复变函数第三章习题课&答案
复变函数第三章答案

��� 在 C +1, 0 上,所以
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
1 ( ����
−
1
)dz = 1 (2π i) = π ,
C+1,0 z − i z + i
2i
同理如果 C 仅围绕 i 按顺时针转一周,有
∫ ∫ 1
1
���� C +1,0
1+
z2
dz
=
2i
( ���� 1 − 1 )dz = 1 (−2πi) = −π ,
dz = 1 ⋅( z −1)1−n 1− n
3 =
1
2 1− n
21−n −1
=
1 n−
1 ⎛⎜⎝1
−
1 2n−1
⎞ ⎟
。
⎠
所以,
⎧k ⋅(±2π i) + ln 2, n =1
In
=
⎪
⎨ ⎪⎩
n
1 −1
⎛⎜1 ⎝
−
1 2n−1
⎞ ⎟
,
⎠
。
n ≠1
6. 设 C = 0�,1是不过点 ±i 的简单光滑曲线,证明:
���
���
显然 C + 3, 2 构成简单闭曲线,并且1在 C + 3, 2 的内部,所以
∫ ���� 1 dz = 2π i ,
C+3,2 z −1 同理如果 C 仅围绕1按顺时针转一周,有
于是
∫ ���� 1 dz = −2π i ,
C+3,2 z −1
∫ ∫ ∫ ∫ I1 =
1 dz =
复变函数第3篇习题课

y
C2
解 设C1 : z x, x : 1 1
C1 1 O
|z|z dz C1
0 1
1
x
|x|x dx
1
C2 : z ei t , t : 0 d z eit i d t
|z|z dz
C2
ei
t
e i
t
i d t
idt i
0
0
i 原式= | z | z d z | z | z d z
解(C解3i1C)Cg自C22C:1CC:1z原C11zz2z::C22点d1dzzCz3沿xz2虚3ix•iy3iy轴,,0,1,03yx(至(i3yx::x::0i0,00i再yi))1水223dd13平((x3C至1 zCi3i21y)zd)2izd6z3019(ii原y032原)3式x62 式d2i=(d=i6yx)6232962363ii i
故 被积函数 在 | z | 1 上 处处解析
积分结果为0. 6
49页8 直接得到下列积分的结果,并说明理由
Ñ (3) ez (z2 1) d z |z|1
解 结果为 0 , 因为 被积函数 ez (z2 1) 在 | z | 1上 处处解析, 所以 积分结果为0.
Ñ (4)
|z| 1 2
1 (z2 1) (z3 1)
dz
解 结果为 0 , 由 (z2 1) (z3 1) 0 得到
z 1, z 1 3 i
2 这2些点都在圆 | z | 1 的外部。
故
被积函数
在
|
z
|
1
上
2
处处解析
2
积分结果为0. 7
49页9 沿指定曲线的正向计算下列积分
复变函数 高等教育出版社 课后习题详解 第三章

G
0
’ ( ## #C A ( ) -"
& $ ,
$ 1
& $ ,
& $ ,
&
& $ ,
& $ ,
$ 1
0
& $ ,
& $ ,
&
小结 ! 找出实部虚部分别计算 % 8.%利用在单位圆周上#C ! 的性质 ! 及柯西积分公式说明 # A #C # 0
G
其中 0 为正向单位圆周 F ! $ #FC !% & $ 解 ! 注意到复积分 -" 在 ## # 中积分变量# 始终限制在; 上变化 ! A
.
5 6 ! C4 1 " , 7 8 1 " C6
$ 1 $ )A 1 5 6 ?4 " # 1 1B$ 1 6 6 7 8 2 1 4 5 6 C$ 4 ?5 1 A 1D 4 1 1 A 1C $ $" , 6 6 6 7 8 C$ 4 ?5 ?5 ( $ * +’ ## #C 6 8 1 $ )A 1 A -" G ?7 8 4 5 6 81 1 1 A 1D 6 A 1 CD$ $" , C$ 6 ?7 ?7
复变函数 西安交通大学 第四版 高等教育出版社 课后答案
-$ 7 & 沿下列路线计算积分? #% 8!% , #A # 自原点至 -$ $ 的直线段 & !
