SPD的选择原则方法

合集下载

建筑物第一级SPD的选择

建筑物第一级SPD的选择

建筑物第一级低压电源SPD的选择顾俭(铁一院乌鲁木齐勘测设计院)摘要通过分析不同结构类型的电涌保护器(SPD)所具有的特点,依据相关规范,阐述了建筑物第一级低压电源SPD的选型原则,并给出了该处SPD的电涌能量承受能力和电压保护水平的校验计算过程。

关键词电压开关型SPD 电涌能量承受能力电压保护水平1 概述雷击电磁脉冲(LEMP)是由于闪电直接击在建筑物防雷装置上,导致与防雷装置相连的导体电位升高,并且对周围环境产生电磁辐射干扰,它对电子信息设备的危害最大。

雷电流的主要泄放通道是通过共用接地极、电源线路、各类信号传输线路和进入建筑物的金属管等导体。

雷击电磁脉冲的防护措施之一,是将以上通道和建筑物内所有金属物做等电位连接,减小建筑物内各金属物与各系统之间的电位差,从而达到保护电子设备的目的。

对于不能直接连接的带电体(如电力线和通信线等设施),应采用暂态连接的办法,即采用电涌保护器(SPD)连接。

正确的设计选型是使SPD对电子信息系统进行有效防护的必要前提,尤其是建筑物第一级低压电源SPD需要泄放掉进户低压电力线路上绝大多数的雷电流,作用至关重要。

然而在实际工程中经常出现建筑物内从室外引来的低压线路上安装的第一级SPD采用限压型金属氧化物压敏电阻产品、忽略了SPD的电涌能量承受能力和电压保护水平校验计算等错误做法。

本文将依据相关规范,阐述第一级低压电源SPD的选型原则和计算过程。

2 结构类型选择按照结构类型低压电源SPD 分为3种:电压开关型、限压型、复合型。

电压开关型SPD 具有在没有电涌时有很高阻抗,当出现电涌电压时能立即转变成低阻抗的特点,主要采用放电间隙类的非线形元件;限压型SPD具有没有电涌时具有很高的阻抗,随着电涌电流和电压的增加,其阻抗连续减小的特点,主要采用金属氧化物压敏电阻类的非线形元件;复合型SPD由电压开关型元件和电压限制型元件组成SPD,可表现出电压开关型或限压型特性或两者都有的特性,这决定于所加的电压的特性。

电涌保护器选型原则

电涌保护器选型原则

电涌保护器选型原则根据所选择的电涌保护器和预期的环境影响,保护系统的电源和设备所需的保护措施被分为三级。

分别对应国标GB50057-94(2000版)的耐冲击过电压类别的W类6KV、川类4KV、1类1.5KV 的I 级(B)、II 级(C)、III 级(D)电涌保护器(SPD)。

各级保护装置在浪涌放电能力水平和保护级别上有所不同。

在传统的三级保护概念情况下,其结构如下:IEC标准1024中10/350波型被定义为雷击电流波形,并且用于I级(B)分级试验产品的测试波形。

8/20波型定义为开关电磁脉冲的波形,并用于II级(C)分级试验产品的测试波形。

在同等幅值时两种冲击电流的库伦量的比及焦耳量之比:Q (10/350)〜20XQ (8/20); E (10/350)〜200XE (8/20)。

能量配合在IEC 61312-3 (雷电电磁脉冲的保护第三部分:对电涌保护器的要求2000版)之7能量配合7.1能量配合的一般目的中指出“如果对0至Imax1(lpeak1)之间的每一个浪涌电流值,由SPD2耗散的能量低于或等于SPD2 的最大耐受能量(对去耦元件也是如此),则实现了能量的配合”。

这个最大耐受能量定义为SPD所能耐受的不致引起性能恶化的最大能量。

可以从试验结果获得(对I 级测试用Iimp ;对II级测试用Imax在工作状态试验中测出的能量)。

并且在IEC-61643-11标准中的(等同国际GB18802-1)“连接至低压配电系统的电涌保护器;第1部分;性能要求和试验方法(及2001年版修订件1号)”中的“电涌保护器的去耦”给出了“电压开关型SPD之间的配合及与电压限制型SPD的配合”指出去耦元件可采用分立设备,也可采用防雷区界面和设备之间的线缆的自然电阻和电感” 并给出了计算公式及结论-开关型与限压型之间线缆长度应为5-10 米,限压型SPD 之间线缆长度应为3-5 米,如达不到时,可串接足够电感量的去耦元件。

