样本及抽样分布

合集下载

概率论与数理统计 第六章 样本及抽样分布

概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n

X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )



F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]

z
(1)标准正态分布分位点

(x)
( x)dx 1 ( x)dx


z
z1
( x)
Pr[ X z ]

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

样本及其抽样分布基本概念

样本及其抽样分布基本概念
概率论与数理统计优质学案
第六章
样本及抽样分布
第1,2节 基本概念
一、总体、个体 二、随机样本、直方图 三、样本函数与统计量 四、小结
一、总体与个体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体
总体 …
研究某批灯泡的心每个 个体的一项(或几项)数量指标和该数量指标 在总体中的分布情况. 这时,每个个体具有 的数量指标的全体就是总体.
直方图
5
8
4.5
7
4 6
3.5 5
3
2.5
4
2
3
1.5 2
1
1 0.5
0
0
140
150
160
170
180
190
200
147
157
167
177
187
197
三、统计量
由样本推断总体特征,需要对样本进行 “加工”,“提炼”.这就需要构造一些样本的 函数,它把样本中所含的信息集中起来.
1. 代表性: X1,X2,…, Xn中每一个与所考察的 总体X有相同的分布. 2. 独立性: X1,X2,…, Xn是相互独立的随机变量.
满足上述两条性质的样本称为简单随机样本. 获得简单随机样本的抽样方法称为简单随机抽样.
为了使大家对总体和样本有一个明确的 概念,我们给出如下定义:
定义 一个随机变量X或其相应的分布 函数F(x)称为一个总体.
4. 直方图 4.1 频数--频率分布表
样本数据的整理是统计研究的基础,整理数据的最 常用方法之一是给出其频数分布表或频率分布表。
例3 为研究某厂工人生产某种产品的能力, 我们随机调查了20位工人某天生产的该种产品 的数量,数据如下

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用在统计学中,抽样是一种数据分析的方法,它通过对总体中的一部分个体进行观察和测量来推断总体的特征。

而抽样分布是指抽取相同样本量的多个样本后得到的统计量的分布。

样本统计量是对样本数据进行计算得到的统计指标,它可以用来估计总体参数,并进行假设检验。

1. 抽样分布的基本概念抽样分布具有一些基本性质,首先是无偏性。

当样本容量趋向于总体容量时,样本统计量的期望值会无限接近总体参数的真实值。

其次是有效性,即样本统计量的方差趋近于零,它可以用来估计总体参数的精确度。

最后是一致性,样本统计量在样本容量逐渐增大时趋近于总体参数。

2. 抽样分布的常见形式常见的抽样分布有正态分布、t分布和卡方分布。

其中正态分布应用最为广泛,它在中心极限定理的作用下,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

而t分布则适用于当总体标准差未知、样本容量较小的情况下,它的形状比正态分布要略扁平一些。

卡方分布则主要用于样本方差的估计与检验。

3. 抽样分布的应用抽样分布的应用非常广泛,常用于以下几个方面:3.1 参数估计通过抽样分布,我们可以利用样本统计量对总体参数进行估计。

例如,可以利用样本均值估计总体均值,利用样本标准差估计总体标准差。

通过计算置信区间,我们可以得到对总体参数的范围估计。

3.2 假设检验假设检验是统计学中非常重要的一项工具,用于判断样本数据是否支持某个假设。

基于抽样分布,我们可以计算统计量的P值,进而判断样本数据与假设的一致性。

常用的假设检验有均值检验、方差检验、比例检验等。

3.3 质量控制在生产过程中,质量控制是非常关键的。

通过对样本数据进行分析,可以判断生产过程是否正常。

例如,可以通过控制图分析样本均值的变化情况,以判断过程是否处于控制状态。

3.4 统计决策在实际决策中,我们往往需要依据样本数据来进行判断。

抽样分布提供了一种基于统计的决策依据。

例如,在市场调研中,我们可以通过对样本数据进行分析,对市场潜力进行预测,从而指导营销策略的制定。

概率论第六章样本及抽样分布

概率论第六章样本及抽样分布
2 1 2 2
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12

2 1

2 (n2 1) S2

2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2

2
~ (n 1)
2
X n1 X n
故 Y

(n 1) S 2
n n 1 ~ t (n 1) /(n 1)

