高中数学专项复习——二面角大小的几种求法(归类总结分析)
求二面角的六种方法

求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。
本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
一、向量法向量法是一种简便的求解二面角的方法。
它利用向量的夹角来表示二面角。
首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。
通过向量的点积和模长运算,可以得到二面角的大小。
二、坐标法坐标法是一种常用的求解二面角的方法。
它利用坐标系中的点来表示二面角。
我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。
三、三角法三角法是一种基于三角函数的求解二面角的方法。
它利用三角函数的性质来计算二面角的大小。
通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。
四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。
它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。
例如,可以利用平行线的性质、垂直线的性质等来计算二面角。
五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。
它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。
例如,可以利用球面上的弧长、球面上的角度等来计算二面角。
六、投影法投影法是一种利用投影关系求解二面角的方法。
它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。
例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。
通过以上六种方法,我们可以灵活地求解二面角的大小。
不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。
这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。
总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。
每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。
二面角四种求法_5个例题解决二面角难题

四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。
(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
注:o 点在棱上,用定义法。
(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。
注:o 点在一个半平面上,用三垂线定理法。
(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。
注:点O 在二面角内,用垂面法。
(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ SA 图3αβO B lO图5β α l C B A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。
(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。
解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。
设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。
例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。
(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。
求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
二面角8种求法

平面角定义法例题2:已知正方体 ABCD-ABCD 中,E 、 所成的二面角二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二 面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角 大小方法的典型几何体。
笔者通过探求正方体中有关二面角, 分析求二面角大小的八种方法:(1) 平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间 距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。
此法是根据二面角的平面角定义,直接寻求二面角的大小。
以所求二面角棱上任意一点为端点,在二面角两个平面内 分别作垂直于棱的两条射线所成角就是二面角的平面角, 如图二面角a -l- B 中,在棱I 上取一点O,分别在a 、B 两个平面内作AC L I ,BOLI ,/ AOB 即是所求二面角的平面角例题1:已知正方体ABCD-AB i CD 中,C O 是上下底面正方形的中心,求二面角 O-BC-O 的大小。
C iC利用三垂线定理法此方法是如图二面角a -l- B 中,在平面a 内取一点A, 过A 作AB 丄平面B ,B 是垂足,由B (或A )作B0(或AO 丄l ,连接A0(或B0即得A0是平面B 的斜线,B0是 A0在平面B 中的射影,根据三垂线定理(或逆定理)即得 A0LI , B0LI , 即/ A0B 是 a -I- B 的平面角。
例题3 :已知正方体 ABCD-A i C l D 中,求二面角 B-AC-B 的大小。
线面垂直法例题4:已知正方体ABCD-ABiGD 中,求平面 ACD 与平面BDC 所成的二面角。
此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。
方法是 过所求二面角的棱上一点,作棱的垂面,与两个平面相交所得两条交线的所成角即是二面角的平 面角。
如图在二面角a -I- B 的棱上任取一点0过0作平面丫丄I , a G 丫 =A0 B G Y =B0得/ A0B 是平面角, v I 丄丫,I 丄 A0I 丄 B0•••/ A0B是二面角的平面角。
高考数学复习点拨求二面角的一法三式

∴ c o s D ·G E F 2 ,即所求二面角为 π.来自D G E F24
用心 爱心 专心
3
( 1) ∵ PE CE , ∴ PE·CE 0 ,解得 a
3 .
2
∴ DE·CE 0 ,即 DE CE ,
又 DE PD ,故 DE 是异面直线 PD 与 EC 的公垂线. 而 DE 1 ,即异面直线 PD 与 EC 的距离为 1.
( 2)作 DG PC ,并设 G(0, y, z) ,
∵ D G ( ,0 ,y ,)z P ,C,( 0 2 ,且 2DG)·PC 0 ,
1 AB 1 , M 是 PB 的中点.
2 面 PCD ;
( 2) 求 AC 与 PB 所成的角;
( 3) 求面 AMC 与面 BMC 所成二面角的大小. 证明:以 A 为坐标原点, AD, AB,AP 所在直线分别为 x,y,z 轴,建立如图 1 所示空
间直角坐标系,则 A(0,0,0), B(0,2,0), C (1,1,0,) D(1,1,0), P(0,0,1),M 0,1,1 . 2
∴ n1·MA 0,和 n2·MB 0,解得 y1
x1,和 y2 x2,
n1·MC 0, n2·MC 0,
z1 2 x1, z2 2 x2.
取法向量为 n1 故 cos n1,n2
( 1,1, 2), n2 (1,1,2) ,
n1·n2 n1 n2
2, 3
即所求二面角为 arccos 2 . 3
例 2 如图 2,在四棱锥 P ABCD ,底面 ABCD 为矩形, PD
( 1) DC·AP 0 ,即 DC AP .
又由已知 DC AD ,且 AP AD A , 从而 DC 面 PAD . 又 DC 面 PCD ,故面 PAD 面 PCD .
二面角求解方法

二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。
下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。
2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。
斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。
3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。
4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。
尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。
分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴ AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=90∴二面角P-BC-A 的平面角为900。
例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC ∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42 ∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴ AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP ∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC ∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。
二面角大小的几种求法归类总结分析汇编

