信号与系统(三)01

合集下载

信号与系统第三章PPT课件

信号与系统第三章PPT课件
③ 在任何单个周期内,只有有限个第一类间断点, 且在间断点上的函数值为有限值。
.
它们都是傅里叶级数收敛的充分条件。相当广泛的 信号都能满足Dirichlet条件,因而用傅里叶级数表 示周期信号具有相当的普遍适用性。
几个不满足Dirichlet条件的信号
.
三.Gibbs现象 满足 Dirichlet 条件的信号,其傅里叶级数是如
• “非周期信号都可以用正弦信号的加权积分来 表示”——傅里叶的第二个主要论点
.
傅立叶分析方法的历史
古巴比伦人 “三角函数和” 描述周期性过程、预测天体运

1748年 欧拉 振动弦的形状是振荡模的线性组合
1753年 D·伯努利 弦的实际运动可用标准振荡模的线性组合来表示
1759年 拉格朗日 不能用三角级数来表示具有间断点的函数
x[k]h[nk]
x[k]h[n k]
k
.
对时域的任何一个信号 x ( t ) 或者 x ( n ) ,若能将其
表示为下列形式: x(t) a 1 es1 t a 2 es2 t a 3 es3 t
由于 es1t H(s1)es1t
es2t H(s2)es2t
es3t H(s3)es3t
利用齐次性与可加性,有
k
例: y(t)x(t3) ❖ 系统输入为 x(t) ej2t
系统 H(s) ? y(t) ?
H(s) h(t)estdt
❖ 系统输入为 x(t)cos(4t)cos(7t)
系统 y(t) ?
.
*问题:究竟有多大范围的信号可以用复指数信号的 线性组合来表示?
.
3.3 连续时间周期信号的傅里叶级数表示
第k次谐波 e jk 0t 的周期为

郑君里《信号与系统》(第3版)(上册)(课后习题 傅里叶变换)【圣才出品】

郑君里《信号与系统》(第3版)(上册)(课后习题 傅里叶变换)【圣才出品】

第3章 傅里叶变换3-1 求图3-1所示对称周期矩形信号的傅里叶级数(三角形式与指数形式)。

图3-1解:(1)三角形式由图3-1可知,f(t)为奇函数,故有所以三角形式的傅里叶级数为。

(2)指数形式因所以指数形式的傅里叶级数为。

3-2 周期矩形信号如图3-2所示。

若:重复频率f=5kHz脉宽τ=20μs幅度E=10V求直流分量大小以及基波、二次和三次谐波的有效值。

图3-2解:由图3-2可知,f(x)为偶函数,且f=5kHz,得:所以直流分量为1V基波分量为1sin() 1.3910Vπ=≈二次谐波为2sin( 1.325Vπ=≈三次谐波为。

33sin() 1.2110V π=≈3-3 若周期矩形信号f 1(t )和f 2(t )波形如图3-2所示,f 1(t )的参数为τ=0.5μs,T=1μs,E=1V ;f 2(t )的参数为τ=1.5μs,T=3μs,E=3V ,分别求:(1)f 1(t )的谱线间隔和带宽(第一零点位置)频率单位以kHz 表示;(2)f 2(t )的谱线间隔和带宽;(3)f 1(t )与f 2(t )的基波幅度之比;(4)f 1(t )基波与f 2(t )三次谐波幅度之比。

解:由题3-2的结论可知,f(t)的傅里叶级数可表示为其中,。

(1)f 1(t )的谱线间隔,则带宽:。

(2)f 2(t )的谱线间隔带宽:。

(3)由题3-2可知,所以f 1(t )的基波幅度为:f 2(t )的基波幅度为:故。

(4)的三次谐波幅度为:故。

3-4 求图3-3所示周期三角信号的傅里叶级数并画出频谱图。

图3-3解:由图3-3可知,f(t)为偶函数,故。

bn所以的傅里叶级数可表示为()f t其幅度谱如图3-4所示。

图3-43-5 求图3-5所示半波余弦信号的傅里叶级数。

若E=10V ,f=10kHz ,大致画出幅度谱。

图3-5解:由图3-5可知,f(t)为偶函数,因而b n =0,();所以其傅里叶级数可表示为若E=10V ,,则幅度谱如图3-6所示。

信号与系统 梁风梅主编 电子工业出版社 ppt第三章答案

信号与系统  梁风梅主编   电子工业出版社 ppt第三章答案

习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。

(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。

解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。

解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。

信号与系统第三章

信号与系统第三章
T1 t0
1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0


t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n

jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)

