奇数与偶数(一)含答案-

合集下载

四年级数论奇数与偶数(一)学生版

四年级数论奇数与偶数(一)学生版

知识要点奇数与偶数(一)由于计数的需要,人们创造了数字。

令创造阿拉伯数字的先贤们想不到的是,随着人们的不断研究,数字的魅力已经不仅仅局限于计数本身,对数的研究已经成了数学领域的尖端学问。

本讲将向大家介绍奇数和偶数,让大家领略数字本身的独特魅力。

①所有奇数都是用2除的余数为1。

即{}13579L, , , , ,②所有偶数都是用2除的余数为0。

即{}02468L, , , , ,也就是能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数);因为任何奇数除以2其余数总是1,所以通常用式子21k+来表示奇数(这里k是整数)。

特别注意,因为0能被2整除,所以0是偶数。

最小的奇数是1,最小的偶数是0。

奇数与偶数的运算性质:性质1:偶数+偶数=偶数(偶数-偶数=偶数)奇数+奇数=偶数(奇数-奇数=偶数)偶数+奇数=奇数(偶数-奇数=奇数)可以看出:一个数加上(或减去)偶数,不改变这个数的奇偶性;一个数加上(或减去)奇数,它的奇偶性会发生变化。

(也可以这样记:奇偶性相同的数加减得偶数,奇偶性不同的数加减得奇数。

)性质2:偶数⨯奇数=偶数(推广开来还可以得到:偶数个奇数相加得偶数)偶数⨯偶数=偶数(推广开就是:偶数个偶数相加得偶数)奇数⨯奇数=奇数(推广开就是:奇数个奇数相加得奇数)可以看出:一个数乘以偶数时,乘积必为偶数;几个数的积为奇数时,每个乘数都是奇数。

(也可以这样简记:对于乘法,见偶(数)就得偶(数))。

性质3:任何一个奇数一定不等于任何一个偶数。

基础篇【例1】357911131517+++++++的和是奇数还是偶数?为什么?【例2】135719911993⨯⨯⨯⨯⨯⨯L的积是偶数还是奇数,为什么?【例3】123456799100999897967654321L L的和是奇数还是+++++++++++++++++++++偶数?为什么?【例4】12345679899L的计算结果是奇数还是偶数,为什么?+⨯+⨯+⨯++⨯【例5】从公元1年开始到2年,3年,一直到2008年,在这些年份当中,请问有多少奇数年?有多少个偶数年?【例6】有一个数列:1,1,2,3,5,8,13,21,34,55,89,144,…,从第三个数开始,每个数等于它前面两个数的和,则该数列前2009个数中有多少个奇数?【例7】有一本500页的书,从中任意撕下20张纸,这20张纸上的所有面码之和能否是1999?【例8】(闸北中学小升初试题)试找出两个整数,使大数与小数之和加上大数与小数之差,再加上1000等于1999.如果找得出来,请写出这两个数,如果找不出来,请说明理由.【例9】有四个互不相等的自然数,最大数与最小数的差等于4,最小数与最大数的乘积是一个奇数,而这四个数的和是最小的两位奇数.求这四个数.【例10】甲同学一手握有写着23的纸片,另一只手握有写着32的纸片.乙同学请甲回答如下一个问题:“请将左手中的数乘以3,右手中的数乘以2,再将这两个积相加,这个和是奇数还是偶数?”当甲说出和为奇数时,乙马上就猜出写有23的纸片握在甲的左手中.你能说出是什么道理吗?挑战篇【例11】(上海中学小升初试题)三十六口缸,分作九船装,只准装单,不准装双.问:怎样运走这些缸?【例12】在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如538a =+=.问:填入的81个数字中是奇数多还是偶数多?a123456789987654321【例13】 如果把每个方格所在的行数和列数乘起来,填在这个方格,例如:5315a =⨯=。