好资料学习-----二面角大小的几种求法二面角的大小往往转化一般而言,二面角大小的求法中知识的综合性较强,方法的灵活性较大,主要是利用平面几何、立体在其求解过程中,为其平面角的大小,从而又化归为三角形的内角大小,根据不同问题给出的几何背景,恰在此时当选几何、三角函数等重要知识。
求二面角大小的关键是,择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
) 寻找有棱二面角的平面角的方法( 定义法、三垂线法、垂面法、射影面积法I.,过该点在两个半一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点)要注意用这是一种最基本的方法。
两射线所成的角就是二面角的平面角,平面内作垂直于棱的射线,来找出平面角。
二面角的平面角定义的三个“主要特征”oo ACB=90的大小。
,求二面角CB、CP、,∠PCA=∠PCB=60B-PC-A,∠例空间三条射线CA PD AE CαB FEF.上的点D分别作,连BCDF⊥于FDE⊥AC于E,PC解:过0 PCB=60,B-PC-AEDF为二面角的平面角,设CD=a,∵∠PCA=∠∴∠0DE=DF=,∴,,又∵∠ACB=90,∴CE=CF=2aEF=a22a32221a3a3?a8?EDF=∴∠?23a?320 A-PB-C,求二面角的余弦值。
CPA=60APB=1. 在三棱锥P-ABC中,BPC=P QMNA BC更多精品文档.-----好资料学习的大小。
β,求∠APBPB⊥β,B∈α-β等于120°,PA⊥,A∈α,а2. 如图,已知二面角α-PAOB的PA=AB=a,求二面角B-PC-DPA3. 在四棱锥P-ABCD中,ABCD是正方形,⊥平面ABCD,大小。
PHDAjBC用三垂线定理或逆定理作出二面已知二面角其中一个面内一点到一个面的垂线,二、三垂线法:角的平面角。
,,∠ABC=30°⊥平面ABCD,PA=AB=a 在四棱锥P-ABCD中,ABCD是平行四边形,PA 例P-BC-A的大小。
二面角的四种求法-2021-2022学年高一数学(人教A版2019必修第二册)(解析版)