浪涌保护器(SPD)上端的断路器或熔断器的选择

浪涌保护器(SPD)上端的断路器或熔断器的选择

浪涌保护器(SPD)上端的断路器或熔断器的选择浪涌保护器(spd)上端的断路器或熔断器的选择2021-02-1608:21:42|分类:电气|标签:|字号大中小订阅浪涌保护器后备维护元件可以使用熔断器和小型断路器或塑壳断路器,与spd协调后,应当可以维护在额定电涌电流促进作用时,后备维护元件不动作,确保电涌电流的正常A3C,同时其促进作用在两支路上的残压ur高于用电设立备的保护水平up。

以保证系统及用电设备安全。

具体的选用可参见下表:放电(冲出)电流熔断器额定电流a断路器额定电流a备注5ka(8/10)32gg6c型15ka(8/10)40gg10c型20ka(8/10)50gg16c型30ka(8/10)63gg25c型40ka(8/10)100gg40c型60ka(8/10)160gg100c型25ka(10/350)250gg采用塑壳断路器35ka(10/350)315gg施耐德常用技术问题解答50ka(10/350)断路器为160ans160ntm-d35ka(10/350)断路器为125anc125hc65ka(8/20)100ka断路器为50ac65-nc100c40ka(8/20)断路器为20ac65c8~20ka(8/20)断路器为10ac65c浪涌保护器上端开关或熔断器选择方法:根据(浪涌保护器的最小保险丝强度a)和(所互连配电线路最小供电电流b)来确定(开关或熔断器的断路电流c)。

确认方法:当:b>a时c小于等于a当:b=a时c小于a或不安装c当:b浪涌保护器前加设熔断器与否合理??本人曾经做过一个工程进线的低压配电柜加设了浪涌保护器,浪涌保护器的前面加设了断路器,本人就不太明白既然起保护作用,就该时时刻刻起保护作用,为什么加设断路器?现在本人搞的一个工程居然在浪涌保护器前面设置了熔断器(没有断路器),本人也不明白,熔断器不是电流很大时ERM吗,ERM了还起至什么维护促进作用??恳请高手给予指点,不胜感激。

spd选型

spd选型

电源系统SPD装设的选用原则
如果电气设备由架空线供电,或由埋地电缆引入供电,应在电源线处装设SPD。

当有重要的电子设备安装于建筑物内时,应在电源进线处和电子设备供电处根据设备耐过压的能力装设多级SPD。

1、 SPD的标称放电电流参考值如下:
(1)LPZ0A区(表一)
2、信息系统电源线路雷电浪涌保护器标称放电电流的选择标准,可根据表三要求选型
电源线路浪涌保护器标称放电电流参数值(表三)
6、SPD应配有空气开关或熔断器,额定工作电流一般取SPD同流容量1/1000,同时比电源回路前一级的空气开关的额定电流小。

在实际工作中,第一级SPD前段配100A的空气开关或熔断器
7、为防止配电线由于雷电流引起的空开跳闸,SPD一般并联安装在各级配电柜(箱)空气开关的电源输入侧,二端子SPD的选择,应考虑其负载功率不能超过二端子,并留有一定的余量,
8、浪涌保护器连接导线应平直,其长度不宜大于0.5m,当电压开关型浪涌保护器至限压型浪涌保护器之间的线路长度小于10m,限压型浪涌保护器之间的线路长度小于5m时,在两极浪涌保护器之间应加装退耦装置。

