PID参数如何设定调节讲解
PID参数如何设定调节讲解

PID参数如何设定调节讲解PID(Proportional Integral Derivative)是一种常用的控制算法,广泛应用于自动化系统和过程控制中。
PID控制器根据被控对象的误差信号进行调整,通过调节比例、积分和微分这三个参数,可以有效地控制系统的稳定性和响应速度。
下面将详细讲解如何设置PID参数进行调节。
1. 比例参数(Proportional Gain,P):比例参数决定了输出调节量与误差信号之间的关系。
增大比例参数的值可以加快系统的响应速度,但过大的值会导致系统不稳定和超调。
通常的经验法则是,开始时可以设置一个较小的比例增益,然后逐渐增大直到系统开始出现振荡或超调为止。
根据实际情况,逐步调整比例参数,使系统具有准确的控制。
2. 积分参数(Integral Gain,I):积分参数用于处理系统的静态误差。
当系统的零偏较大或变化较慢时,可以适度增大积分参数,以减小系统的稳态误差。
但过大的积分参数会导致系统不稳定。
可以采用试验法来确定合适的积分参数:首先将比例和微分参数设置为零,然后逐渐增大积分参数直到系统开始超调。
然后逐渐减小积分参数直到系统达到最佳控制性能。
3. 微分参数(Derivative Gain,D):微分参数用于补偿系统的动态误差,主要用于抑制系统响应过程中出现的振荡。
过大或过小的微分参数都会导致系统不稳定。
微分参数的选择需要结合系统响应的快慢来进行调整。
通常情况下,较慢的系统需要较大的微分参数,而较快的系统需要较小的微分参数。
可以通过试验法或经验法来调整微分参数,以便使系统的响应与期望的响应曲线相适应。
4.调节顺序和迭代调节:在调节PID参数时,一般的建议是先从比例参数开始调节,然后再逐步加入积分和微分参数。
调节过程中应根据系统的实际情况进行迭代调节,通过反馈信息和实时数据不断调整参数,使系统的控制性能达到最佳状态。
在迭代调节过程中,可以采用逐步调整法,或者借助自动调节器进行优化。
PID调节参数及方法

PID调节参数及方法PID控制是一种常用的自动控制方法,它可以根据系统的实时反馈信息,即误差信号,来调整控制器的输出信号,从而实现系统的稳定性和性能优化。
PID调节参数是PID控制器中的比例系数、积分系数和微分系数。
调节这些参数可以达到所需的动态性能和稳态精度。
下面将介绍PID调节参数及常用的调节方法。
1.比例系数(Kp):比例系数用来调节控制器输出信号与误差信号的线性关系。
增大比例系数可以加快系统的响应速度,但可能会引起系统的超调和不稳定。
减小比例系数可以提高稳定性,但可能会导致系统的响应速度变慢。
调节比例系数的方法一般有经验法和试探法。
经验法:根据经验将比例系数初值设为1,然后逐渐增大或减小,观察系统的响应情况。
当增大比例系数时,如果系统的超调量明显增加,则应适当减小比例系数;相反,如果系统的超调量过小,则应适当增大比例系数。
反复调节,直到得到满意的响应。
试探法:根据系统的特性进行试探调节。
根据系统的频率响应曲线或步跃响应曲线,选择适当的比例系数初值,然后逐渐增大或减小,观察系统的响应。
如果系统的过冲量大,则应适当减小比例系数;如果系统的响应速度慢,则应适当增大比例系数。
反复试探调节,直到得到满意的响应。
2.积分系数(Ki):积分系数用来补偿系统的静差,增加系统的稳态精度。
增大积分系数可以减小系统的稳态误差,但可能会引起系统的震荡和不稳定。
减小积分系数可以提高稳定性,但可能会导致系统的静差增大。
调节积分系数的方法一般有试探法和校正法。
试探法:将积分系数初值设为0,然后逐渐增大,观察系统的响应。
如果系统的震荡明显增强,则应适当减小积分系数;相反,如果系统的响应速度慢,则应适当增大积分系数。
反复试探调节,直到得到满意的响应。
校正法:根据系统的静态特性进行校正调节。
首先将比例系数设为一个适当的值,然后减小积分系数,直到系统的静差满足要求。
这种方法通常用于对稳态精度要求较高的系统。
3.微分系数(Kd):微分系数用来补偿系统的过冲和速度变化,增加系统的相对稳定性。
pid调节参数设置口诀详解

pid调节参数设置口诀详解PID调节是控制系统中常用的一种调节方法,其调节参数的设置对系统性能的影响非常大。
在实际控制中,PID调节参数的设置往往是一项比较繁琐的工作,需要根据实际情况进行反复调整和优化。
本文将从PID调节的基本原理入手,详细介绍PID调节参数设置的口诀和实际应用技巧,帮助读者更好地掌握PID调节的调节方法和技巧。
一、PID调节的基本原理PID调节是一种反馈控制方法,其目的是通过对控制系统的输出信号进行反馈,控制系统的输入信号,使其达到预期的目标值。