课后习题全解 !!!
& # 自原点沿实轴至 -! 再由 - 沿直向上至 -$ $ & 自原点沿虚轴至$ 再由$ 沿水平方向向右至 -$ # ! $ % 解 !! 所给路线的参数方程为 % 起点参数1 # # ! -$ ## " $ 1 1 # ,( (!! 由复积分计算公式 % 终点参数1 #!% ,!
复变函数第三章习题答案

第三章柯西定理柯西积分掌握内容:1.柯西积分定理:若函数()f z 在围线C 之内是处处解析的,则()Cf z dz =⎰0 。
2.柯西积分定理的推广:若函数()f z 在围线C 之内的,,...n z z z 12点不解析,则()()()...()nCC C C f z dz f z dz f z dz f z dz =+++⎰⎰⎰⎰12,其中,,...nC C C 12是分别以,,...n z z z 12为圆点,以充分小的ε为半径的圆。
3.若在围线C 之内存在不解析点,复变函数沿围线积分怎么求呢?——运用柯西积分公式。
柯西积分公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()Cf z dz if z z z π=-⎰002 4.柯西积分公式的高阶求导公式:若函数z 0在围线C 之内,函数()f z 在围线C 之内是处处解析的,则()()()()!n n Cf z i dz f z z z n π+=-⎰0102习题:1.计算积分⎰++-idz ix y x 102)(积分路径是直线段。
解:令iy x z +=,则idy dx dz += 积分路径如图所示:在积分路径上:x y =,所以313121212131211032223211211211210102102102i x ix y i x ix x dxix x i iydy xdx dx ix x dy ix x i iydy ydx dx ix x idy dx ix y x dz ix y x ii+-=-+--+=++--+=++--+=++-=+-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++)()()()()())(()(2.计算积分⎰-iidz z 。
积分路径分别是:(1)直线段,(2)右半单位圆,(3)左半单位圆。
解:(1)令z x i y =+,则z dz xd idy ==+,在积分路径上,0x =,所以11iiz dz iydy iydy i--=-+=⎰⎰⎰(2)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//222i i iz dz ie d i πθπθ--==⎰⎰(3)令i z re θ=,在积分路径上:,1i z r dz ie d θθ===//2322ii iz dz ie d i πθπθ-==⎰⎰5.不用计算,证明下列分之值为零,其中为单位圆。
数学物理方法习题解答(完整版)

数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。
2、k 为任意整数,则34+k 的值为 。
3、复数i i (1)-的指数形式为 。
4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。
(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。
复变函数习题答案第3章习题详解
解:分四种情形讨论:
1)若是 与 都在 的外部,那么 在 内解析,柯西—古萨大体定理有
2)若是 与 都在 的内部,由柯西积分公式有
3)若是 在 的内部, 都在 的外部,那么 在 内解析,由柯西积分公式有
和 知足拉普拉斯方程: ,
,
故 是 的解析函数。
23.设 为区域 内的调和函数及 ,问 是不是 内的解析函数?什么缘故?
解:设 ,那么 ,
,
,
因为 为区域 内的调和函数,具有二阶持续偏导且知足拉普拉斯方程
, 是 内的解析函数。
24.函数 是 的共轭调和函数吗?什么缘故?
解: , , , ,
故函数 不是 的共轭调和函数。
证明:因为 在 内解析,故积分 与途径无关,取从原点沿实轴到 ,再从 沿圆周 到 的曲线作为 ,那么:
13.设 和 为相交于 、 两点的简单闭曲线,它们所围的区域别离为 与 。 与 的公共部份为 。若是 在 与 内解析,在 、 上也解析,证明: 。
证明:如下图, 在 与 内解析,在 、 上也解析,由柯西—古萨大体定理有:
第三章习题详解
1.沿以下线路计算积分 。
1)自原点至 的直线段;
解:连接自原点至 的直线段的参数方程为:
2)自原点沿实轴至 ,再由 铅直向上至 ;
解:连接自原点沿实轴至 的参数方程为:
连接自 铅直向上至 的参数方程为:
3)自原点沿虚轴至 ,再由 沿水平方向向右至 。
解:连接自原点沿虚轴至 的参数方程为:
25.设 和 都是调和函数,若是 是 的共轭调和函数,那末 也是 的共轭调和函数。这句话对吗?什么缘故?
