信号与系统实验二

合集下载

信号与系统实验

信号与系统实验

实验一信号与系统认知一、实验目的1、了解实验室的规章制度、强化安全教育、说明考核方法。

2、学习示波器、实验箱的使用、操作知识;3、学习常用连续周期信号的波形以及常用系统的作用。

二、实验仪器1、信号与系统实验箱(本次实验使用其自带的简易信号源,以及实验箱上的“信号通过系统”部分。

)2、示波器三、实验原理1、滤波器滤波器是一种常用的系统,它的作用为阻止某些频率信号通过,或只允许某些频率的信号通过。

滤波器主要有四种:这是四种滤波器的理想状态,实际上的滤波器只能接近这些效果,因此通常的滤波器有一些常用的参数:如带宽、矩形系数等。

通带范围:与滤波器最低衰减处比,衰减在3dB以下的频率范围。

2、线性系统线性系统是现实中广泛应用的一种系统,线性也是之后课程中默认为系统都具有的一种系统性质。

系统的线性表现在可加性与齐次性上。

齐次性:输入信号增加为原来的a倍时,输出信号也增加到原来的a倍。

四、预习要求1、复习安全操作的知识。

2、学习或复习示波器的使用方法。

3、复习典型周期信号的波形及其性质。

4、复习线性系统、滤波器的性质。

5、撰写预习报告。

五、实验内容及步骤1、讲授实验室的规章制度、强化安全教育、说明考核方法2、通过示波器,读出实验箱自带信号源各种信号的频率范围(1)测试信号源1的各种信号参数,并填入表1-1。

(2)测试信号源2的各种信号参数,并填入表1-2。

3、测量滤波器根据相应测量方法,用双踪示波器测出实验箱自带的滤波器在各频率点的输入输出幅度(先把双踪示波器两个接口都接到所测系统的输入端,调节到都可以读出输入幅度值,并把两侧幅度档位调为一致,记录下这个幅度值;之后,将示波器的一侧改接入所测系统的输出端,再调节用于输入的信号源,将信号频率其调至表1-3中标示的值,并使输入信号幅度保持原幅度值不变。

观察输出波形幅度的变化,并与原来的幅度作比较,记录变化后的幅度值。

),并将相应数据计入表1-3中。

4、测量线性系统(1)齐次性的验证自选一个输入信号,观察输出信号的波形并记录输入输出信号的参数,将输入信号的幅度增强为原信号的一定倍数后,再对输入输出输出参数进行记录,对比变化前后的输出。

实验2 信号卷积实验

实验2 信号卷积实验

实验2 信号卷积实验一、实验目的1. 理解卷积的概念及物理意义;2. 通过实验方法加深对卷积运算的图解方法及结果的理解。

二、卷积的概念及物理意义1、信号卷积实验的意义:是要验证和求解系统的零状态响应,也即是,不考虑系统初始储能状态的作用,由外部激励信号所产生的响应的实验。

2、卷积积分分析的基本原理:利用信号的分解原理,将连续信号分解为冲激信号组合,然后将这些冲激信号分别通过线性系统,将得到各个冲激信号对应的冲激响应,再将各冲激响应叠加就得到零状态响应。

这就是卷积积分分析的基本原理。

3、卷积积分的运算方法:就是将图形进行:反褶、位移、相乘、积分,这些基本步骤组合而成的。

4、卷积积分的图解方法与运算规律:见:《信号与系统》一书;段哲民,第三版,46、47页三、实验原理说明卷积积分的物理意义是将信号分解为冲激信号之和,借助系统的冲激响应,求解系统对任意激励信号的零状态响应。

设系统的激励信号为)t (x ,冲激响应为)t (h ,则系统的零状态响应为)(*)()(t h t x t y =⎰∞∞--=ττd t h t x )()(。

对于任意两个信号)t (f 1和)t (f 2,两者做卷积运算定义为⎰∞∞--=ττd t f t f t f )(2)(1)(=)t (f 1*)t (f 2=)t (f 2*)t (f 1。