五年级下册数学试题-奇数和偶数(含答案)沪教版

五年级下册数学试题-奇数和偶数(含答案)沪教版

4.7奇数和偶数所有的整数可以分为两类:奇数和偶數,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3) 两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题精选:例题1、在黑板上写上1,2,3,...10每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?巩固1、在1,2,3,……2002中的每个数前面添上一个正号或负号,它们的代数和是奇数还是偶数?例题2、能否在下式的格子中适当的填上“+”或“-",使等式成立?若能,请给出一种填法,若不能,请说出理由1口2口3口4口5口6口7口8=9巩固2、下列每个算式中,至少有一个奇数;一个偶数;那么这12个整数中,至少有几个偶数?口+口=口,口—口=口,口x口=口,口÷口=口例题3、如果a,b,c 是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有兩个整数C、至少有一个整数D、都是整数巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?巩固4、能否有整数m,n,使得m2 -n2=1998?例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,向:能否经过若干次这样的翻动,使全部的杯子口都朝下?习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.2、七个连续的奇数的和为399,求这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?8、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.9、三个连续的偶数之积是一个六位数15* * * 8,求这三个偶数.10、求证;四个连续奇数的和一定是8的倍数4.7奇数和偶数(答案)所有的整数可以分为两类:奇数和偶数,其中奇数是指那些不能被2整除的整数,例如土1,土3,土5等,而偶数是指那些能被2整除的整数,如0,土2,土4等整数的奇偶性有如下的一些简单性质:(1)偶数土偶数=偶数,偶数土奇数=奇数,奇数土奇数=偶数,奇数土偶数=奇数,(2)偶数x偶数=偶数,奇数x偶数=偶数,奇数x奇数=奇数,(3)两个整数之和与这两个整数之差的奇偶性相同,(4)两个整数的和或差是偶数,这两个数的奇偶性相同,(5)两个整数的和或差是奇数,这两个数的奇偶性相反.(6)偶数个奇数相加得偶数,奇数个奇数相加得奇数,任意个偶数相加得偶数,(7)奇数连乘积是奇数;连乘中,有一个因数是偶数,积定是偶数,利用整数的奇偶性质,可以成功解决许多数学问题.例题1、在黑板上写上1,2,3,…,10,每次擦去任意两个数,换上这两个数的和或差,重复这样的操作手续若干次,直到黑板上仅留下一个数为止,试问:这个数能否是零?证明你的结论?解答:不可能.1.如果擦去的是两个是偶数,则这两个数的和或差仍是偶数,得到新的数组仍是奇数;2.如果擦去的是两个是奇数,则这个数的和或差则是偶数,得到新的数组仍是奇数;3.如果擦去的是一个偶数一个奇数,则这个数的和或差则是奇数,得到新的数组仍是奇数.所以最后得到数一定还是奇数.巩固1、在1,2,3,…,2002中的每个数前面添上一个正号或负号,他们的代数和是奇数还是偶数?解答:因为两个整数的和与差的奇偶性相同,所以在1,2,3,…,2002中每个数前面添上正号或负号,其代数和应与1+2+3+…+2002的奇偶性相同,而1+2+3+⋯+2002=1 2(1+2+3+⋯+2002)=12(1+2002)×2002=2003×1001为奇数,所以所求代数和也为奇数.例题2、能否在下式的格子中适当的填上“+”或“-”,使等式成立?若能,请给出一种填法,若不能,请说明理由.1□2□3□4□5□6□7□8=9不能巩固2、下列每个算式中,至少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□,□÷□=□解答:要是最少的偶数,所以加法中必然会有一个偶数;乘法中若要保证至少有一个奇数,则必须有两个偶数;减法中必然会有一个偶数;除法中至少有两个偶数,所以这些式子中至少有6个偶数.例题3、如果a,b,c,是三个任意整数,那么a+b2,b+c2,a+c2A、都不是整数B、至少有两个是整数C、至少有一个整数D、都是整数解答:1.假设a,b,c都是偶数或都是奇数,则a+b,b+c,a+c都是偶数那么a+b2,b+c2,a+c2都是整数;2.假设a,b,c中有两个是偶数,一个是奇数,那么a+b2,b+c2,a+c2有一个是整数;3.假设a,b,c中有一个是偶数,两个是奇数,那么a+b2,b+c2,a+c2有一个是整数;综上所述:a+b2,b+c2,a+c2至少有一个是整数.