当浪涌保护器具有能量自动配合能时,浪涌保护器之间的线路长度不受限制。

浪涌保护器应有过电流保护装置,并宜有劣化显示功能。

9、配电线路各种设备耐冲击过电压额定值见(表六)。

浪涌保护器SPD的后备保护选用原则

浪涌保护器SPD的后备保护选用原则

浪涌保护器SPD的后备保护选用原则浪涌保护器SPD的后备保护选用原则樀要:通过对建筑物的电子信息系统各级防雷的电源线路浪涌保护器标称放电电流的I2t及电压保护水平的分析,说明浪涌保护器SPD的后备保护宜采用熔断器,并提出于建筑物的电子信息系统各级防雷相对应的电源线路浪涌保护器后备保护熔体额定电流推荐值关键词浪涌保护器 SPD 后备保护选用涌保护器后备保护熔体额定电流推荐值随着我国经济、社会的快速发展,各种电子信息技术产品越来越多地渗入到社会和家庭生活的各个领域,雷电过电压产生的危害和损失也越来越大,人们对雷电过电压的防治也空前的重视。

因此在民用和工业建筑中SPD(浪涌保护器)被大量的使用。

国标《建筑物电子信息系统防雷设计规范》(GB500343-2004)中根据建筑物电子信息系统所处的环境、重要性和使用性质以及遭受雷击的风险,把民用建筑物的电子信息系统防雷分为A、B、C、D四级,其中对SPD的通流容量也进行了规定。

详见下表:电源线路浪涌保护器标称放电电流参数值一问题的提出:《建筑物防雷设计规范》(GB-50057-94 2000年版)第6.4.4条规定“电浪涌保护器必须能承受预期通过它的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。

”但由于SPD的老化问题及检修方便,作为SPD故障短路的后备保护,SPD支路过流保护是必要的。

规范中只明确SPD后备保护器采用熔丝、断路器或剩余电流保护器,但没有明确多大通流容量的SPD,设置多大整定值的SPD支路过流后备保护。

各个SPD生产厂商的推荐标准也不一样,有的厂商甚至推荐不设置。

电气设计中究竟采用何种后备保护器以及整定值设为多少,也只能凭设计人员的经验值或厂商的推荐值来选取。

笔者查阅大量资料和结合工程实践提出以下几点不成熟的意见。

二SPD为什么要设置后备保护现在市场上可以购买的SPD主要可分为三种型式:电压开关型、电压限制型和复合型。

SPD的选择原则方法

SPD的选择原则方法

SPD的选择原则:首先划分建筑物内的雷电保护区,分为:LPZOA区、LPPB区、LPZl区及LPZn+l后续防雷区。

所有进入建筑物的外来导电物均在L—P20A或LP2PB与LPZl区交界处做等电位连接,并设置SPD,如有后续分区,一般也适用此原则。

然后,进行雷电流分流计算与雷击风险评估分级,并据此进行浪涌保护器的选择。

浪涌保护器从工作原理和性能上分为电压开关型、限压型和组合型。

(1)电压开关型SPD在无浪涌出现时为高阻抗,当浪涌电压达到一定值时突变为低阻抗,此类SPD通常采用放电间隙、充气放电管、闸流管和三端双向可控硅元件作为组件。

它的特点是放电能力强,但残压较高,通常为2—4kV,测试该器件一般采用10/350ps的模拟雷电:中击电流波形。

电压开关型SPD完全可以保护电气线路免遭雷电造成的涌流损害,特别适用于I级雷电过电压保护,所以,一般安装在建筑物LP20与LPZl区的交界处,可最大限度地消除电网后续电流,疏导10/350us的雷电冲击电流。

(2)限压型SPD在无浪涌出现时为高阻抗,随着浪涌电流和电压的增加,阻抗连续变小。

此类SPD通常采用压敏电阻、抑制二极管等作为组件,有时称这类SPD为钳制型SPD。

它的残压较低,测试该器件一般采用8/20us的模拟雷电:中击电流波形。

因其箝位电压水平比开关型SPD要低,故常用于II级或II级以下的雷电过电压和操作过电压保护。

它一般安装在雷电保护区建筑物内,疏导8/20us的雷电冲击电流,在过电压保护中具有逐级限制雷电过电压的功能。

(3)组合型SPD是由电压开关型组件和限压型组件组合而成,利用限压型组件对浪涌电压的反应速度非常快的特点,在一般雷电过电压的保护时,由它承受浪涌电流,其标称放电电流可达10—20kA;若遇到较大量级的雷电过电压,第一级由限压型组件组成的电路保险管自动断开,由第二级电压开关型组件进行雷电过电压保护。

