=a ↔a ≥0 非正数的绝对值是它本身的相反数;|a |=−a ↔a ≤0若是代数式则需要进行分类讨论判断正、负数。

3. 绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. 4. 绝对值的性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.(0)||0(0)(0)aa a a a a >⎧⎪==⎨⎪-<⎩知识点4:含有绝对值的多重符号的化简含有绝对值的多重符号的化简,我们只需要看绝对值前面有多少个“负号”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

祖π数学
新人教 七年级上册
之精讲精练 1
【知识点1】相反数的概念
知识要点:(1)只有 不同的两个数互为相反数.如:1与 互为相反数.
(2)在任意一个数的前面添上 ,新的数就表示原数的相反数,即a 的相反数是 .
(3)一个正数的相反数是 ,一个负数的相反数是 ,0的相反数是 .
【典型例题】
1.下列说法:①-6是相反数;②6是相反数;③-6是6的相反数;④-6和6互为相反数.其中正确的有( )
A .1个
B .2个
C .3个
D .4个
2.若一个数的相反数是3,则这个数是( )
A .-13
B 13
C .-3
D .3 3.下列说法中正确的是( )
A .一个数的相反数是负数
B .0没有相反数
C .只有一个数的相反数等于它本身
D .表示相反数的两个点,可以在原点的同一侧
4.下列判断正确的是( )
A .符号不同的两个数互为相反数
B .互为相反数的两个数一定是一正一负
C .相反数等于本身的数只有零
D .互为相反数的两个数的符号一定不同
5.-5的相反数是 ;-(-8)的相反数是 ;0的相反数是 ; a 的相反数是 ;的相反数是_ _; -的相反数是_ _ .
6.如图,数轴上有A 、B 、C 、D 四个点,其中表示互为相反数的点是 .
7.在数轴上离原点距离5个单位的所有点的数之和是______;离原点距离100个单位的所有点的数之和是_ _____.
8.若a -2与-7互为相反数,则a 的值为 ;当n= 时,2n-3与n-9互为相反数.
9.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:
-1.5,-534,+225
,-2.8,7,+5.5.。

相关文档
最新文档