所以选C巩固3、巩固3、用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a= 1991,a×b×c ×d-b= 1993,a×b×c×d-c= 1995,a×b×c×d-d=1997.试说明:符合条件的整数a、b、c、d是否存在解答:用代表整数的字母a,b,c,d写成等式组:a×b×c×d-a=1991a×b×c×d-b=1993a×b×c×d-c=1995a×b×c×d-d=1997试说明符合条件的整数a,b,c,d是否存在.解答:由原题等式组可知:a(bcd-1)=1991b(acd-1)=1993c(abd-1)=1995d(abc-1)=1997因为1991,1993,1995,1997均为奇数,且只有奇数×奇数=奇数所以a分别为奇数.所以a×b×c×d=奇数所以a,b,c,d的乘积分别减去a,b,c,d后一定为偶数.这与原等式组矛盾.所以不存在满足题设等式组的整数a,b,c,d例题4、参加会议的人,有不少互相握过手,问握手的次数是奇数的那部分人的人数是奇数还是偶数?为什么?解答:偶数.每人相互握手一次,当握奇数次手时,说明其它人数有奇数个,加上自己,那么总人数就是偶数个.巩固4、能否有整数m,n,使得m2−n2=1998?解答:m2−n2=1998(m+n)(m-n)=1998则m+n,m-n的奇偶性必相同,即:①m+n,m-n同为奇数,乘积为奇数,与1998矛盾;②m+n,m-n同为偶数,乘积能被4整除,与1998被4除余2矛盾综上所述:必不存在整数m,n,使得m2−n2=1998例题5、一串数排成一行,它们的规律是:前面两个数都是1,从第三个数开始,毎一个数都是前两个数的和.如下所示:1,1,2,3,5,8,13,21,34,55……同:这串数的前100个数(包括第100数)中,有多少个偶数?解答:从数列中可以得到规律每两个奇数之后为一个偶数,其中前100个数中偶数的个数为100÷3=33…1,故这串数前100个数中有33个偶数.巩固5、桌上放着七只杯子,杯口全朝上,每次翻转四个杯子,问:能否经过若干次这样的翻动,使全部的杯子杯口都朝下?答案:不能.我们将向上的杯子记为0,向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个数之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.习题A1、先求正整数中前10个奇数的和,再求正整数中前n个奇数的和.答案:100,n2.2、七个连续的奇数的和为399,求这七个数.答案:51,53,55,57,59,61,63;这七个数的平均数为中间的数,因为平均数为57,所以可得这七个数.3、1+2+3+……+2008,,结果是偶数还是奇数?为什么?答案:偶数4、有100个自然数,它们的和是偶数,在这100 个自然数中,奇数的个数比偶数的个数多,问:这些数中至多有多少个偶数?答案:根据数的奇偶性可知,100个自然数,奇数的个数比偶数的个数多,那么奇数最少有51个,偶数有49个,但由于51个奇数的和为奇数,再加上49个偶数100个自然数的和是奇数,所以100个自然数中必须有偶数个奇数,又由于奇数比偶数多,因此偶数最多只有48个.5、有12整卡片,其中3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7,你能否从中选出五张,使它们上面的数字和为20?为什么?答案:不能,因为1,3,5,7都是奇数,5个奇数的和还是奇数,不能得到偶数20.6、有一串数,最前面的四个数依次是1、9、8、7,从第五个数起,每一个数都是它前面相邻四个数之和的个位数字,问:在这一串数字中,会依次出现1、9、8、8这四个数吗?答案:不会7、用0、1、2、3、... 9十个数字组成5个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,问这五个两位数的和是多少?答案:(4+6+7+8+9)×10+(0+1+2+3+5)=3518、任意改变某一个三位数的各位数字的顺序得到一个新数,试证新数与原数之和不能等于999.答案:令该数为ABC,则:1、全为奇数−−结果3位均为偶数;2、全为偶数−−结果3位均为偶数;3、AB奇,C偶−−A,B必须全与偶数相加才能都为奇数,不成立;4、AB偶,C奇−−A,B必须全与奇数相加才能都为奇数,不成立;故新数与原数之和不能等于999.9、三个连续偶数之积是一个六位数15***8,求这三个偶数.答案:连续偶数的末位数的乘积有规律,末位为8的数只能由末位为2、4、6的连续偶数相乘得到.由于这是个六位数,所以这3个数都是两位数.因为某数的立方的第一个数是1,所以十位数是5,即这三个数是52、54、56.10、求证:四个连续奇数的和一定是8的倍数.答案: 设最小的奇数为2n-1(n是正整数),后面三个依次是2n+1,2n+3,2n+5.四个数的和为:(2n-1)+(2n+1)+(2n+3)+(2n+5),=8n+8,=8(n+1).所以是8的倍数.。