作为组合型SPD,其电压型组件能随冲击电流容量一般>lOOkA。

SPD标称放电电流_In的选择

SPD标称放电电流 In的选择2、电涌保护器称放电电流In值的选择原则对于在建筑物中所使用的电涌保护器(SPD)设备GB 50057-94(2000版)《建筑物防雷设计规范》这本国家强制执行标准做了如下要求:标准第6.4.4条规定“电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大箝压,有能力熄灭在雷电流通过后产生的工频续流。

”在建筑物进线处和其它防雷区界面处的最大电涌电压,即电涌保护器的最大箝压加上其两端引线的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。

为使最大电涌电压足够低,其两端的引线应做到最短。

在不同界面上的各电涌保护器还应与其相应的能量承受能力相一致。

当无法获得设备的耐冲击电压时 220/380V 三相配电系统的设备可按表6.4.4选用。

220/380V三相系统各种设备耐冲击过电压额定值表6.4.4注:Ⅰ类──需要将瞬态过电压限制到特定水平的设备;Ⅱ类──如家用电器、手提工具和类似负荷;Ⅲ类──如配电盘,断路器,包括电缆、母线、分线盒、开关、插座的布线系统,以及应用于工业的设备和永久接至固定装置的固定安装的电动机等一些其他设备;Ⅳ类──如电气计量仪表、一次线过流保护设备、波纹控制设备。

GB 50057-94(2000版)《建筑物防雷设计规范》标准的表6.4.4同GB 50343-2004《建筑物电子信息系统防雷技术规范》标准的表5.4.1-1是一样的,后者引用前者,表中的数据都来自于IEC标准。

可见二者在对电涌保护器的选择和保护目的上是一致的。

都是依据线路中设备所能承受的冲击过电压值来进行选择。

IEC标准将由电网供电的电气设备按其耐雷电脉冲过电压水平划分为四级,以便合理地确定不同的防护措施。

雷电脉冲过电压可随雷电传导方向衰减,但调查表明这种衰减并不明显,更合理和实用的确定过电压水平的方法是概率统计法。

上述表中装置的标称电压为各国通用的标称电压。

电涌保护器选用原则-2013

电源系统电涌保护器(SPD)选用(2013版)一、主要依据《建筑物电子信息系统防雷技术规范》 GB50343-2012《建筑物防雷设计规范》 GB50057-2010二、按建筑物电子信息系统的重要性和使用性质,确定本单位目前的设计的建筑物(主要为住宅)的雷电防护等级为D级。

经计算当第一级浪涌保护器保护的线路长度大于100m 时,需设第二级浪涌保护器,当第二级浪涌保护器保护的线路长度大于50m时,需在被保护设备处设第三级浪涌保护器;在具有重要终端设备或精密敏感设备处,可安装第三级SPD。

三、SPD的选用原则及主要参数1、第一级SPD (主要安装在建筑物380V低压配电柜(箱)总进线处)1.1、在IPZ0A或LPZ0B区与LPZ1区交界处,在电源引入的总配电箱出应装设Ⅰ级试验的电涌保护器。

主要参数需满足以下要求:波形 10/350μS最大持续运行电压Uc≥253V电压保护水平Up≤2.5KV冲击电流Iimp≥12.5KA1.2、当进线完全在LPZ0B或雷击建筑物和雷击与建筑物相连接的电力线路或通信线上的失效风险可以忽略时,可采用Ⅱ级试验的电涌保护器。

主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤2.5KV标称放电电流In≥50KA1.3、过电流保护器(熔断器和断路器,优先使用熔断器),选用100A2、第二级SPD (主要安装在动力配电柜、楼层配电箱、水泵房、中央控制室、消防、电梯机房、屋面用电设备等)。

2.1、主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤2KV标称放电电流In≥10KA2.2、过电流保护器(熔断器和断路器,优先使用熔断器),选用32A3、第三级SPD (主要安装在重要的终端设备或精密敏感设备处,如信息机房、办公室入室配电箱等)。