1. 两个矩形脉冲信号的卷积过程图2-1 两矩形脉冲的卷积积分的运算过程与结果 两信号)t (x 与)t (h 都为矩形脉冲信号,如图2-1所示。

下面由图解的方法(图2-1)给出两个信号的卷积过程和结果,以便与实验结果进行比较。

2. 矩形脉冲信号与锯齿波信号的卷积信号)t (f 1为矩形脉冲信号,)t (f 2为锯齿波信号,如图2-2所示。

根据卷积积分的运算方法得到)t (f 1和)t (f 2的卷积积分结果)t (f ,如图2-2(c)所示。

)0≤<∞-t210≤≤t 1≤≤t 41≤≤t ∞<≤t 2124τ(b)(a)(c)(d)(e)(f)(g)(h)(i)2卷积结果图2-2 矩形脉冲信号与锯齿脉冲信号的卷积积分的结果3. 本实验进行的卷积运算的实现方法在本实验装置中采用了DSP 数字信号处理芯片,因此在处理模拟信号的卷积积分运算时,是先通过A/D 转换器把模拟信号转换为数字信号,利用所编写的相应程序控制DSP 芯片实现数字信号的卷积运算,再把运算结果通过D/A 转换为模拟信号输出。

电路、信号与系统(2)实验指导书

电路、信号与系统(2)实验指导书
[问题]
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];

信号与系统实验实验2常用离散时间信号的实现

信号与系统实验实验2常用离散时间信号的实现

信号与系统实验实验2常用离散时间信号的实现信号与系统是电子信息类专业的一门基础课程,是理论与实践相结合的一门课程。

离散时间信号与系统是信号与系统理论的一个重要分支,是实际工程应用中的基础。

本实验主要目的是通过实际操作,实现常用离散时间信号的生成和处理,加深对离散时间信号与系统的理解。

实验一:离散时间单位阶跃信号的生成和显示实验介绍:离散时间单位阶跃信号是离散时间系统的基本信号之一,表示时间从0开始,幅值从0突变到1的信号。

本实验通过编写Matlab程序,实现离散时间单位阶跃信号的生成和显示。

实验步骤:1. 打开Matlab软件,创建一个新的脚本文件。

2.在脚本文件中编写以下程序代码:```matlab%生成离散时间单位阶跃信号n=0:10;%离散时间序列u = ones(1,11); % 生成11个单位阶跃信号的幅值stem(n, u); % 显示离散时间单位阶跃信号title('Unit Step Signal'); % 设置图像标题```3.运行程序,得到离散时间单位阶跃信号的图像及其数值序列。

4.分析实验结果,比较离散时间单位阶跃信号与连续时间单位阶跃信号的区别。

实验二:离散时间指数信号的生成和显示实验介绍:离散时间指数信号是离散时间系统中常见的信号之一,表示时间以指数形式变化的信号。

本实验通过编写Matlab程序,实现离散时间指数信号的生成和显示。

实验步骤:1. 打开Matlab软件,创建一个新的脚本文件。

2.在脚本文件中编写以下程序代码:```matlab%生成离散时间指数信号n=0:10;%离散时间序列a=0.8;%指数信号的衰减系数x=a.^n;%生成离散时间指数信号的幅值stem(n, x); % 显示离散时间指数信号title('Exponential Signal'); % 设置图像标题```3.运行程序,得到离散时间指数信号的图像及其数值序列。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告

信号与系统实验报告

电气学科大类2012 级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名丁玮学号U201216149 专业班号水电1204 同组者1 余冬晴学号U201216150 专业班号水电1204 同组者2 学号专业班号指导教师日期实验成绩评阅人实验评分表基本实验实验编号名称/内容实验分值评分实验一常用信号的观察实验二零输入响应、零状态相应及完全响应实验五无源滤波器与有源滤波器实验六LPF、HPF、BPF、BEF间的变换实验七信号的采样与恢复实验八调制与解调设计性实验实验名称/内容实验分值评分创新性实验实验名称/内容实验分值评分教师评价意见总分目录1.实验一常用信号的观察 (1)2.实验二零输入响应、零状态响应及完全响应 (4)3.实验五无源滤波器与有源滤波器 (7)4.实验六 LPF、HPF、BPF、BEF间的转换 (14)5.实验七信号的采样与恢复 (19)6.实验八调制与解调 (29)7.实验心得与自我评价 (33)8.参考文献 (34)实验一常用信号的观察一.任务与目标1.了解常见信号的波形和特点;2.了解常见信号有关参数的测量,学会观察常见信号组合函数的波形;3.学会使用函数发生器和示波器,了解所用仪器原理与所观察信号的关系;4.掌握基本的误差观察与分析方法。