复变函数习题答案第3章习题详解.docx
第三章习题详解1・沿下列路线计算积分J;' z2dz o1)自原点至3 + i的直线段;解:连接自原点至34-1的直线段的参数方程为:z =(3+》0<r<l dz =(3 + i)dt2)自原点沿实轴至3,再由3铅直向上至3 +八解:连接自原点沿实轴至3的参数方程为:z = t 0</<1 dz = dt3 1=-33 «3连接自3铅直向上至3 +,的参数方程为:z = 3 + ir O<Z<1 dz = idt J J z2dz = £(3 + it)2 idt = -(34-17)3=-(3 + i)3彳" 3 n 3・・・ f z2dz = £t2dt 4- £(3 + it)2id/ = 133 4-1(3 4-1)3 - i33 = |(3 + i)33)自原点沿虚轴至i,再由i沿水平方向向右至3+i。
解:连接自原点沿虚轴至i的参数方程为:z = it 0</<1 dz = idtJ:Z2dz = J;(it)2 idt = | (i/)3= * 尸连接自i沿水平方向向右至3 + i的参数方程为:z = t^i 0<^<1 dz = dtr*edz=jo edz+广eaz=y+敦+厅-|/3=|(1+厅2.分别沿y =兀与y =兀2算出积分J;'(兀2 + iy^dz的值。
解:•/ j = x x2 + iy = x2 + ix ••• dz = (1 + i)dx・・・『(x2 + iy)dz = (1+ (x2 + ix)dx = (1 +•/ y = x2A x2 + iy = x2 4- ix2 = (1 + i)x2:. rfz = (1 + ilx)dxf 衣=[(3+03&二(3+讥♦3+i0=(3 + 厅0 d^ed Z=[\2dt=护而(W 宙討…T + 一 11.1.11 5. i = 1—i3 3 2 26 6/(z) =1 _ 1 z 2+2z + 4~ (z + 2)2在c 内解析,根据柯西一古萨定理,$匹J z 2 + 2z + 4/. £1+,(x 2+ iy)dz = (1 + /)£ * (1 + ilx)dx = (14-彳+ 设/(z)在单连通域〃内处处解析,C 为B 内任何一条正向简单闭曲线。
《复变函数》第四版习题解答第3章
-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫
2π
0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]
∫
2π
0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'
复变函数期末复习课件第三章3-3.2
任何一条正向简单闭曲线, 而且它的内部全含于D.
证 设 z0 为 D内任一点, 先证 n 1的情况,
2
根据导数的定义,
f
( z0
)
lim
z0
f (z0 z) z
f (z0 )
从柯西积分公式得
1 f (z)
f (z0 ) 2i C z z0 dz,
f
( z0
z)
i i
)2 )2
dz
y
2i ez (2 1)!(z i)2
(1 i)ei 2
,
zi
C1 i
o
C2 i
C
x
10
同理可得
C2
ez (z2 1)2 dz
(1 i)ei , 2
于是
C
(
z
2
ez
1)2
dz
(1 i)ei (1 i)ei
z0 0 在 z 1内, n 1,
ez cos z
z 1 z2 dz
2i (ez cos z)
1!
z0
2i[ez cos z ez sin z] 2i. z0
13
例3
求积分
z
1
ez zn
dz
.
(n 为整数)
解
(1) n 0,
ez zn
2
2
(1 i)(ei iei ) 2
(1 i)2(cos1 sin 1) 2
i
2
sin
1
4
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
那么B到A就是曲线C的负向, 记为 C .
o
A
x
4
2.积分的定义
设函数 w f ( z ) 定义在区域 D 内, C 为区域 D 内起点为 A 终点为 B的一条光滑的有向曲线 , 把曲线 C 任意分成 n 个弧段, 设分点为 A z0 , z1 , , zk 1 , zk ,, zn B ,
C k 1 Ck
n
( 2) f ( z )dz 0.