PID 调节是通过对系统的误差进行反馈,对系统进行调节,使其达到预期的稳态工作状态。
其中,PID调节的三个参数分别为比例系数Kp、积分系数Ki和微分系数Kd,它们分别对应着PID调节器的三个部分:比例部分、积分部分和微分部分。
比例部分:比例系数Kp是PID控制器中比例部分的系数,它决定了输出与误差之间的线性关系。
当误差增加时,比例系数Kp会使输出增加,从而加速误差的消除。
积分部分:积分系数Ki是PID控制器中积分部分的系数,它决定了输出与误差积分之间的关系。
当误差积分增加时,积分系数Ki 会使输出增加,从而加速误差的消除。
微分部分:微分系数Kd是PID控制器中微分部分的系数,它决定了输出与误差微分之间的关系。
当误差微分增加时,微分系数Kd 会使输出减小,从而减缓误差的消除。
二、PID调节参数设置的口诀1、比例系数Kp的设置口诀比例系数Kp的设置是PID调节中最为重要的一项,它决定了控制系统的稳定性和响应速度。
一般来说,比例系数Kp的值越大,系统的响应速度越快,但稳定性越差;反之,比例系数Kp的值越小,系统的响应速度越慢,但稳定性越好。
比例系数Kp的设置口诀如下:(1)初始值:根据经验设置一个初始值,一般取系统的比例带宽的1/10左右。
(2)逐步增加:从初始值开始,逐步增加比例系数Kp的值,直到系统开始出现震荡。
(3)震荡边界:当系统开始出现震荡时,将此时的比例系数Kp 值作为震荡边界。
pid参数设置方法

pid参数设置方法PID参数设置是控制系统中的一项重要工作,它决定了系统对外界干扰和参考信号的响应速度和稳定性。
PID(比例-积分-微分)控制是一种基本的控制方法,通过调节比例、积分和微分三个参数,可以优化控制系统的性能。
本文将介绍三种常用的PID参数设置方法:经验法、试探法和自整定法。
一、经验法:经验法是一种基于经验和实际运行经验的参数设置方法。
它通常适用于对系统了解较多和试验数据比较丰富的情况下。
经验法的优点是简单易懂,但需要有一定的经验基础。
具体步骤如下:1.比例参数的设置:将比例参数设为一个较小的值,然后通过试验观察系统的响应情况。
如果系统的响应过冲很大,说明比例参数太大;如果响应过于迟缓,则说明比例参数太小。
根据这些观察结果,逐步调整比例参数的大小,直到系统的响应达到理想状态。
2.积分参数的设置:将积分参数设为一个较小的值,通过试验观察系统的响应情况。
如果系统存在静差,说明积分参数太小;如果系统过冲或振荡,说明积分参数太大。
根据这些观察结果,逐步调整积分参数的大小,直到系统的响应达到理想状态。
3.微分参数的设置:将微分参数设为0,通过试验观察系统的响应情况。
如果系统过冲或振荡,说明需要增加微分参数;如果系统响应过缓或不稳定,说明需要减小微分参数。
根据这些观察结果,逐步调整微分参数的大小,直到系统的响应达到理想状态。
二、试探法:试探法是一种通过试验获取系统频率响应曲线,然后根据曲线特点设置PID参数的方法。
具体步骤如下:1.首先进行一系列的试验,改变输入信号(如阶跃信号、正弦信号等)的幅值和频率,记录系统的输出响应。
2.根据试验数据,绘制系统的频率响应曲线。
根据曲线特点,选择合适的PID参数。
-比例参数:根据曲线的峰值响应,选择一个合适的比例参数。
如果曲线的峰值响应较小,比例参数可以增大;如果曲线的峰值响应较大,比例参数可以减小。
-积分参数:根据曲线的静态误差,选择一个合适的积分参数。
如果曲线存在静差,积分参数可以增大;如果曲线没有静差,积分参数可以减小。
pid调节参数设置技巧

PID调节参数设置技巧1. 简介PID控制是一种常用的闭环控制算法,用于调节系统的输出使其与期望值尽可能接近。
PID控制器通过调节三个参数,即比例增益(Proportional Gain,简称P)、积分时间(Integral Time,简称I)和微分时间(Derivative Time,简称D),来实现对系统的精确控制。
在实际应用中,合适的PID参数的选择对于系统的稳定性和性能至关重要。
本文将介绍一些PID调节参数设置的技巧,帮助您更好地调节PID控制器。
2. 初始参数设定在开始调节PID参数之前,首先需要设定一组初始参数。
这些参数将作为起点,通过逐步调节的方式找到最适合系统的PID参数。
通常情况下,可以将P参数设定为一个较大的值,I参数设定为一个较小的值,而D参数设定为零。
具体的数值可以根据系统的特性和要求进行调整。
3. 步骤一:调节P参数P参数是比例增益参数,用于响应系统输出与期望值之间的差异。
当P参数过大时,系统输出可能会发生超调现象;当P参数过小时,系统回应速度可能会缓慢。