奇数与偶数 考点总结+题型训练 带答案

奇数与偶数 考点总结+题型训练 带答案

3、两个数的和是18,这两个数可能都是( 奇 )数,也可 能都是( 偶 )数。
4、两个数的积是24,这两个数可能都是( 偶 )数,也可 能一个是( 奇 )数,另一个是( 偶 )数。
5、任何一个奇数减去1后,差都是( 偶 )数。
6、两个质数的和是12,这两个数分别是( 5 )和( 7 ) 。两个质数的和是91,这两个质数分别是( 2和89 )。
4、把35辆车停到4个停车场,要求每个停车场里的汽车数 为奇数,能做到吗?
不能,奇数+奇数+奇数+奇数=偶数,而25是一个奇数,所以不 能做到。
5、有5个连续的奇数的和是205,这5个数中最小的一 个数是多少?
中间数:205÷5=41 这5个数是:37,39,41,43,45 最小的一个是37.
6、2019年中央电视台在小学生智力竞赛中有一道题是 :12张卡片,其中三张写着1、三张写着3、三张写着5、三 张写着7,你能否从中选出5张,使它们的和是20,为什么?
9.任意五个连续自然数(0除外)的和一定是( B ) A.2的倍数 B.5的倍数 C.奇数 D.质数
10.一个两位数,个位数字既是偶数又是质数,十位数字 既不是质数又不是合数,则这个两位数是( C ) A.32 B.16 C.12 D.14
三、判断。 1、个位是中最大的数是9.( √ ) 2、最小的自然数是1。( × ) 3、奇数都比偶数小。( × ) 4、在自然数中与1相邻的只有2.( × ) 5、最小的偶数是2.( × ) 6、相邻的3个偶数的和可以是79.( × ) 7、相邻的3个奇数的和可以是88.( × )
不能,因为1,3,5,7都是奇数,如果抽出5张,那么5个奇数 的和依然是奇数,不可能是20,20是一个偶数。

小升初数学专项题-第八讲 奇数和偶数(一)_通用版

小升初数学专项题-第八讲  奇数和偶数(一)_通用版

第八讲奇数和偶数(一)【知识梳理】1、定义:(1)能被2整除的自然数叫偶数,可以表示为2n的形式,其中n为整数。

(2)不能被2整除的自然数叫奇数,可以表示为2n+1的形式,其中n为整数。

2、性质:(1)两个奇偶性相同的数的和(或差)一定是偶数;两个奇偶性不同的数的和(或差)一定是奇数。

反过来,两个数的和(或差)是偶数,这两个数奇偶性相同;两个数的和(或差)是奇数,这两个数肯定是一奇一偶。

(2)奇数个奇数的和(或差)是奇数;偶数个奇数的和(或差)是偶数。

任意多个偶数的和(或差)是偶数。

(3)任意个偶数的和偶数。

【典例精讲1】1+2+3+……+2016的和是奇数还是个偶数。

思路分析:1+2+3+……+2016共2016个数,共有1008个奇数,1008个偶数,利用“偶数个奇数的和(或差)是偶数与任意个偶数的和偶数”即可解决。

解答:1+2+3+……+2016共2016个数,可以分成两组,有1008个奇数与1008个偶数,因为“偶数个奇数的和(或差)是偶数与任意个偶数的和偶数”,所以1008个奇数的和是偶数, 1008个偶数也是偶数,又因为“两个奇偶性相同的数的和(或差)一定是偶数”,所以1+2+3+……+2016的和是偶数。

小结:解决这类问题要找出奇数与偶数的个数,分成两组,从而利用性质分别确定这两组数的和是奇数或是偶数,再进行加减得出结果。

【举一反三】1.下面算式的和是奇数还是偶数?1+2+2+3+3+3+4+4+4+4+……+15+15+……+152.任意给出3个不同的自然数,其中一定有2个数的和是偶数,请说明理由。