其中C 及 Ck 均取正方向 ;
这里 为由 C , C1 , C 2 , , C n 组成的复合闭路 (其方向是 : C 按逆时针进行, C1 , C 2 , , C n按 顺时针进行).
13
8.柯西积分公式
如果函数 f ( z ) 在区域 D 内处处解析, C 为 D 内的任何一条正向简单 闭曲线, 它的内部完全含 于 D, z0 为 C 内任一点, 那末 1 f (z) f ( z0 ) dz . C 2i z z0
0 0
1
1
1 1 i 1 i. 2 2
说明 同一函数沿不同路径所得积分值不同.
19
例2 设C为圆周 z 1 2 证明下列不等式.
z 1 c z 1 dz 8.
证
因为 z 1 2,
所以
因此
z 1 2 z 1 z 1 2 2, 2 z 1 2
25
( 2)
ez 在C内有两个奇点z 0及z i分别 2 z ( z 1)
以z 0及z i 为圆心,以1 4 为半径作圆C1及C 2 , 则 由复合闭路定理有
ez ez ez C z( z 2 1) dz C1 z( z 2 1) dz C2 z( z 2 1) dz
z e e 在C 2内解析, f1 ( z ) 2 在C1内解析, f 2 ( z ) z( z i ) z 1
z
因此由柯西积分公式得
26
ez ez ez C z( z 2 1) dz C1 z( z 2 1) dz C2 z( z 2 1) dz
e z ( z 2 1) e z z( z i ) dz dz C1 C 2 z zi
记 max{sk }, 当 n 无限增加且 0 时,
1 k n
如果不论对C 的分法及) 沿曲线 C 的积分, 记为
f ( k ) zk . C f ( z )dz lim n k 1
z 1 z 1 c z 1 dz c z 1 dz
2 2 2 8.
20
例3 解
计算
cos(z 100 z 1) dz . z 1 2 z 2z 4
当 z 1 时,
z 2 z 4 4 2 z z 4 2 1 1,
定理 区域D内的解析函数的虚部为实部的共 轭调和函数.
17
三、典型例题
例1 计算 czdz 的值,其中C为 x t , y t ,0 t 1; 1)沿从 (0,0) 到(1,1) 的线段: C1 : x t , y 0,0 t 1, 2)沿从 (0,0) 到 (1,0) 的线段: 与从 (1,0) 到 (1,1) 的线段 C 2 : x 1, y t ,0 t 1 所接成的折线. y 解
设 f ( z ), g( z )沿曲线C连续.
(1) f ( z )dz
C C C C
f ( z )dz;
( 3) [ f ( z ) g( z )]dz f ( z )dz g( z )dz;
C C C
( 2) kf ( z )dz k f ( z )dz; ( k为常数)
10
6.原函数的定义
如果函数 ( z ) 在区域 B 内的导数为f ( z ), 即 ( z ) f ( z ), 那末称 ( z ) 为 f ( z ) 在区域 B 内 的原函数.
因此 F ( z ) f ( )d 是 f ( z ) 的一个原函数.
z
f ( z ) 的任何两个原函数相差一个常数.
n
y
A
1 2
z1 z2
k z k zk 1
C z n 1
B
o
x
6
3.积分存在的条件及计算
(1)化成线积分 设 f ( z ) u( x , y ) iv ( x , y ) 沿逐段光滑的曲线 C
C f ( z )dz C u( x, y)dx v( x, y)dy i C v( x, y)dx u( x, y)dy.
