信号与系统实验二

合集下载

信号与系统

信号与系统

《信号与系统》仿真作业实验一:连续信号的表示及可视化:f(t)=δ(t); f(t)=ε(t); f(t)=e at(分别取a>0与a<0);f(t)=R(t); f(t)=Sa(wt); f(t)=sin(2πft);(分别画出不同周期个数的波形)解:(1)f(t)=δ(t)的matlab表示:程序清单如下:》t=-5:0.01:5;k=(0-(-5))/0.01+1;y=zeros(size(t));y(k)=1/(0.01-(-0.01));plot(t,y);title('冲击函数f(t)=δ(t)')画出冲击函数的图形如下:冲击函数f(t)=δ(t)t(2) f(t)=ε(t )的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5; y=heaviside(t) plot(t,y)画出阶跃函数的图形如下:(3) f(t)=e at 的matlab 表示及图形: 程序清单如下: 》t=-10:0.01:10;y1=exp(0.1*t); y2=exp(-0.1*t); plot(t,y1,'r',t,y2,'b') 画出指数函数的图形如下:tf (t )=ε(t )(4) f(t)=R(t)的matlab 表示及图形: 程序清单如下: 》t=-5:0.01:5;y=heaviside(t+2)-heaviside(t-2); plot(t,y,'b') 画出窗函数的图形如下:(5) f(t)=Sa(wt) 的matlab 表示及图形: 程序清单如下:》ezplot('sin(t)./t',[-20,20]) grid ontf (t )=e atty =R 9t )画出抽样函数的图形如下:sin(t)/tt(6)f(t)=sin(2πft)的matlab表示及图形:程序清单如下:》ezplot('sin(2*pi*50*t)',[-.02,.02])grid on画出正弦函数的图形如下:实验二:离散信号的表示及可视化:f(t)=δ(n ); f(t)=ε(n ); f(t)=e an (分别取a>0与a<0); f(t)=R N (n ); f(t)=Sa(nw); f(t)=sin(nw );(分别取不同的w 值) 解:(1) 冲击序列f(n)=δ(n )的matlab 实现: 程序清单如下: 》n0=0; ns=-10; nf=10; n=[ns:nf];y=[zeros(1,n0-ns),1,zeros(1,nf-n0)];-0.02-0.015-0.01-0.00500.0050.010.0150.02-1-0.50.51tsin(2 50 t)stem(n,y);title('冲击序列f(n)=δ(n)')画出冲击序列的图形如下:冲击序列f(n)=δ(n)n(2)阶跃序列f(n)=ε(n)的matlab实现:程序清单如下:》n0=0;ns=-10;nf=10;n=[ns:nf];y=[zeros(1,n0-ns),ones(1,nf-n0+1)];stem(n,y);title('阶跃序列f(n)=ε(n)')阶跃序列的图形如下:(3) 指数序列f(t)=e an (分别取a>0与a<0)的matlab 实现: 程序清单如下: 》n=-10:10; y1=exp(0.1*n); y2=exp(-0.1*n); plot(n,y1,'ro',n,y2,'bo') 指数序列的图形如下:(4) 门序列f(n)=R N (n )的matlab 实现:程序清单如下: 》n1=-3;n2=3;ns=-15;nf=15;阶跃序列f(n)=ε(n)nnf (t )=e a nn=[ns:nf];y=[zeros(1,n1-ns),ones(1,n2-n1+1),zeros(1,nf-n2)]; stem(n,y);title('窗序列f(n)=R N (n )') 窗序列的图形如下:(5) 抽样序列f(t)=Sa(nw)的matlab 实现: 》n=-20:0.5:20; y=sin(n)./n; plot(n,y,'o'); title('f(t)=Sa(nw)')窗函数f(n)=R N (n)n抽样序列的图形如下:(6) 正弦序列f(t)=sin(nw )(分别取不同的w 值)的matlab 实现: 》n=-0.1:0.002:0.1 w=100 y=sin(w*n) plot(n,y,'o') grid on正弦序列的图形如下:f (t)=Sa(nw)nny =s i n (w *n )实验三:系统的时域求解1、设h(n)=(0.9)n u(n),x(n)=u(n)-u(n-10),求:y(n)=x(n)*h(n),并画出x(n),h(n),y(n)波形。