信号与系统-课件-(第三版)郑君里-PPT课件

信号与系统-课件-(第三版)郑君里-PPT课件

Example
f( t) f( t)
A … … 2 4 6 k
- T
T 2
o
T 2 - A
T
t
- 4 - 2 0
Periodic Signal
School of Computer Science and Information
3. Continuous-time Signal and Discrete-time Signal
Example
Noise Signal and Interfere Signal
School of Computer Science and Information
2. Periodic Signal and Aperiodic Signal
Periodic Signal — Has the property that it is
Random Signal — Can’t be represented mathematically as a function of certain time. We only know the probability of certain value.
School of Computer Science and Information
Vertical Wind Profile
School of Computer Science and Information
1.2 Systems
For the most part, our view of systems will be from an input-output perspective. A system responds to applied input signals, and its response is described in terms of one or more output signals.

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解(1-2章)【圣才出品】

第1章绪论
1.1复习笔记
本章作为《信号与系统》的开篇章节,是整个信号与系统学习的基础。

本章介绍了有关信号与系统的基本概念和术语,给出几种典型的信号和系统的表现形式,讲述了各信号与系统的特点以及信号之间的运算和转换。

通过本章学习,读者应掌握:如何判断信号类型、不同信号之间的运算、信号的分解以及系统类型的判断。

一、信号概述
1.信号的概念及分类(见表1-1-1)
表1-1-1信号的概念及分类
2.典型的连续信号(见表1-1-2)
表1-1-2典型的信号及表示形式
3.信号的运算(见表1-1-3)
表1-1-3信号的运算
4.阶跃函数和冲激函数
阶跃信号和冲激信号是信号与系统中最基础的两种信号,许多复杂信号皆可由二者或二者的线性组合表示。

具体见表1-1-4及表1-1-5。

(1)单位阶跃信号u(t)
表1-1-4单位阶跃信号u(t)
(2)单位冲激信号δ(t)
表1-1-5单位冲激信号δ(t)表示形式及性质
5.信号的分解
一个一般信号根据不同类型可分解为以下几种分量,具体见表1-1-6。

表1-1-6信号的分解
二、系统
1.系统概念及分类(见表1-1-7)
表1-1-7系统的概念及分类
系统模型如下:
输入信号经过不同系统可得到不同输出信号,具体见表1-1-8。

表1-1-8不同系统特性
1.2课后习题详解
1-1分别判断图1-2-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?
(a)
(b)
(c)
(d)
(e)
(f)。

信号系统(第3版)习题解答

信号系统(第3版)习题解答

《信号与系统》(第3版)习题解析高等教育目录第1章习题解析 (2)第2章习题解析 (6)第3章习题解析 (16)第4章习题解析 (23)第5章习题解析 (31)第6章习题解析 (41)第7章习题解析 (49)第8章习题解析 (55)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。

1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。

[提示:f ( 2t )表示将f ( t )波形压缩,f (2t)表示将f ( t )波形展宽。

](a) 2 f ( t - 2 ) (b) f ( 2t )(c) f ( 2t)(d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。

图p1-21-3 如图1-3图示,R 、L 、C 元件可以看成以电流为输入,电压为响应的简单线性系统S R 、S L 、S C ,试写出各系统响应电压与激励电流函数关系的表达式。

题1-3图解 各系统响应与输入的关系可分别表示为)()(t i R t u R R ⋅= tt i Lt u L L d )(d )(= ⎰∞-=tC C i Ct u ττd )(1)(1-4 如题1-4图示系统由加法器、积分器和放大量为-a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

S RS LS C题1-4图解 系统为反馈联接形式。

设加法器的输出为x ( t ),由于)()()()(t y a t f t x -+=且)()(,d )()(t y t x t t x t y '==⎰故有)()()(t ay t f t y -='即)()()(t f t ay t y =+'1-5 已知某系统的输入f ( t )与输出y ( t )的关系为y ( t ) = | f ( t )|,试判定该系统是否为线性时不变系统?解 设T 为系统的运算子,则可以表示为)()]([)(t f t f T t y ==不失一般性,设f ( t ) = f 1( t ) + f 2( t ),则)()()]([111t y t f t f T == )()()]([222t y t f t f T ==故有)()()()]([21t y t f t f t f T =+=显然)()()()(2121t f t f t f t f +≠+即不满足可加性,故为非线性时不变系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档