PID参数调整口诀
PID参数整定口诀

经 过多年的工作经验,我个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡 的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而 且对系统影响比较小。对于温度控制系统P在5-10%之间;I在180-240s之间;D在30以下。对于压力控制系统P在30-60%之间;I在30- 90s之间;D在30以下。
微分(D)控制 :在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后 于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是 不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差 的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态 特性。 分享到:
比例(P)控制 :比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。
积 分(I)控制 :在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简 称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分 项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态 误差。
PID常用口诀

PID常用口诀1.PID常用口诀:参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线振荡很频繁,比例度盘要放大曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,液位L: P=20~80%,T=60~300s,流量L: P=40~100%,T=6~60s。
3.PID控制的原理和特点在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制比例控制是一种最简单的控制方式。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
PID调节方法

1、先调节P值(I、D均为0),使其调节速度达到要求。
P值增减先按倍数处理(乘2或除2),直到超越了要求,再将前后两个值取平均值。
2、再根据调节偏差处理I的取值,该值从大往小试验,温度调节初始值可以从10min开始,而流量、压力可以从1min开始。
直到偏差小到符合要求。
3、D值只在超调量过大时采用,取值从小往大试验,以超差幅度小于允许值,又不发生震荡为度。
1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,2. 一看二调多分析,调节质量不会低 2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:温度T:P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s, 液位L:P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。
PID控制原理与PID参数的整定方法PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。
参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。
阅读本文不需要高深的数学知识。
1.比例控制有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。
下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。
假设用热电偶检测炉温,用数字仪表显示温度值。
在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。
然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。
操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。
PID整定口诀

一句话简述:如果调节器的输如偏差不等于零,就让调节器的输出按照一定的速度一直朝一个方向累加下去。
积分相当于一个斜率发生器。启动这个发生器的前提是调节器的输如偏差不等于零,斜率的大小与两个参数有关:输入偏差的大小、积分时间。
从上面的分析可以看出:判断t6时刻的先后,或者说t6距离t5的时间,是判断积分作用强弱的标准。
一般来说,积分作用往往被初学者过度重视。因为积分作用造成的超调往往被误读为比例作用的不当。
而对于一个很有经验的整定高手来说,在一些特殊情况况下,积分作用往往又被过度漠视。因为按照常理,有经验的人往往充分理解积分作用对静态偏差的作用,可是对于积分作用特殊情况下的灵活运用,却反而不容易变通。
以前曾经有一个化工的朋友说:自动调节系统哪有这么复杂?无非是一个PID,对其参数进行整定一番就可以了。我对他说:很不幸,你工作在一个简单调节系统的环境下,你没有真正接触过复杂的自动调节系统。
是的,火电厂自动调节系统要复杂些。可惜我没有机会接触更为复杂的自动调节系统,深为遗憾!至今为止,我所接触到最复杂的自动调节系统,无非是火电厂的蒸汽温度、汽包水位、蒸汽压力,还有一个大杂烩——协调。至于脱硫方面的,都交给运行自行调节,懒得去管。
基本的调节器至少有一个模拟量输出。大脑根据情况运算之后要发布命令了,它发布一个精确的命令让执行机构去按照它的要求动作。在大脑和执行机构(手)之间还会有其他的环节,比如限幅、伺服放大器等等。有的限幅功能做在大脑里,有的伺服放大器做在执行机构里。
上面说的输入输出三个量是调节器最重要的量,其它还有许多辅助量。比如为了实现手自动切换,需要自动指令;为了安全,需要偏差报警等等。这些可以暂不考虑。为了思考的方便,咱们只要记住这三个量:设定值、被调量、输出指令。
PID整定口诀

付老师你好,我是电064班的韩煜博
以下是PID整定口诀,个人感觉口诀只是技巧的归纳,实际调节还需反复调节,调节中中超调量和调节时间是一对矛盾,即系统的稳定性和快速性需要取舍,这要根据实际需要进行偏好设定= ="
参数整定找最佳,从小到大顺序查。
先是比例后积分,最后再把微分加。
曲线振荡很频繁,比例度盘要放大。
曲线漂浮绕大弯,比例度盘往小扳。
曲线偏离回复慢,积分时间往下降。
曲线波动周期长,积分时间再加长。
曲线振荡频率快,先把微分降下来。
动差大来波动慢,微分时间应加长。
理想曲线两个波,前高后低四比一。
一看二调多分析,调节质量不会低。
PID参数整定口诀