为了调节P参数,可以按照以下步骤进行: - 将P参数设定为一个较小的值,例如0.1。
- 观察系统的响应,检查是否有超调现象,以及系统是否能够快速达到期望值。
- 如果出现超调现象,可以逐步增大P参数,直到超调现象消失。
- 如果系统响应较慢,可以逐步减小P参数,直到系统能够快速达到期望值。
需要注意的是,P参数的调节通常是一个迭代的过程,需要多次试验和调整,以找到最适合系统的参数。
4. 步骤二:调节I参数I参数是积分时间参数,用于消除系统静差。
当I参数过大时,系统可能会产生积分饱和现象;当I参数过小时,系统的静差可能无法完全消除。
为了调节I参数,可以按照以下步骤进行: - 将I参数设定为一个较小的值,例如0.001。
- 观察系统的静差情况,如果系统的输出与期望值之间存在较大的差异,说明静差未能完全消除。
- 如果系统存在静差,可以逐步增大I参数,直到静差消失。
PID参数的调整方法

PID参数的调整方法PID控制器是一种广泛应用于工业自动化控制系统中的一种控制算法,通过对控制系统的反馈信号进行分析和调整,来实现对控制系统的稳定控制。
PID参数调整的目的是通过修改PID控制器的三个参数(比例增益P、积分时间Ti、微分时间Td),来达到最优的控制效果。
下面将介绍几种常见的PID参数调整方法。
1.经验法:经验法是一种直接根据经验经验的方法来调整PID参数的调整方法,是初学者常用的方法。
经验法的基本原理是通过系统的试验,根据实际的经验经验来进行参数的调整。
其流程主要包括以下几个步骤:1)选择一个适当的比例增益P,使系统能够快速而准确地响应,但不引起系统的振荡。
2)逐渐增加积分时间Ti,使系统的稳态误差趋于零。
3)逐渐增加微分时间Td,使系统的响应更加平稳。
2. Ziegler-Nichols 调参法:Ziegler-Nichols 调参法是一种基于试验的经验方法,适用于较简单的系统。
其主要思想是通过改变比例增益P、积分时间Ti、微分时间Td的值,找到系统的临界增益和周期,然后根据经验公式计算参数。
具体步骤如下:1)以较小的增量逐步增加比例增益P,使系统产生小幅振荡。
2)记录振荡周期Tosc和振幅Aosc。
3)根据经验公式计算PID参数:P = 0.6KoscTi = 0.5ToscTd = 0.125Tosc3. Chien-Hrones-Reswick 调参法:Chien-Hrones-Reswick 调参法是一种经验法,适用于非线性和阻滞比较大的系统。
该方法主要通过分析系统的特性来进行参数调整。
具体步骤如下:1)选择一个适当的比例增益P,使系统快速而准确地响应。
2)根据系统的阶跃响应曲线,确定时间常数τp(过程时间常数),并计算增益裕度Kr(Kr=τp/T p)。
3)根据Kr的值,选择合适的积分时间Ti和微分时间Td。
4.自整定法:自整定法是一种根据系统的特性自动调整PID参数的方法,适用于不断变化的复杂系统。
PID参数以及PID调节

PID参数以及PID调节PID参数是一种常用的控制器参数,用于控制系统中的反馈环节,以达到期望的输出。
PID调节是对PID参数进行调整,以优化控制系统的性能。
PID(Proportional-Integral-Derivative)是一个由比例项、积分项和微分项组成的数学表达式,用于确定控制系统的输出。
在PID参数中,比例项(P项)用于根据当前偏差的大小调整输出;积分项(I项)用于根据过去偏差的累积值调整输出;微分项(D项)则用于根据当前偏差的变化速度调整输出。
PID参数的值直接影响着控制系统的性能,因此需要进行调节。
PID调节有多种方法和技巧,下面将介绍一些常用的调节方法:1.手动调节法:首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到出现超调现象。
接着逐步减小P项数值,使系统的超调范围逐渐缩小,直至满足要求为止。
最后,逐一增加I项和D项的数值,注意调整的顺序和步骤,直到获得最佳的响应速度和稳定性。
2. Ziegler-Nichols法:这是一种经典的基于实验的PID调节方法。
该方法首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到系统输出开始出现稳定振荡。
通过记录此时的临界增益值Kc和振荡周期Tu,可以使用固定的数学公式计算出P、I和D的参数。
3.自整定法:这是一种基于系统参数辨识的PID调节方法。
该方法通过对于开环与闭环响应的分析,识别出系统的速度常数和时间延迟等参数,从而确定最优的PID参数。