二.总体方案设计1.实验原理描述信号的方法有许多种,可以用数学表达式(时间的函数),也可以使用函数图形(信号的波形)。

信号可以分为周期信号和非周期信号两种。

普通示波器可以观察周期信号,具有暂态拍摄功能的示波器可以观察到非周期信号的波形。

目前,常用的数字示波器可以方便地观察周期信号及非周期信号的波形。

2.总体设计⑴观察常用的正弦波、方波、三角波、锯齿波等信号及一些组合函数的波形,如y=sin(nx)+cos(mx)。

⑵用示波器测量信号,读取信号的幅值与频率。

三.方案实现与具体设计1.用函数发生器产生正弦波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;2.用函数发生器产生方波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;3.用函数发生器产生三角波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;4.用函数发生器产生锯齿波,并且设定波形的峰值及频率,用示波器观察并记录波形,测量和读取信号的幅值与频率;5.用函数发生器产生两个不同频率的正弦波,分别设定波形的峰值及频率,用示波器叠加波形,并观察组合函数的波形。

信号实验报告 2

信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。

二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。

信号系统MATLAB实验报告

信号系统MATLAB实验报告

信号与系统实验报告桂林理工大学信息科学与工程学院 电子信息工程实验二 信号及其表示【实验目的】了解各种常用信号的表达方式掌握部分绘图函数【实验内容】一、绘出连续时间信号x(t)=t e 707.0 sin 32t 关于t 的曲线,t 的范围为 0~30s ,并以递增。

MATLAB 源程序为:t=0::30; %对时间变量赋值x=exp*t).*sin(2/3.*t); %计算变量所对应得函数值 plot(t,x);grid; %绘制函数曲线ylabel('x(t)');xlabel('Time(sec)')二、产生周期为的方波。

MATLAB源程序为:Fs=100000;t=0:1/Fs:1;x1=square(2*pi*50*t,20);x2=square(2*pi*50*t,80);subplot(2,1,1),plot(t,x1),axis([0,,,]); subplot(2,1,2),plot(t,x2),axis([0,,,]);三、产生sinc(x)函数波形。

MATLAB源程序为:x=linspace(-4,4);y=sinc(x);plot(x,y)四、绘制离散时间信号的棒状图。

其中x(-1)=-1,x(0)=1,x(1)=2,x(2)=1,x(3)=0,x(4)=-1,其他时间x(n)=0。

MATLAB源程序为:n=-3:5; %定位时间变量x=[0,0,-1,1,2,1,-1,0,0];stem(n,x);grid; %绘制棒状图line([-3,5],[0,0]); %画X轴线xlabel('n');ylabel('x[n]')五、单位脉冲序列δ(n-0n )={00...1...0n n n n =≠直接实现:x=zeros(1,N);x(1,n0)=1;函数实现:利用单位脉冲序列)(0n n -δ的生成函数impseq,即 function[x,n]=impseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)==0];plot(n,x);stem(n,x);输入参数:impseq(0,0,9)——连续图形012345678900.10.20.30.40.50.60.70.80.91输入参数:impseq(0,0,9)——离散图形六、单位阶跃序列ε(n-0n )={00...1...0n n n n ≥<直接实现:n=[ns:nf];x=[(n-n0)>=0];函数实现:利用单位阶跃序列)(0n n -ε的生成函数stepseq ,即 Function[x,n]=stepseq(n0,ns,nf)n=[ns:nf];x=[(n-n0)>=0];plot(n,x);七、实指数序列=,∀)(x n∈,Ranna直接实现:n=[ns:nf]:x=a.^n;函数实现:利用实指数序列n a(的生成函数rexpseq,即n)x=Function[x,n]=rexpseq(a,ns,nf)n=[ns:nf];x=a,^n:八、复指数序列n e n x n j ∀=+,)()(ωδ直接实现:n=[ns:nf];x=exp((sigema+jw)*n);函数实现:利用复指数序列n j e n x )()(ωδ+=的生成函数cexpseq,即 Function[x,n]=cexpseq(sigema,w,ns,nf)n=[ns:nf];x=exp((sigema+j*w)*n);0123456789-3000-2000-1000100020003000400050006000九、正(余)弦序列n wn n x ∀+=),cos()(θ直接实现:n=[ns:nf];x=cos(w*n+sita);函数实现:利用正(余)弦序列x(n)=cos(wn+θ)的生成函数cosswq,即Function[x,n]=cosseq(w,ns,nf,sita)n=[ns:nf];x=cos(w*n+sita);输入参数:cosseq,0,9,30)——连续信号0123456789-0.2-0.15-0.1-0.0500.050.10.150.2输入参数:cosseq,0,9,30)——离散信号0123456789实验三信号的运算【实验目的】了解信号处理的基本操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 常用信号分类与观察
一、实验目的
1、观察常用信号的波形特点及产生方法。