2
2
故由柯西积分定理得
cos(z z 1) dz 0. z 1 2 z 2z 4
100
21
3 例4 沿指定路径C : z i 计算以下积分 2 1 ez (1) dz; ( 2) dz . 2 2 C z ( z 1) C z ( z 1)
1 在C内有两个奇点z 0及z i分别 解 (1) 2 z( z 1) 以z 0及z i 为圆心,以1 4 为半径作圆C1及C 2 , 则 由复合闭路定理有
如果 C 是圆周 z z0 R e i , 则有 1 2π i f ( z0 ) f ( z R e )d . 0 0 2π 一个解析函数在圆心处的值等于它在圆周上的 平均值.
14
9. 高阶导数公式
解析函数 f ( z ) 的导数仍为解析函数 , 它的 n 阶 导数为 : f
C1 , C 2 , , C n 是在 C 内部的简单闭曲线 , 它们 互不包含也互不相交 , 并且以 C , C1 , C 2 , , C n 为边界的区域全含于D, 如果 f ( z ) 在 D 内解析,
那末
D
C
C1
C2
C3
12
(1) f ( z )dz f ( z )dz ,
8
5. 柯西-古萨基本定理 (柯西积分定理)
如果函数 f ( z ) 在单连通域 B 内处处解析, 那末函数 f ( z ) 沿 B 内的任何一条封闭曲线C 的积分为零 :
c f ( z )dz 0.
定理1 如果函数 f ( z ) 在单连通域 B 内处处解 析, 那末积分 f ( z )dz 与连结起点及终点的路
y
C
i
C2 C1
O
i
x
23
1 1 1 C z( z 2 1)dz C1 zdz C2 2( z i ) dz
1 2i 2i 2
i .
24
解法二
利用柯西积分公式
1 1 在C 2内解析, f1 ( z ) 2 在C1内解析, f 2 ( z ) z( z i ) z 1
(4) 设C由C1 , C2连结而成, 则
C f ( z )dz C
1
f ( z )dz f ( z )dz;
C2
(5) 设曲线 C 的长度为 L, 函数 f ( z ) 在 C 上满足 f ( z ) M , 那末
C f ( z )dz C
f ( z ) ds ML.
1 1 1 C z( z 2 1) dz C1 z( z 2 1) dz C2 z( z 2 1) dz
22
解法一
利用柯西-古萨基本定理及重要公式 1 1 1 1 1 1 2 z( z 1) z 2 z i 2 z i
由柯西-古萨基本定理有 1 1 C1 2 z i dz 0, 1 1 C1 2 z i dz 0, 1 1 1 C2 zdz 0, C2 2 z i dz 0,
在每个弧段 zk 1 zk ( k 1,2,, n) 上任意取一点 k ,
y
A
1 2
z1 z2
k z k zk 1
C z n 1
B
o
x
5
作和式 Sn f ( k ) ( zk zk 1 ) f ( k ) zk ,
k 1 k 1
n
n
这里 zk zk zk 1 , sk zk 1 zk的长度,
定理 如果函数 f ( z ) 在单连通域 B 内处处解析, G ( z ) 为 f ( z ) 的一个原函数, 那末
z0
z
z1
0
f ( z )dz G ( z1 ) G ( z0 )
这里 z0 , z1 为域 B 内的两点.(牛顿-莱布尼兹公式)
11
7. 闭路变形原理
一个解析函数沿闭曲线的积分,不因闭曲 线在区域内作连续变形而改变它的值. 复合闭路定理 设 C 为 多连通域 D 内的一条简单闭曲线 ,
(n)
n! f (z) ( z0 ) ( n 1,2,) n 1 dz 2i C ( z z0 )
其中 C 为在函数 f ( z ) 的解析区域 D 内围绕 z0 的 任何一条正向简单闭曲 线, 而且它的内部全含于D.
15
10.调和函数和共轭调和函数
如果二元实变函数 ( x , y ) 在区域 D内具 有二阶连续偏导数 , 并且满足拉普拉斯方程 2 2 2 2 0, x y 那末称 ( x , y ) 为区域 D 内的调和函数.
zdz (t it )d(t it )
c
1
(1,1)
( t it )(1 i )dt
0
0 1
C
O
C2
2tdt 1;
0
1
C 1 (1,0)
x
18
2) zdz zdz zdz