《信号与系统》实验三
信号与系统分析实验信号的频谱分析

实验三信号的频谱分析1方波信号的分解与合成实验1实验目的1. 了解方波的傅立叶级数展开和频谱特性。
2. 掌握方波信号在时域上进行分解与合成的方法。
3. 掌握方波谐波分量的幅值和相位对信号合成的影响。
2 实验设备PC机一台,TD-SAS系列教学实验系统一套。
3 实验原理及内容1. 信号的傅立叶级数展开与频谱分析信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数:如果将式中同频率项合并,可以写成如下形式:从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。
其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。
依此类推,还有三次、四次等高次谐波分量。
2. 方波信号的频谱将方波信号展开成傅立叶级数为:n=1,3,5…此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。
图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。
(a)基波(b)基波+三次谐波(c)基波+三次谐波+五次谐波(d)基波+三次谐波+五次谐波+七次谐波(e)基波+三次谐波+五次谐波+七次谐波+九次谐波图3-1-1方波的合成3. 方波信号的分解方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。
《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。
上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。
t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。
三、实验步骤该仿真提供了7种典型连续时间信号。
用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。
图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。
界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。
控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。
图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。
在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。
在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。
矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。
图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。
实验三 信号与系统

dy (t ) dx(t ) + y (t ) = − x (t ) 系统2 系统2: dt dt
系统3: 系统3
H ( s) =
2s ( s + 1) 2 + 1002
2s s +1
系统4 系统4:
H (s) =
系统5 系统5:
s 2 + 100 H (s) = 2 s + 2 s + 100
分别绘制其零极点分布图和幅频特性曲线、相频特性曲线, 1、分别绘制其零极点分布图和幅频特性曲线、相频特性曲线,并从系统 的幅频特性曲线分析系统是哪种滤波器(低通、高通、全通、带通、 的幅频特性曲线分析系统是哪种滤波器(低通、高通、全通、带通、带阻 滤波器)? 滤波器)? 对于系统3 输入为sin(ωt) sin(ωt), 分别为50 90,100,110,150时 50, 2、对于系统3,输入为sin(ωt),当ω分别为50,90,100,110,150时 观察系统稳态响应的幅值,并解释变化趋势和系统性能的关系。 观察系统稳态响应的幅值,并解释变化趋势和系统性能的关系。
0.5 0.4 cn? ? ? 0.3 0.2 0.1 0 -8 -6 -4 -2 0 2 4 6 8
2 1 cn? ? ? 0 -1 -2 -8
-6
-4
-2
0
2
4
6
8
ω/ω()
周期信号的合成以及Gibbs Gibbs现象 二、周期信号的合成以及Gibbs现象 用有限项级数合成例1所给的周期方波信号,并绘制出原始周期信号、 3、用有限项级数合成例1所给的周期方波信号,并绘制出原始周期信号、 合成的周期信号、信号的幅度谱和相位谱。 合成的周期信号、信号的幅度谱和相位谱。
信号与系统实验_矩形信号的分解

学号: 姓名:实验三、矩形信号的分解一、实验目的1、分析典型的矩形脉冲信号,了解矩形脉冲信号谐波分量的构成;2、观察矩形脉冲信号分解出各谐波分量的情况。
二、预备知识1.学习“周期信号的傅里叶级数分析”一节;2.复习matlab 软件的使用方法。
3.信号的滤波知识三、实验原理1、信号的频谱与测量信号的时域特性和频域特性是对信号的两种不同的描述方式。
对于一个时域的周期信号)t (f ,只要满足狄利克莱(Dirichlet)条件,就可以将其展开成三角形式或指数形式的傅里叶级数。
例如,对于一个周期为T 的时域周期信号)t (f ,可以用三角形式的傅里叶级数求出它的各次分量,在区间)T t ,t (11+内表示为)sin cos ()(10t n b t n a a t f n n n Ω+Ω+=∑∞=即将信号分解成直流分量及许多余弦分量和正弦分量,研究其频谱分布情况。
AA(c)图3-1 信号的时域特性和频域特性信号的时域特性与频域特性之间有着密切的内在联系,这种联系可以用图3-1来形象地表示。
其中图3-1(a)是信号在幅度--时间--频率三维座标系统中的图形;图3-1(b)是信号在幅度--时间座标系统中的图形即波形图;把周期信号分解得到的各次谐波分量按频率的高低排列,就可以得到频谱图。
反映各频率分量幅度的频谱称为振幅频谱。
图3-1(c)是信号在幅度--频率座标系统中的图形即振幅频谱图。
反映各分量相位的频谱称为相位频谱。
在本实验中只研究信号振幅频谱。
周期信号的振幅频谱有三个性质:离散性、谐波性、收敛性。
测量时利用了这些性质。
从振幅频谱图上,可以直观地看出各频率分量所占的比重。
测量方法有同时分析法和顺序分析法。
2、 矩形脉冲信号的频谱一个幅度为E ,脉冲宽度为τ,重复周期为T 的矩形脉冲信号,如图10-3所示。
图3-2 周期性矩形脉冲信号其傅里叶级数为:t n Tn Sa T E T E t f n i ωπτττcos )(2)(1∑=+= 该信号第n 次谐波的振幅为:Tn T n T E T n Sa T E a n /)/sin(2)(2τπτπττπτ== 由上式可见第n 次谐波的振幅与E 、T 、τ有关。
实验三 连续信号与系统的频域分析