【典例精讲2】能否在下式的□中填上“+”或“-”,使得等式成立?1□2□3□4□5□6□7□8□9=66。

思路分析:等号左端共有9个数参加加、减运算,其中有5个奇数,4个偶数。

利用“奇数的和或差仍是奇数与偶数的和或差仍是偶数”,再利用“奇数+偶数=奇数”即可解决。

解答:1□2□3□4□5□6□7□8□9中共有5个奇数,4个偶数, 5个奇数的和或差仍是奇数,4个偶数的和或差仍是偶数,因为“奇数+偶数=奇数”,所以题目的要求做不到。

小学一年级下册数学奥数知识点:第12课《奇与偶》试题(含答案)

小学一年级下册数学奥数知识点:第12课《奇与偶》试题(含答案)

小学一年级下册数学奥数知识点讲解第12课《奇与偶》试题附答案笫十二讲奇与偶整数0, U 2, 3,紅5, 6, 7>……可以被分为两类,一类忌1, 3, 5.7, 9・…叫奇数1另一类是山2, 4, 6. 8> 10”叫偶数•一般习惯上■人们也把1, 3. 5, 7, 9…叫单数;把2, 4, 6. & 10…叫双数乜下面是有关奇数与偶数方面餉趣题。

例1傍晚开电灯.小虎淘气,一连拉了7下开关.请你说说这时灯是亮了还是没亮?我们还不妨接着问.拉8下呢?拉9下呢?拉L0下呢?甚至拉100下呢?你都能知道灯是芫还是不英吗?例2前十个自然数即1, £ 3,……10的和是奇数还是偶数?例3①把iO个球分成三组’要求每组球的个数都量奇数*怎样分7②把11个苹果分给三个小朋友*要求每个小朋友分得偶数个苹果,怎样分?例4小华买了一支铅笔、2块橡皮、2个练习本,付了1元悅售货员找给他5分钱。

力华看了看1支铅笔的价钱是盼,就说,"叔叔,您把账算错啦。

”想一想.水华为什么这么快就知道账算错了?例5如下頁图所示•在1琳长的一段马路的一侧种树,每隔1氷种一棵’两头都种,共种了H棵.如采把三块"爱护树木"的小牌任意挂在三棵树上,然后再把每两棵挂脾的树之间的距离是多少米都算出来,看一看这三个距育数(即多少米).至少有一个数是偶数,对吗?然后把三块小牌再挂衽不同的三棵树答案笫十二讲奇与偶整数0, 1, 2, 3, 4, 5, 6, 7,……可以被分为两类,一类是1, 3, 5,7, 9,…叫奇数;另一类是0, 2, 4, 6, 8, 10…叫偶数。

一般习惯上,人们也把1, 3, 5, 7, 9…叫单数;把2, 4, 6, 8, 10…叫双数。

下面是有关奇数与偶数方面的趣题。

例1傍晚开电灯,小虎淘气,一连拉了7下开关。

请你说说这时灯是亮了还是没亮?我们还不妨接着问,拉8下呢?拉9下呢?拉10下呢?甚至拉100下呢?你都能知道灯是亮还是不亮吗?解:见下表。

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)