信号与系统仿真作业

信号与系统仿真作业

nGDOU-B—11—112广东海洋大学学生实验报告书(学生用表)课程名称课程号学院(系)信息学院专业班级学生姓名学号实验地点04002 实验日期实验一连时间信号的MATLAB表示和连续时间LTI系统的时域分析一、实验目的1.掌握MA TLAB产生常用连续时间信号的编程方法,并熟悉常用连续时间信号的波形和特性;2.运用MATLAB符号求解连续系统的零输入响应和零状态响应;3.运用MATLAB数值求解连续系统的零状态响应;4.运用MATLAB求解连续系统的冲激响应和阶跃响应;5.运用MATLAB卷积积分法求解系统的零状态响应。

二、实验原理1. 连续信号MATLAB实现原理从严格意义上讲,MA TLAB数值计算的方法并不能处理连续时间信号.然而,可用连续信号在等时间间隔点的取样值来近似表示连续信号,即当取样时间间隔足够小时,这些离散样值能够被MATLAB处理,并且能较好地近似表示连续信号.MATLAB提供了大量生成基本信号的函数.比如常用的指数信号、正余弦信号等都是MATLAB的内部函数。

为了表示连续时间信号,需定义某一时间或自变量的范围和取样时间间隔,然后调用该函数计算这些点的函数值,最后画出其波形图.三、实验内容1.实例分析与验证根据以上典型信号的MA TLAB函数,分析与验证下列典型信号MA TLAB程序,并实现各信号波形图的显示,连续信号的图形显示使用连续二维图函数plot().(1)正弦信号:用MA TLAB命令产生正弦信号2sin(2/4)ππ+,并会出时间0≤t≤3的波形图。

程序如下:K=2;w=2*pi ;phi=pi/4;t=0:0.01:3;ft=K*sin (w*t+phi );plot(t,ft ),grid on ;axis ([0,3,-2。

2,2.2])title (’正弦信号’)(2) 抽样信号:用MA TLAB 中的sinc(t)函数命令产生抽样信号Sa(t),并会出时间为66t ππ-≤≤的波形图。

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。

由于盘算历程啰嗦,最适适用MATLAB 盘算。

通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。

任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。

-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。

基波频率Ω。

2、确定系统函数 )(Ω jn H。

3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。

用两个子图画出。

2、画出系统函数的幅度频谱|H(jω)|。

3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。

用两个子图画出。

解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。

电路、信号与系统(2)实验指导书

电路、信号与系统(2)实验指导书
[问题]
描述线性时不变离散系统的差分方程为
编写求解上述方程的通用程序。
[建模]
将方程变形可得(用MATLAB语言表示)
a(1)*y(n)= b(1)*u(n)+…+ b(nb)*u(n-nb+1)- a(2)*y(n-1)-…- a(na)*y(n-na+1)
令us== [u(n),…, u(n-nb+1)]; ys=[y(n-1),…, y(n-na+1)]
x(n)={2,1,-1,3,1,4,3,7}(其中加下划线的元素为第0个采样点)在MATLAB中表示为:
n=[-3,-2,-1,0,1,2,3,4]; x=[2,1,-1,3,1,4,3,7];
当不需要采样位置信息或这个信息是多余的时候,可以只用x向量来表示。
(一)离散信号的MATLAB表述
[问题]
实验一连续时间信号与系统分析
一、实验目的
1、了解连续时间信号的特点;
2、掌握连续时间信号的MATLAB描述;
3、掌握连续LTI系统单位冲激响应的求解方法;
4、掌握连续LTI系统的零状态响应的求解方法。
二、实验内容
严格说来,只有用符号推理的方法才能分析连续系统,用数值方法是不能表示连续信号的,因为它给出的是各个样点的数据。只有当样本点取得很密时才可看成连续信号。所谓很密,是相对于信号变化的快慢而言的。以下均假定相对于采样点密度而言,信号变化足够慢。
elseif lu<lh nh=0; nu=lh-lu;
else nu=0; nh=0;
end
dt=0.1;
lt=lmax;
u=[zeros(1, lt), uls, zeros(1, nu), zeros(1, lt)];