学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);
信号与系统实验报告-实验3--周期信号的频谱分析

信号与系统实验报告-实验3--周期信号的频谱分析信号与系统实验报告实验三周期信号的频谱分析实验三周期信号的频谱分析实验目的:1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。
实验内容:(1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图:其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(0t)、cos(30t)、cos(50t) 和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。
程序如下:clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of timew0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t);x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N=');x=0;for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q;endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]); grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')subplot(224)plot(t,x)%Plot xtaxis([-2 4 -2 2])grid on,title('signal xt')(2)给程序3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。
实验三一阶网络频响特性测量,信号与系统,南京理工大学紫金学院实验报告

信号与系统实验报告实验名称:一阶网络频响特性测量姓名:学号:班级:通信时间:2013.6南京理工大学紫金学院电光系一、 实验目的1、 掌握一阶网络的构成方法;2、 掌握一阶网络的系统响应特性;3、 了解一阶网络频响特性图的测量方法;二、实验基本原理系统响应特性是指系统在正弦信号激励下,稳态响应随信号频率变化而变化的特性,称为系统的频率响应特性(frequency response )简称频响特性。
一阶系统是构成复杂系统的基本单元。
学习一阶系统的特点有助于对一般系统特性的了解。
一阶系统的系统函数为H(s),表达式可以写成:γ+⋅=s k s H 1)( k 为一常数 (3-1) 激励信号x(t)为:(3-2)按照系统频响特性的定义可求得该一阶系统的稳态响应为:(3-3)其中⎣⎦00)()(|)(00ϕj j s ej H j H s H Ω=Ω=Ω=,⎣⎦)(00Ω=j H H 。
可见,当改变系统输入信号的频率时,稳态响应的幅度和相位也随之而改变。
因果系统是稳定的要求:0>γ,不失一般性可设τγ1==k 。
该系统的频响特性为:11)(+Ω=Ωτj j H (3-4)从其频响函数中可以看出系统响应呈低通方式,其3dB 带宽点τ1。
系统的频响特性图如下图:0()sin()m x t E t =Ω000()sin()ss m y t E H t ϕ=Ω+θ图1 一阶网络频响特性图一阶低通系统的单位冲击响应与单位阶跃响应如下图:图2 一阶网络单位冲击响应与单位阶跃响应图三、实验内容及结果一阶系统的幅度谱一阶系统相位谱3、用矢量作图法作出该一阶系统的幅度谱和相位谱。
一阶系统的幅度谱一阶系统的相位谱4、作出一阶网络的单位阶跃响应波形,标注在阶跃响应最大值的(1-e-1)倍处的时间t的值,与理论值R1C1是否相符。
四、实验分析1、实验所得一阶网络的频响特性图和用矢量作图法所得的频响特性图有何异同?说明原因。
信号与系统matlab实验习题3 绘制典型信号及其频谱图