新课标小学数学奥林匹克辅导及练习奇数与偶数(一)(含答案)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数.凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数.因为偶数是2的倍数,所以通常用这个式子来表示偶数(这里是整数).因为任何奇数除以2其余数都是1,所以通常用式子来表示奇数(这里是整数).奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数.例如:8+4=12,8-4=4等.两个奇数的和或差也是偶数.例如:9+3=12,9-3=6等.奇数与偶数的和或差是奇数.例如:9+4=13,9-4=5等.单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数.性质2 奇数与奇数的积是奇数.例如:等91199⨯=偶数与整数的积是偶数.例如:等.性质3 任何一个奇数一定不等于任何一个偶数.例1.有5张扑克牌,画面向上.小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下.要想使5张牌的画面都向下,那么每张牌都要翻动奇数次.5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下.而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数.所以无论他翻动多少次,都不能使5张牌画面都向下.例2.甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒.那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒.所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子.如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个.否则甲盒子中的黑子数不变.也就是说,李平每次从甲盒子拿出的黑子数都是偶数.由于181是奇数,奇数减偶数等于奇数.所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子.例3.如图(1-1)是一张的正方形纸片.将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个的长方形纸片?图(1-1)图(1-2)分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字.这时就会发现,要从上面剪下一个的长方形纸片,不论怎样剪,都会包含一个奇,一个偶.我们再数一下奇字和偶字的个数,奇字有30个,偶字有32个.所以这张纸不能剪成若干个的长方形纸片.2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:1,1,2,3,5,……那么这串数的第100个是奇数还是偶数?分析与解:这道题的规律是两奇一偶,第100个为奇数.【模拟试题】(答题时间:30分钟)1. 30个连续自然数的乘积是奇数还是偶数?2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?【试题答案】1. 30个连续自然数的乘积是奇数还是偶数?答:和是奇数2.有6张扑克牌,画面都向上,小明每次翻转其中的5张.那么,要使6张牌的画面都向下,他至少需要翻动多少次?答:5次3.博物馆有并列的5间展室的电灯开关.他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?答:第5展室灯亮着4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?答:不能.。

(完整版)四年级奥数奇数与偶数(教师用含答案)

(完整版)四年级奥数奇数与偶数(教师用含答案)

第二讲:奇数与偶数教学目标本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。

无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。

知识点拨一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论:推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。

推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一:奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数【巩固】 123456799100999897967654321+++++++++++++++++++++L L 的和是奇数还是偶数?为什么?【解析】 在算式中,1~99都出现了2次,所以123499999897964321++++++++++++++L L 是偶数,而100也是偶数,所以1234567991009998979676++++++++++++++++L L54321+++++的和是偶数.【巩固】 2930318788+++++……得数是奇数还是偶数?【解析】 偶数。

第一讲-奇数与偶数

第一讲-奇数与偶数

奇数与偶数一知识要点一个整数被2除,余数只可能是1或0,被2除余1的数叫奇数;被2除余0(或者说没有余数的)叫偶数。

性质(1)奇数+奇数=偶数,偶数+偶数=偶数;奇数+偶数=奇数(2)奇数个奇数相加,和为奇;偶数个奇数相加,和为偶;任意个偶数相加,和定是偶数。

(3)两个数的和是奇,那么它们的差一定是奇;两个数的和是偶数,他们的和一定是偶数。

(4)奇数×奇数=奇数,奇数×偶数=偶数;偶数×偶数=偶数一、例题解析:【例1】1+2+3+4+……+1986+1987其和是奇数还是偶数?【例2】(200+201+……+297)-(151+152+……197)的结果是奇数还是偶数。

【例3】五个连续奇数的和是1985,求这5个奇数。

【例4】1992是24个连续偶数的和,其中最大的偶数是多少?【例5】有一列数1、1、2、3、5、8、13、21、34……从第3个数开始,每个数都是它前边两个数的和,那么前100个数中有多少个偶数?【例6】在一次数学竞赛中第一组每人做五道题,第二组每人做四道题,如果学生总人数是奇数,做题总数是偶数,问第一组人数是奇数还是偶数?【例7】某城市举行小学数学竞赛,试卷共有20道题,评分的标准是:答对一题得5分,不答一题给1分,答错一题倒扣1分。