4.基于优化算法的自动调节法:这是一种由计算机自动调整PID参数的方法,常用的有遗传算法、模糊控制算法、粒子群优化算法等。
该方法基于优化算法,通过不断迭代的方式寻找最优的PID参数组合,以达到最佳的控制效果。
总结起来,PID参数的调节是一个复杂的过程,需要结合实际系统的特点和要求,运用不同的调节方法和技巧进行。
通过合理的参数调节,可以优化控制系统的性能,提高系统的稳定性、响应速度和抗干扰能力,从而实现更好的控制效果。
PID参数如何设定调节

PID参数如何设定调节PID(比例-积分-微分)控制器是一种常用的自动控制器,可以根据系统的反馈信号对控制对象进行调节。
PID参数是控制器的核心参数,其调节的准确性和合理性直接影响到控制系统的性能。
一般来说,PID参数的调节可以通过以下几个步骤进行:1.确定控制对象的准确数学模型。
首先,需要通过实际测试或系统分析得到控制对象的传递函数或状态空间模型。
这是确定PID参数调节的基础。
2. 根据控制器的需求和性能指标进行参数初步设定。
在确定控制对象的数学模型后,根据控制器的要求和性能指标,可以初步设定PID参数的取值范围。
通常,可以使用经验公式或者根据控制对象的动态特性进行设定。
比如,可以使用经验法则Ziegler-Nichols法则,它提供了一种经验性的套路,可以根据控制对象的阶数(惯性系数T和时延系数L)设定PID参数的经验公式。
3.利用实验或仿真进行参数调试。
在初步设定PID参数后,需要进行实验或者仿真以观察系统的响应。
可以通过改变PID参数的取值来观察系统的响应,进而评估系统的性能。
在实验或仿真中,可以通过以下几种方法来调节PID参数:-比例项(P项):增大P项的取值可以增强系统的灵敏度,但可能引起系统的震荡或过冲。
减小P项的取值可以减小系统的震荡,但可能导致系统的超调减小。
-积分项(I项):增大I项的取值可以增强系统的静差消除能力,但可能导致系统的震荡或者系统响应时间延长。
减小I项的取值可以减小系统的震荡,但可能导致系统的静差增大。
-微分项(D项):增大D项的取值可以使系统的响应速度更快,但可能导致系统的超调增大或震荡。
减小D项的取值可以减小系统的超调,但可能导致系统的响应速度减慢。
4. 进行反复调试和优化。
在进行实验或仿真后,需要根据观察结果对PID参数进行修正和优化。
如果系统的响应不理想,可以根据经验或者优化算法进行调整。
最常用的算法有Ziegler-Nichols算法、曲线拟合法或者用专业控制软件进行自动优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID参数如何设定调节PID(比例积分微分)英文全称为Proportion Integration Differentiation,它是一个数学物理术语。
PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。
同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。
智能控制的典型实例是模糊全自动洗衣机等。
自动控制系统可分为开环控制系统和闭环控制系统。
一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。
控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。
不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。
比如压力控制系统要采用压力传感器。
电加热控制系统的传感器是温度传感器。
目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC 系统等等。
可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。
还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet 相连,利用网络来实现其远程控制功能。
1、开环控制系统开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
2、闭环控制系统闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。
闭环控制系统的例子很多。
比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出各种正确的动作。
如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。