绘制典型信号及其频谱图答案在下面四个常用信号及其傅里叶变换式如表1所示。
(1)绘制单边指数信号及其频谱图的MATLAB程序如下:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');figure;max_logF=max(abs(F));plot(w,20*log10(abs(F)/max_logF));xlabel('\omega');ylabel('|F(\omega)| indB');figure;plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega)');请更改参数,调试此程序,绘制单边指数信号的波形图和频谱图。
观察参数a 对信号波形及其频谱的影响。
注:题目中阴影部分是幅频特性的对数表示形式,单位是(dB),请查阅相关资料,了解这种表示方法的意义及其典型数值对应的线性增益大小。
(2)绘制矩形脉冲信号、升余弦脉冲信号和三角脉冲信号的波形图和频谱图,观察并对比各信号的频带宽度和旁瓣的大小。
(3)更改参数,调试程序,绘制单边指数信号的波形图和频谱图。
观察参数a对信号波形及其频谱的影响。
答案附上程序代码:close all;E=1;a=1;t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);plot(t,f);xlabel('t');ylabel('f(t)');figure;plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';E=1,a=1,波形图 频谱图更改参数E=2,a=1;更改参数a ,对信号波形及其频谱的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])
gridon
title('\it 单边相位谱')
4. 验证傅里叶变换的性质:(选作)
a)时移性质:选取 和 ,幅频曲线相同,只有相位不同。
b)频移性质:选取 和 或 。
c)对称性质:选取 和 。
d)尺度变换性:选取 和 。
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
一、建立M函数文件,并命名为fourierseries.m文件
functiony=fourierseries(m,t)
xlabel('\fontsize{14} \bfΩ=nΩo \rightarrow')
ylabel('\fontsize{14} \bfΨn \rightarrow')
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
二:
源程序:
t=-6:0.01:6;
f=tripuls(t,1);
dw=0.1;
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,0,0.5])
gridon
title('\it 单边幅度谱')
xlabel('\fontsize{14} \bfΩ=nΩo \rightarrow')
ylabel('\fontsize{14} \bfAn \rightarrow')
subplot(2,1,2)
stem(n,phaF,'fill')
title('\it 周期矩形脉冲的相位谱(τ/T=1/4)')
xlabel('\fontsize{14} \bfn \rightarrow')
ylabel('\fontsize{14} \bfΨn \rightarrow')
(2)τ/T=1/8时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/8)/(ii*pi+eps);
end
F(21)=1/8;
F1=abs(F);
phaF=angle(F);
subplot(2,1,1)
stem(n,F1,'fill')
title('\it 周期矩形脉冲的幅度谱(τ/T=1/8)')
f3=fourierseries(21,t);
f4=fourierseries(45,t);
subplot(2,2,1)
plot(t,fxx,'r',t,f1,'b');
grid on
axis([-6 6 -0.1 1.1])
title(' N=3 ')
subplot(2,2,2)
plot(t,fxx,'r',t,f2,'b');
w=-12*pi:0.1:12*pi;
F=f*exp(-j*t'*w)*0.01
F1=abs(F);
phaF=angle(F);
subplot(3,1,1)
plot(t,f)
axis([-6 6 0 1])
boxon
xlabel('t')
ylabel('f(t)')
title('单个三角脉冲的波形图')
subplot(3,1,2)
plot(w,F1)
gridon;
xlabel('\Omega')
Ylabel('幅度')
title('单个三角脉冲的幅度谱')
subplot(3,1,3)
plot(w,phaF)
gridon;
xlabel('\Omega')
ylabel('相位')
title('单个三角脉冲的相位谱')
此外,通过MATLAB的波形描绘,让我对一直不太理解的幅度谱和相位谱有了了解。
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
F1=abs(F);
phaF=angle(F);
subplot(2,1,1)
stem(n,F1,'fill')
title('\it 周期矩形脉冲的幅度谱(τ/T=1/4)')
xlabel('\fontsize{14} \bfn \rightarrow')
ylabel('\fontsize{14} \bf|Fn| \rightarrow')
信息科学与工程学院《信号与系统》实验报告三
专业班级电信 班姓 名学 号
实验时间2013 年 月 日指导教师陈华丽成 绩
实验
名称
连续信号的频域分析
实验
目的
1.掌握周期信号的频谱—— Fourier 级数的分析方法及其物理意义。
2. 深入理解信号频谱的概念,掌握典型信号的频谱以及 Fourier 变换的主要性质。
实验小结:
求幅度用函数abs(),求相位用函数angle()。通过对各个函数的傅里叶变换的求解以及图形的绘制和对比,对傅里叶变换的性质更加深了理解。比如“时域中连续非周期的函数对应的频域中的函数为连续非周期,时域中连续周期函数对应的频域中的函数为离散非周期”等等。
此外,通过MATLAB的波形描绘,让我对一直不太理解的幅度谱和相位谱有了了解。
grid on
axis([-6 6 -0.1 1.1])
title(' N=9 ')
subplot(2,2,3)
plot(t,fxx,'r',t,f3,'b');
grid on
axis([-6 6 -0.1 1.1])
title(' N=21 ')
subplot(2,2,4)
plot(t,fxx,'r',t,f4,'b');
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
xlabel('\fontsize{14} \bfn \rightarrow')
ylabel('\ze{14} \bf|Fn| \rightarrow')
subplot(2,1,2)
stem(n,phaF,'fill')
title('\it 周期矩形脉冲的相位谱(τ/T=1/8)')
grid on
axis([-6 6 -0.1 1.1])
title(' N=45 ')
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
n=1:10;
a=zeros(size(n));
a(1)=0.5;
forii=2:10
a(ii)=abs(4/((ii-1)*(ii-1)*pi*pi)*(1-cos((ii-1)*pi/2)))
xlabel('\fontsize{14} \bfn \rightarrow')
ylabel('\fontsize{14} \bfΨn \rightarrow')
实验小结:
求幅度用函数abs(),求相位用函数angle()。通过对各个函数的傅里叶变换的求解以及图形的绘制和对比,对傅里叶变换的性质更加深了理解。比如“时域中连续非周期的函数对应的频域中的函数为连续非周期,时域中连续周期函数对应的频域中的函数为离散非周期”等等。