问:所有参赛同学的得分总和是奇数还是偶数?思维拓展:【例8】光彩小学三年级共有159名学生,准备其中选一名学生在庆祝教师节的大会上给教师献花,选的方法是159名学生站成一排报数,每次报奇数的同学落选,报偶数的同学不动,再报数重选,最后下一名同学当选,结果是三(2)班的宋宇同学被选中,问他第一次站队时站在什么位置上?二、反馈练习:【1】1+2+3+……+49+50的结果是奇数还是偶数?【2】1+2+3+4+5+6+……+1990+1991结果是奇数还是偶数?【3】(300十301十302十…十397)一(151十152十…十191)的结果是奇数还是偶数?【4】199个偶数和与199个奇数和的差是奇数还是偶数?【5】由501一直到599的和是奇数还是偶数?【6】四个连续奇数的平均数是8,这四个奇数分别是多少?【7】有一列数1、1、2、4、7、13、24、44、81……从第4个开始,每个数都是它前边三个数之和,那么第100个数是奇数还是偶数?【8】1983年中央电视台在小学生智力竞赛中有一道题是:12张卡片,其中3张写着1,3张写着3,3张写着5,3张写着7,你能否从中选出5张,使它们的和为20,为什么?【9】一串数排成一行:1,1,2,3,5,8,13,21,24,55,89……,到这串数的第1000个数为止,其中有多少个偶数?【10】在一次语文竞赛中一班每人做7道题,二班每人做6道题,如果学生总人数是偶数,做题总数是偶数,问一班人数是奇数还是偶数?思维拓展:【11】130人排成一列队,自1起往下报数,报奇数的人出列,留下再重新报数,这样继续下去,则报多少次后留下一个人,他在第一次报数时的数是多少?【12】电视台举办科技知识竞赛,共20道题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

奇数与偶数(一)
阅读思考:
其实,在日常生活中同学们就已经接触了很多的奇数、偶数。

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用2k 这个式子来表示偶数(这里k 是整数)。

因为任何奇数除以2其余数都是1,所以通常用式子21k +来表示奇数(这里k 是整数)。

奇数和偶数有许多性质,常用的有: 性质1 两个偶数的和或者差仍然是偶数。

例如:8+4=12,8-4=4等。

两个奇数的和或差也是偶数。

例如:9+3=12,9-3=6等。

奇数与偶数的和或差是奇数。

例如:9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。

性质2 奇数与奇数的积是奇数。

例如:91199⨯=等
偶数与整数的积是偶数。

例如:25102816⨯=⨯=,等。

性质3 任何一个奇数一定不等于任何一个偶数。

例1. 有5张扑克牌,画面向上。

小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗? 分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。

要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。

而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。

所以无论他翻动多少次,都不能使5张牌画面都向下。

例2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。

那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?
分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。

所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。

否则甲盒子中的黑子数不变。

也就是说,李平每次从甲盒子拿出的黑子数都是偶数。

由于181是奇数,奇数减偶数等于奇数。

所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。

例3. 如图(1-1)是一张88
⨯的正方形纸片。

将它的左上角一格和右下角一格去掉,剩下的部分能否剪成若干个12
⨯的长方形纸片?
图(1-1)
图(1-2)
分析与解答:如图1-2,我们在方格内顺序地填上奇、偶两字。

这时就会发现,要从上面剪下一个12
⨯的长方形纸片,不论怎样剪,都会包含一个奇,一个偶。

我们再数一下
⨯的长方奇字和偶字的个数,奇字有30个,偶字有32个。

所以这张纸不能剪成若干个12
形纸片。

2. 一串数排成一行,它们的规律是:前两个数都是1,从第三个数开始,每个数都是前两个数的和,也就是:
1,1,2,3,5,……
那么这串数的第100个是奇数还是偶数?
分析与解:
这道题的规律是两奇一偶,第100个为奇数。

【模拟试题】(答题时间:30分钟)
1. 30个连续自然数的乘积是奇数还是偶数?
2. 有6张扑克牌,画面都向上,小明每次翻转其中的5张。

那么,要使6张牌的画面都向下,他至少需要翻动多少次?
3. 博物馆有并列的5间展室的电灯开关。

他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?
4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?
【试题答案】
1. 30个连续自然数的乘积是奇数还是偶数?
答:和是奇数
2. 有6张扑克牌,画面都向上,小明每次翻转其中的5张。

那么,要使6张牌的画面都向下,他至少需要翻动多少次?
答:5次
3. 博物馆有并列的5间展室的电灯开关。

他从第一间展室开始,走到第二间,再走到第三间……,走到第五间后往回走,走到第四间,再走到第三间……,如果开始时五间展室都亮着灯,那么他走过100个房间后,还有几间亮着灯?
答:第5展室灯亮着
4. 有九只杯口向上的杯子放在桌子上,每次将其中四只杯子同时“翻转”,使其杯口向下,问能不能经过这样有限多次的“翻转”后,使九只杯口全部向下?为什么?
答:不能。

相关文档
最新文档