3.1、主要参数需满足以下要求:波形 8/20μS最大持续运行电压Uc≥253V电压保护水平Up≤1.2KV标称放电电流In≥3KA3.2、过电流保护器(熔断器和断路器,优先使用熔断器),选用16A四、产品选用要求(需在说明中注明)选用的浪涌保护器(SPD)须经过北京雷电防护装置测试中心或上海防雷产品测试中心的检测通过,并经过当地防雷装置主管机构的备案。

SPD选择

SPD选择原则:(1)在电源引入的总配电箱处应装设Ⅰ级实验的电涌保护器:电压保护水平U p≤2.5KV;当无法计算确定时,冲击电流I imp≥12.5KA当采用GB50057-2010表J1.2(P89)中的接线形式2(3P+N接线)时,N线和PE线间电涌保护器的冲击电流为:I imp≥12.5KAx4=50KA(三相系统);I imp≥12.5KAx2=25KA(单相系统)常常采用接线形式1,即N线和PE线间电涌保护器的冲击电流为:I imp≥12.5KA一类、二类、三类防雷建筑均按此规定装设,详见规范4.2.4-9一类(P18),4.3.8-4二类(P25),4.4.7-2三类(P29)条款。

(2)当Yyn0或Dyn11型接线的配电变压器设在本建筑物内或外墙处,应在变压器高压侧装设避雷器,在低压侧的配电屏上也应装设电涌保护器。

a.当有线路引出本建筑物至其他独自敷设接地装置的配电装置时,应在母线上装设Ⅰ级实验的电涌保护器;电压保护水平U p≤2.5KV;当无法计算确定时,冲击电流I imp≥12.5KAb.当无线路引出本建筑物时应在母线上装设Ⅱ级实验的电涌保护器;电压保护水平U p≤2.5KV;当无法计算确定时,冲击电流I imp≥5KA;二类、三类防雷建筑均按此规定装设。

详见4.3.8-5二类(P25),4.4.7-2三类(P29).(3)固定在建筑物上的节日彩灯,航空障碍标志灯等的配电箱应在开关的电源侧装设Ⅱ级实验的电涌保护器;电压保护水平U p≤2.5KV;标称放电电流In应根据具体情况计算确定,详见4.5.4-3(P32)二类防雷建筑物时,标称放电电流I n≥20KA;三类防雷建筑物时,标称放电电流I n≥15KA;屋顶风机配电箱内电涌保护器装设类同,只是电源开关一般为接通状态。

雷电流为高频电流,沿建筑物表面流走,屋顶配电线路分流电流很小,故采用Ⅱ级试验电涌保护器就可以了。

(4)靠近需要保护的设备处,即LPZ2区和更高处的界面处,当需要装设电涌保护器时,对电气系统宜选用Ⅱ级或Ⅲ级试验的电涌保护器;电涌保护器应与同一线路上游的电涌保护器在能量上配合,电涌保护器在能量上配合的资料应由制造商提供,若无此资料,Ⅱ级试验的电涌保护器应为:I n≥5KA,Ⅲ级试验的电涌保护器应为:I n≥3KA,详见6.4.5-2(P57)电涌保护器的电压保护水平的确定详见6.4.6(P57)(5)电子系统线路分金属线路和光缆两种情况按一类、二类、三类防雷建筑物分别装设不同类别的电涌保护器,详见一类4.2.4-11(P19),二类12,4.3.8-7,8(P25),三类4.4.7-3,4(P29),即:金属线路分别选D1高能试验类型电涌保护器,短路电流分别为:2KA、1.5KA、1KA;光缆进线分别选B2类慢上升试验类型的电涌保护器,短路电流分别为:100A、75A、50A;这里的电子系统指敏感电子组合不见构成的系统。