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验

信号与系统实验

信号与系统实验实验一 信号的时域基本运算一、 实验目的1.掌握时域内信号的四则运算基本方法;2.掌握时域内信号的平移、反转、倒相、尺度变换等基本变换;3.注意连续信号与离散信号在尺度变换运算上区别。

二、 实验原理信号的时域基本运算包括信号的相加(减)和相乘(除)。

信号的时域基本变换包括信号的平移(移位)、反转、倒相以及尺度变换。

(1) 相加(减): ()()()t x t x t x 21±= [][][]n x n x n x 21±= (2) 相乘: ()()()t x t x t x 21∙= [][][]n x n x n x 21∙=(3) 平移(移位): ()()0t t x t x -→ 00>t 时右移,00<t 时左移[][]N n x n x -→ 0>N 时右移,0<N 时左移(4) 反转:()()t x t x -→ [][]n x n x -→ (5) 倒相:()()t x t x -→ [][]n x n x -→ (6) 尺度变换: ()()at x t x →1>a 时尺度压缩,1<a 时尺度拉伸,0<a 时还包含反转[][]mn x n x → m 取整数1>m 时只保留m 整数倍位置处的样值,1<m 时相邻两个样值间插入1-m 个0,0<m 时还包含反转三、实验结果1、连续时间信号时域的基本运算 (1) 相加减X1(t)=t+2 , x2(t)=cos(2*pi*t) , x(t)=x1(t)+x2(t).验证:由理论得x(t)=t+2+cos(2*pi*t),而上图x(t)满足该表达式,故得证。

(2)相乘X1(t)=t+2 , x2(t)=cos(2*pi*t) , x(t)=x1(t)*x2(t).验证:由理论得x(t)=(t+2)*cos(2*pi*t),而上图x(t)满足该表达式,故得证。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号实验报告 2

信号实验报告 2

信号与系统实验报告实验一信号与系统的时域分析一、实验目的1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、学会用MA TLAB进行信号基本运算的方法;3、掌握连续时间和离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MATLAB编程。