立体几何专题:二面角的四种求法一、二面角1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°] 二、求二面角大小的步骤是: (1)作:找出这个平面角;(2)证:证明这个角是二面角的平面角;(3)求:将作出的角放在三角形中,解这个三角形,计算出平面角的大小. 三、确定二面角的平面角的方法:1、定义法(棱上一点双垂线法):提供了添辅助线的一种规律(1)方法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)具体演示:如图所示,以二面角的棱a 上的任意一点O 为端点, 在两个面内分别作垂直于a 的两条射线OA ,OB ,则∠AOB 为此二面角的平面角2、三垂线法(面上一点双垂线法)----最常用(1)方法:自二面角的一个面上一点向另外一个面作垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足和面上一点的连线与斜足和垂足的连线所夹的角,即为二面角的平面角(2)具体演示:在平面α内选一点A 向另一个平面β作垂线AB ,垂足为B ,再αβaOAB过点B 向棱a 作垂线BO ,垂足为O ,连接AO ,则∠AOB 就是二面角的平面角。
3、垂面法(空间一点垂面法)(1)方法:过空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。
(2)具体演示:过二面角内一点A 作AB ⊥α于B ,作AC ⊥β于C , 面ABC 交棱a 于点O ,则∠BOC 就是二面角的平面角。
4、射影面积法求二面角coss S射影(1)方法:已知平面β内一个多边形的面积为S ,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则COSθ=S射影S.这个方法对于无棱二面角的求解很简便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二面角大小的几种求法
二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。
求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。
I.寻找有棱二面角的平面角的方法(定义法、三垂线法、垂面法、
射影面积法)
一、定义法:利用二面角的平面角的定义,在二面角的棱上取一点(特殊点),过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。
要注意用二面角的平面角定义的三个“主要特征”来找出平面角。
例空间三条射线CA 、CP 、CB ,∠PCA=∠PCB=60o ,∠ACB=90o ,求二面角B-PC-A 的大小。
解:过PC 上的点D 分别作DE ⊥AC 于E ,DF ⊥BC 于F ,连EF.
∴∠EDF 为二面角B-PC-A 的平面角,设CD=a ,∵∠PCA=∠PCB=600,∴CE=CF=2a ,DE=DF=a 3,又∵∠ACB=900,∴
EF=,
∴∠EDF=
31
328332
222=⋅-+a a a a P
B α
C A
E F
D
二、三垂线法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角。
例
在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,
PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
解:如图,PA ⊥平面BD ,过A 作AH ⊥BC 于H ,连结PH ,则PH ⊥BC 又AH ⊥BC ,故∠PHA 是二面角P-BC-A 的平面角。
在Rt △ABH 中,AH=ABsin ∠ABC=aSin30°=2
a ;在Rt △PHA 中,tan ∠PHA=PA/AH=22
a
a =,则∠PHA=arctan2.
三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直。
例在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求B-PC-D 的大小。
解:(垂面法)如图,PA ⊥平面BD BD ⊥AC BD ⊥BC
过BD 作平面BDH ⊥PC 于H
PC ⊥DH 、
∠BHD 为二面角B-PC-D 的平面角。
因a,
12PB·BC=S △PBC=1
2PC·BH 则BH=3
=DH ,又在△BHD 中由余弦定理,得:
cos ∠BHD =)
2
2
2
222
66331
22
66
33
a a BH DH BD BH BD ⎛⎫⎛⎫
+- ⎪ ⎪+-=-
,又0<∠BHD
P
Q
M
N
<π,则
∠BHD=
23π,二面角B-PC-D 的大小是23
π。
II.寻找无棱二面角的平面角的方法(射影面积法、平移或延长(展)
线(面)法)
四、射影面积法:利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角。
例在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
解:(面积法)如图,AD PA AD AB AD PBA A PA AB A ⊥⎫
⎪⊥⇒⊥⎬⎪=⎭
于,
同时,BC ⊥平面BPA 于B ,故△PBA 是△PCD 在平面PBA 上的射影
设平面PBA 与平面PDC 所成二面角大小为θ,则cosθ=
2
2
PBA PCD s S ∆∆=θ=45°
五、平移或延长(展)线(面)法:对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。
例在四棱锥P-ABCD 中,ABCD 为正方形,PA ⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的大小。
(补形化为定义法)
解:(补形化为定义法)如图,将四棱锥P-ABCD 补形得正方体ABCD-PQMN ,
l A C
D
P
则PQ ⊥PA 、PD ,于是∠APD 是两面所成二面角的平面角。
在Rt △PAD 中,PA=AD ,则∠APD=45°。
即平面BAP 与平面PDC 所成二面角的大小为45°
六、向量法
解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。
例(2009天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD,AD//BC//FE ,AB ⊥AD ,
M 为EC 的中点,AF=AB=BC=FE=1
2
AD 。
(I)求异面直线BF 与DE 所成的角的大小;(II)证明平面AMD ⊥平面CDE ;(III)求二面角A-CD-E 的余弦值。
解:如图所示,建立空间直角坐标系,以点A 为坐标原点。
设,1=AB 依题意得
(),,,001B (),,,011C (),,,020D (),,,110E (),
,,100F .21121M ⎪⎭
⎫
⎝⎛,,
(I )(),,,解:101BF -=(),
,,110DE -=
.
2
1
2
2100DE BF =∙++==
于是所以异面直线BF 与DE 所成的角的大小为060.
(II )证明:,,由⎪⎭
⎫ ⎝⎛=21121AM (),
,,101CE -=()0AM CE 020AD =∙=,可得,,,
.
AMD CE A AD AM .AD CE AM CE .0AD CE 平面,故又,因此,⊥=⊥⊥=∙
.
CDE AMD CDE CE 平面,所以平面平面而⊥⊂(III )
⎪⎩⎪⎨
⎧=∙=∙=.
0D 0)(CDE E u CE u z y x u ,
,则,,的法向量为解:设平面.
111(1.00),,,可得令,
于是==⎩
⎨⎧=+-=+-u x z y z x 又由题设,平面ACD 的一个法向量为).100(,,
=v 18.(2008湖北)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB .(I)求证:AB BC ⊥;
(II)若直线AC 与平面1A BC 所成的角为θ,二面角1A BC A --的大小为ϕ,试判断θ与ϕ的大小关系,并予以证明.
分析:由已知条件可知:平面ABB 1A 1⊥平面BCC 1B 1⊥平面ABC 于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。
(答案:2
2
arcsin
c
a a +=φ
2
2
2
2
b a c
a c
++)
由此可见,二面角的类型和求法可用框图展现如下:
分析:所求二面角与底面ABC 所在的位置无关,故不妨利用定义求解。
略解:在二面角的棱PB 上任取一点Q,在半平面PBA 和半平面PBC 上作
QM ⊥PB,QN ⊥PB,则由定义可得∠MQN 即为二面角的平面角。
设PM=a,则在Rt ∆PQM 和Rt ∆PQN 中可求得QM=QN=
2
3
a;又由∆PQN ≅∆PQM 得PN=a,故在正三角形PMN 中MN=a,在三角形MQN 中由余弦定理得cos ∠MQN=3
1,即二面角的余弦值为3
1。
因为AB=AD=a ,PA AB PA AD PB PD AB AD a ⊥⎫⎪⊥⇒=⎬⎪==⎭,PB PD BC DC PBD PDC PC PC =⎫
⎪
=⇒∆≅∆⎬⎪=⎭。
过B 作BH ⊥PC 于H ,连结DH DH ⊥PC 故∠BHD 为二面角B-PC-D
的平面角。
因
a,BC=a,PC=a,1
2PB·BC=S △PBC=12PC·BH ,则
BH=3
=DH 又。
在△BHD 中由余弦定理,得:
cos ∠BHD
=)
2
2
2
222
331
22
66
33
a a BH DH BD
BH BD ⎛⎫⎛⎫
+- ⎪ ⎪+-=-
,又0<∠BHD <π则∠BHD=
23π,二面角B-PC-D 的大小是23
π。