【2019年整理】电涌保护器SPD在低压电气系统中的选择和使用原则1


非信息网络中 心DC电源端口
1.0 kV 2.0 kv
1.2/50μs(8/20μs)
适用于相 — 相。 适用于相 — 地。
注:非信息网络中心的地点指设备不在信息网络中心内运行,如无保护措施的本地远端 站、商业区、办公室内,用户室内和街道等。
南京信息工程大学遥 感学院防雷施广全
4.2.2.3测量、控制和实验室内直流电 源冲击抗扰度试验的最低要求见表6:
南京信息工程大学遥 感学院防雷施广全
3.21 热崩溃 thermal runaway
当SPD承受的持续功率损耗超过 SPD外壳和连接件的散热能力,引起 内部元件温度逐渐升高,性能下降, 最终导致损坏的过程。
南京信息工程大学遥 感学院防雷施广全
3.22 SPD脱离器 SPD disconnector
注:本定义仅适用于双端口SPD或具 有单独输入/输出端口的单端口SPD。
南京信息工程大学遥 感学院防雷施广全
3.26 保护模式 modes of protection
SPD的保护元件可以连接在低压配电系 统线路的相线——相线、相线——中性线、 相线——保护线、中性线——保护线之间及 多种方式同时连接。这些连接方式称为保护 模式。一般将相线——相线之间的保护称为 横向(差模)保护,相线(或中性线)—— 保护线之间的保护称为纵向(共模)保护。 在直流配电系统中可分为正负极之间,正极 与保南 感京 学护信 院息 防线工 雷程施大广之学全遥间,负极与保护线之间。
4 受保护的系统和设备 当需要采用SPD对低压电气系统
和设备进行保护时,必须充分了解受 保护的低压交流配电系统型式、低压 直流配电系统和受保护电气设备耐冲 击过电压额定值(UW)。
南京信息工程大学遥 感学院防雷施广全
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPD的选择原则:首先划分建筑物内的雷电保护区,分为:LPZOA区、LPPB区、
LPZl区及LPZn+l后续防雷区。

所有进入建筑物的外来导电物均在L—P20A或LP2PB与LPZl区交界处做等电位连接,并设置SPD,如有后续分区,一般也适用此原则。

然后,进行雷电流分流计算与雷击风险评估分级,并据此进行浪涌保护器的选择。

浪涌保护器从工作原理和性能上分为电压开关型、限压型和组合型。

(1)电压开关型SPD在无浪涌出现时为高阻抗,当浪涌电压达到一定值时突变为低阻抗,此类SPD通常采用放电间隙、充气放电管、闸流管和三端双向可控硅元件作为组件。

它的特点是放电能力强,但残压较高,通常为2—4kV,测试该器件一般采用10/350ps的模拟雷电:中击电流波形。

电压开关型SPD完全可以保护电气线路免遭雷电造成的涌流损害,特别适用于I级雷电过电压保护,所以,一般安装在建筑物LP20与LPZl区的交界处,可最大限度地消除电网后续电流,疏导10/350us的雷电冲击电流。

(2)限压型SPD在无浪涌出现时为高阻抗,随着浪涌电流和电压的增加,阻抗连续变小。

此类SPD通常采用压敏电阻、抑制二极管等作为组件,有时称这类SPD为钳制型SPD。

它的残压较低,测试该器件一般采用8/20us的模拟雷电:中击电流波形。

因其箝位电压水平比开关型SPD要低,故常用于II级或II级以下的雷电过电压和操作过电压保护。

它一般安装在雷电保护区建筑物内,疏导8/20us的雷电冲击电流,在过电压保护中具有逐级限制雷电过电压的功能。

(3)组合型SPD是由电压开关型组件和限压型组件组合而成,利用限压型组件对浪涌电压的反应速度非常快的特点,在一般雷电过电压的保护时,由它承受浪涌电流,其标称放电电流可达10—20kA;若遇到较大量级的雷电过电压,第一级由限压型组件组成的电路保险管自动断开,由第二级电压开关型组件进行雷电过电压保护。

作为组合型SPD,其电压型组件能随冲击电流容量一般>lOOkA。

因其同时兼有电压开关型和限压型两种特性,但没有电压开关型元件和限压型元件的单独特性好,并且这种元件价格较贵,在一般情况下或有几级SPD’’’’隋况下尽量不用混合型SPD,只有在特殊情况下或用一级SPD’’’’隋况下才可以考虑用混合型SPD。

相关文档
最新文档