另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。
3、阶跃响应阶跃响应是指将一个阶跃输入(stepfunction)加到系统上时,系统的输出。
稳态误差是指系统的响应进入稳态后﹐系统的期望输出与实际输出之差。
控制系统的性能可以用稳、准、快三个字来描述。
稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的﹔准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-stateerror)描述,它表示系统输出稳态值与期望值之差﹔快是指控制系统响应的快速性,通常用上升时间来定量描述。
4、PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(SystemwithSteady-stateError)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。
5、PID控制器的参数整定PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作﹔(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期﹔(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T:P=20~60%,I=180~600s,D=3-180s压力P:P=30~70%,I=24~180s,液位L:P=20~80%,I=60~300s,流量F:P=40~100%,I=6~60s。
书上的常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低这里介绍一种经验法。
这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。
这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。
若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。
这样反复试验,直到满意为止。
经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。
当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到最佳整定参数。
下面以PID调节器为例,具体说明经验法的整定步骤:⑴让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。
⑵取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。
(3)积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。
否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。
如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。
⑷引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。
和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。
注意:仿真系统所采用的PID调节器与传统的工业PID调节器有所不同,各个参数之间相互隔离,互不影响,因而用其观察调节规律十分方便。
PID参数是根据控制对象的惯量来确定的。
大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。
小惯量如:一个小电机带一水泵进行压力闭环控制,一般只用PI控制。
P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。
我提供一种增量式PID供大家参考△U(k)=Ae(k)-Be(k-1)+Ce(k-2)A=Kp(1+T/Ti+Td/T)B=Kp(1+2Td/T)C=KpTd/TT采样周期Td微分时间Ti积分时间用上面的算法可以构造自己的PID算法。
U(K)=U(K-1)+△U(K)PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。