2、学会使用示波器对常用波形参数的测量。

二、实验内容
1、信号的种类相当的多,这里列出了几种典型的信号,便于观察。

2、这些信号可以应用到后面的“基本运算单元”和“无失真传输系统分析”中。

三、实验仪器
1、信号与系统实验箱一台(主板)。

2、20MHz 双踪示波器一台。

四、实验原理
对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、抽样信号、钟形信号、脉冲信号等。

1、正弦信号:其表达式为)sin()(θω+=t K t f ,其信号的参数:振幅K 、角频率ω、与初始相位θ。

其波形如下图所示:
图 1-5-1 正弦信号
2、指数信号:指数信号可表示为at
Ke t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:
图 1-5-2 指数信号
3、指数衰减正弦信号:其表达式为 ⎪⎩
⎪⎨⎧><=-)0()sin()0(0)(t t Ke t t f at ω
其波形如下图:
图 1-5-3 指数衰减正弦信号
4、抽样信号:其表达式为: sin ()t Sa t t
= 。

)(t Sa 是一个偶函数,t = ±π,±2π,…,±n π时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:
图1-5-4 抽样信号
5、钟形信号(高斯函数):其表达式为:2()()t f t Ee -τ= , 其信号如下图所
示:
图 1-5-5 钟形信号
6、脉冲信号:其表达式为)()()(T t u t u t f --=,其中)(t u 为单位阶跃函数。

7、方波信号:信号周期为T ,前
2T 期间信号为正电平信号,后2
T 期间信号为负电平信号。

五、实验步骤
1、利用示波器观察正弦信号的波形,并测量分析其对应的振幅K ,角频率ω。

具体步骤如下:
(1)接通电源,并按下此模块电源开关S5。

(2)按下此模块中的按键“正弦波”,用示波器观察输出的正弦信号,并分析其对应的频率。

(3)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化,记录此时的振幅K ,角频率ω。

(注:复位后输出的信号频率最大,只有当按下“频率降”时,按“频率升”键波形才会变化,并每次在改变波形时,波形的频率为最大,以下
波形的输出与此类似。


a、参数。

具体步骤如下:
2、用示波器测量指数信号波形,并分析其所对应的K
(1)按下此模块中的按键“指数信号”,用示波器观察输出的指数信号,并分析其对应
a、参数。

的频率、K
(2)再按一下“频率降”或“频率升”键,观察波形的变化,分析其对应频率的变化,并分析此时的参数a的变化。

3、指数衰减正弦信号观察(正频率信号)。

具体步骤如下:
(1)按下此模块中的按键“指数衰减”,用示波器观察输出的指数衰减正弦信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化。

4、抽样信号的观察。

具体操作如下:
(1)按下此模块中的按键“S a信号”,用示波器观察输出的抽样信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化。

5、钟形信号的观察:
(1)按下此模块中的按键“钟形信号”,用示波器观察输出的钟形信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化及相应的参数 。

6、脉冲信号的观察:
(1)按下此模块中的按键“脉冲信号”,用示波器观察输出的脉冲信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化和特点,并分析且测量对应频率的变化。

7、方波、三角波、锯齿波信号的观察:
(1)按下此模块中的相应信号的按键,用示波器观察输出的信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化和特点,并分析且测量对应频率的变化。

六、实验报告要求
用坐标纸画出各波形。

七、实验测试点的说明
1、测试点分别为:
“输出”(孔和测试钩):信号的输出端。

“GND”:与实验箱的地相连。

2、调节点分别为:
“正弦波”~“RESET”:完成标识上的功能。

相关文档
最新文档