二、实验内容Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.01; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.2时的程序clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = sin(2*pi*t); % Generate the signalplot(t,x) % Open a figure window and draw the plot of x(t)title('Sinusoidal signal x(t)')xlabel('Time t (sec)')dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:dt = 0.01的图形比dt = 0.2的图形光滑,dt = 0.01看起来与实际信号波形更像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与线性系统
实验报告二
一、实验目的
1.学会用MATLAB实现连续时间信号傅里叶变换。
2.学会用MATLAB分析LTI系统的频域特性。
二、实验内容
题目一:验证实验原理中所述的相关程序;
程序1.1:
syms t;
Fw=fourier(exp(-2*abs(t)))
运行结果:
Fw =4/(w^2 + 4)
ylabel('|H(j\omega)|');
title('H(jw)的幅频特性');
subplot(2,1,2);
plot(w,angle(H));
grid on;
xlabel('\omega(rad/s)');
ylabel('\phi(\omega)');
title('H(jw)的相频特性');
Fw=fourier(Gt)
FFP=abs(Fw);
ezplot(FFP,[-10*pi 10*pi]);
grid on;
axis([-10*pi 10*pi 0 2.2]);
运行结果:
Fw =
- (cos(w)*i - sin(w))/w + (cos(w)*i + sin(w))/w
图2
程序1.6:
图片:
图片如图2所示。
图7
w=0:0.025:5;
b=[1];
a=[1,2,2,1];
H=freqs(b,a,w);
subplot(2,1,1);
plot(w,abs(H));
grid on;
xlabel('\omega(rad/s)');
ylabel('|H(j\omega)|');
title('H(jw)的幅频特性');
ylabel('|F(j\omega)|');
grid on;
axis([-15 15 0 1.8]);
图片:
图片如图2所示。
图6
题目三:利用ifourier()函数求下列频谱函数的傅式反变换
(1) (2)
答:程序:
程序如下所示。
syms t w;
Fw1=sym('-j*2*w/(16+w^2)*pi 10*pi 0 1.1])
图片:
图片如图2所示。
图5
(3)高斯信号
答:程序:
程序如下所示。
syms t w;
f3=sym('exp(-t^2)');
F3=fourier(f3);
FFP3=abs(F3);
ezplot(FFP3,[-10*pi 10*pi]);
ft1=ifourier(Fw1,w,t)
syms t w;
Fw2=sym('(j*w)^2+5*j*w-8/((j*w)^2+6*j*w+5)');
ft2=ifourier(Fw2,w,t)
运行结果:
ft1=
(j*(pi*heaviside(-t)*exp(4*t)*i+ (pi*exp(-4*t)*dirac(t)*i)/4- (pi*exp(4*t)*dirac(t)*i)/4-pi*exp(-4*t)*heaviside(t)*i))/pi
subplot(1,2,1);
ezplot(ft,[-0.5,0.5]);
grid on;
subplot(1,2,2);
ezplot(abs(Fw),[-24*pi,24*pi]);
grid on;
运行结果:
图1
程序1.5:
syms t w;
Gt=sym('heaviside(t+1)-heaviside(t-1)');
答:程序:
程序如下所示。
syms t w;
f1=sym('heaviside(2*t)-heaviside(2*t-1)');
F1=fourier(f1);
FFP1=abs(F1);
subplot(1,2,1);
ezplot(FFP1,[-10*pi 10*pi]);
ylabel('|F1(j\omega)|');
图片:
图片如图2所示。
图4
(2)单边指数信号
答:程序:
程序如下所示。
syms t w;
f2=sym('exp(-t)*heaviside(t)');
F2=fourier(f2);
FFP2=abs(F2);
ezplot(FFP2,[-10*pi 10*pi]);
ylabel('|F(j\omega)|');
ft2 =
-(2*pi*j^2*dirac(t, 2) - (2*(pi*exp(t*(2*(1/j^2)^(1/2) - 3/j)*i)*i - pi*exp(-t*(2*(1/j^2)^(1/2) + 3/j)*i)*i + pi*sign(3*imag(1/j) - 2*imag((1/j^2)^(1/2)))*exp(t*(2*(1/j^2)^(1/2) - 3/j)*i)*i - pi*sign(3*imag(1/j) + 2*imag((1/j^2)^(1/2)))*exp(-t*(2*(1/j^2)^(1/2) + 3/j)*i)*i - pi*exp(t*(2*(1/j^2)^(1/2) - 3/j)*i)*heaviside(t)*2*i + pi*exp(-t*(2*(1/j^2)^(1/2) + 3/j)*i)*heaviside(t)*2*i))/(j^2*(1/j^2)^(1/2)) + pi*j*dirac(t, 1)*10*i)/(2*pi)
subplot(2,1,2);
plot(w,angle(H));
grid on;
xlabel('\omega(rad/s)');
ylabel('\phi(\omega)');
title('H(jw)的相频特性');
运行结果:
图3
题目二:编程实现求下列信号的幅度频谱
(1)求出 的频谱函数 ,请将它与上面门宽为2的门函数 的频谱进行比较,观察两者的特点,说明两者的关系。
grid on;
Gt=sym('heaviside(t+1)-heaviside(t-1)');
Fw=fourier(Gt);
FFP=abs(Fw);
subplot(1,2,2);
ezplot(FFP,[-10*pi 10*pi]);
ylabel('|F(j\omega)|');
grid on;
axis([-10*pi 10*pi 0 2.2]);
运行结果:
ft =
(pi*exp(-t)*heaviside(t) + pi*heaviside(-t)*exp(t))/(2*pi)
程序1.4:
ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1/4)-heaviside(t-1/4))');
Fw=fourier(ft);
题目四:设 ,试用MATLAB画出该系统的幅频特性 和相频特性 。
答:程序:
程序如下所示。
w=0:0.001:20;
b=[1];
a=[0.08,0.4,1];
H=freqs(b,a,w);
subplot(2,1,1);
plot(w,abs(H));
grid on;
xlabel('\omega(rad/s)');
程序1.2:
syms t w;
ft=ifourier(1/(1+w^2),t)
运行结果:
ft =
(pi*exp(-t)*heaviside(t) + pi*heaviside(-t)*exp(t))/(2*pi)
程序1.3:
syms t w;
Fw=sym('1/(1+w^2)');
ft=ifourier(Fw,w,t)
相关文档
最新文档