PID参数整定口诀
首先是P(比例)参数的整定:
1.增大P,系统更快速响应;
2.减小P,系统更稳定。
接下来是I(积分)参数的整定:
1.增大I,系统的超调量减小;
2.减小I,系统的超调量增大。
最后是D(微分)参数的整定:
1.增大D,系统的震荡减小;
2.减小D,系统的震荡增大。
综合考虑的时候,可以使用以下顺序进行整定:
1.先将I和D参数设置为0,只调整P参数;
2.逐渐增大P参数,直到系统出现超调;
3.根据需要的系统响应速度调整P参数;
4.添加I参数,减小系统超调;
5.根据需要的系统稳定性调整I参数;
6.最后添加D参数,减小系统震荡。
需要注意的是,以上只是一种简单的整定顺序,具体情况需要结合实际的系统性能要求来设置参数。
此外,整定PID参数的过程是一个迭代的过程,需要不断地调整和优化,直到满足系统的需求。
总结起来,PID参数整定的口诀可以概括为:根据需要的系统性能目标,逐步调整P、I和D参数,将系统的超调、响应速度和稳定性达到最佳状态。
通过不断迭代和优化,最终得到满足系统要求的PID参数设置。
pid参数调节口诀

pid参数调节口诀
1. PID常用口诀: 参数整定找较佳,从小到大顺序查,先是比例后积分,较后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1。
2. 一看二调多分析,调节质量不会低2.PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T: P=20~60%,T=180~600s,D=3-180s压力P: P=30~70%,T=24~180s,
液位L: P=20~80%,T=60~300s,
流量L: P=40~100%,T=6~60s。
3.PID控制的原理和特点
在工程实际中,应用较为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术较为方便。
即当我们不完全了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,较适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
变频器PID调节

变频器PID调节1. PID常用口诀: 参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1,一看二调多分析,调节质量不会低2.常用的PID 参数整定方法a)确定控制器参数数字PID 控制器控制参数的选择,可按连续-时间PID 参数整定方法进行。
在选择数字PID 参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P 或PD 控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID 控制器。
一般来说,PI、PID 和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
b)选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
这些要求,对控制系统自身性能来说,有些是矛盾的。
我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。
PID 控制器的参数整定,可以不依赖于受控对象的数学模型。
工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。
常用的方法:一、实验凑试法:实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。
整定步骤: 实验凑试法的整定步骤为"先比例,再积分,最后微分"。
(1)整定比例控制将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PID参数调整口诀:
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。
微分时间应加长
理想曲线两个波,前高后低四比一
一看二调多分析,调节质量不会低
若要反应增快,增大P减小I
若要反应减慢,减小P增大I
如果比例太大,会引起系统震荡
如果积分太大,会引起系统迟钝
其中有些较难理解的句子,给大家解释一番:
1、曲线漂浮绕大弯——
指负载曲线是发散的,没有逐渐收敛到目标值上,这是非常失败的波形曲线,是调试不成功的。
2、曲线偏离回复慢——
指负载曲线虽然不发散,逐渐收敛到了目标值上,但是收敛速度较慢。
这也算不上是调试得很成功的波形,还有需要优化的地方。
3、曲线波动周期长——
这是指负载曲线要经过长时间的波动后,才能逐渐回到稳定值上。
即先要经过长时间的振荡,然后才能稳定在目标值上,也是不太理想的波形曲线。
4、曲线振荡频率快——
这是指负载曲线频繁、快速的振荡,半天稳定不下来。
一般,出现这种波形的原因,是因为你的调节器调节力度太猛了,需要缓和一下。
可以通过减小调节器的比例P参数值,或增大积分时间常数I 参数的值,来达到缓和的目的。