2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1

3样本及抽样分布

3样本及抽样分布

x
n n 1 1 2 2 2 2 s ( x x ) [ x n x ] i i n 1 i 1 n 1 i 1
x n
i 1
i
第三章 样本及抽样分布
s
1 2 ( xi x) n 1 i 1
n
§3 抽样分布
1 n k a k x i , k 1,2 n i 1 1 n bk ( x i x ) k , k 1,2 n i 1
2
n
第三章 样本及抽样分布
§3 抽样分布
二、 常用统计量的分布
1) 2 分布 设( X 1 , X n )为来自于正态总体 N (0,1)的样本,
则称统计量:
X X
2 2 1
2
2 n
所服从的分布为自由度 是n的 分布。
记为 ~ (n)
2 2
2 分布具有下面的性质:
t 0.95 (9) 1.___ 8331. 2 __________
第三章 样本及抽样分布
3) F 分布
X / n1 F Y / n2
§3 抽样分布
若 X ~ 2 (n1 ), Y ~ 2 (n2 ), X ,Y 独立, 则 称随机变量
所服从的分布为自由度
是n1 , n2 的 F 分布,记作 F ~ F (n1 , n2 ).
定理:若 F ~ F (n1 , n2 ),则 1 / F ~ F (n2 , n1 ).
对于给定的 (0 1), 称 满 足 条 件 : P{ F F ( n1 , n2 )}
的点 F (n1 , n2 )为F分布的 上分位点 。

F (n1 , n2 )

四章样本及抽样分布

四章样本及抽样分布

E(X )
1 n
n i 1
E( X i )
D(X )
1 n2
n
2
D(Xi )
i 1
n
X ~ N(, 2 )
n
X ~ N (0, 1) / n
iid
2.若X1,,X n ~ N (, 2 ), 则 (1) X与S 2相互独立; (2) 2
(n 1)S 2
2
~
2 (n 1);
(3)T X ~ t(n 1).
第四 章 样本及抽样分布
引言 run 随机样本 抽样分布
4.1 随机样本 一、总体与样本
1. 总体:研究对象旳全体。 一般指研究对象旳某项数量指标。 构成总体旳元素称为个体。
从本质上讲,总体就是所研究旳随机变量或 随机变量旳分布。
2. 样本:来自总体旳部分个体X1, … ,Xn 假如满足: (1)同分布性: Xi, i=1,…,n与总体同分布. (2)独立性: X1,… ,Xn 相互独立; 则称为容量为n 旳简朴随
P{ 1
1
P{ 1 F
F (n2 , n1)}
} 1
F F1 (n1, n2 )
P{ 1
1 }
得证!
F F1 (n1, n2 )
4.3 正态总体旳抽样分布定理
iid
1.若X1 ,,Xn ~ N(, 2 ), 则U
X / n
~
N(0, 1)
证明:
X
1 n
n i 1
Xi
是n 个独立旳正态随 机变量旳线性组合,故 服从正态分布
i 1
称为自由度为n的 2 分布.
2.2—分布旳密度函数f(y)曲线
f
(y)

(完整版)样本及抽样分布

(完整版)样本及抽样分布

第六章样本及抽样分布【基本要求】1、理解总体、个体和样本的概念;2、理解样本均值、样本方差和样本矩的概念并会计算;3、理解统计量的概念,掌握几种常用统计量的分布及其结论;4、理解分位数的概念,会计算几种重要分布的分位数。

【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。

【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。

【学时分配】4学时【授课内容】§6.0 前言前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。

它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。

所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。

其研究方法是归纳法(部分到整体)。

对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。

数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。

§6.1 随机样本一、总体与样本1.总体、个体在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。

例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。

但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。

在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。

在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本及抽样分布
§6.1 基本概念
一、总体:
在统计学中, 我们把所研究的全部元素组成的集合称作母体或总体, 总体中的每一个元素称为个体。

我们只研究感兴趣的某个或者几个指标(记为X),因此
把这些指标的分布称为总体的分布,记为X~F(x)。

二、样本:
设总体X具有分布函数
F(x),若X
1, X
2
,…,X
n
是具有分布
函数F(x)的相互独立的随机向量,则称其为总体F(或总体X )的简单随机样本, 简称样本,
它们的观察值x
1,x
2
, …, x
n
称为样
本观察值, 又称为X 的n 个独立的观察值。

三、统计量:
设X 1, X 2, …
, X n 是来自总体X 的一个样本, g (X 1, X 2, …
, X n )是一个与总体分布中未知参数无关的样本的连续函数,则称g (X 1,X 2,…
,X n )为统计量。

统计量是样本的函数,它是一个随机变量,如果x 1, x 2, …
, x n 是样本观察值, 则g (x 1, x 2, …
, x n )是统计量g (X 1, X 2, …
, X n )的一个观察值.
四、 常用的统计量:
, ,)(x 11s ,,x 1x 1. n
1
2
i
2n
1
i 称为样本方差均值仍称为样本
它们的观察值为∑∑==--==i i x n n .
B ,,
1,2,X A ,1k 2.222
21S S n
n B k ≈-====当样本容量很大时时当时当3.k
k
k
k
若总体X 的k 阶矩E(X )存在,
则当n
时, A .
P
注:
n
i i 1
11. X X ;
n ==∑样本均值2
n 2
i i 1
12. S (X );
n-1X ==-∑样本方差n k
k i 1
13. k A X , k 1, 2,
;
n i ===∑样本阶原点矩n
k i i 1
14. k B (X ) , k 2, 3,
.
n k X ==-=∑样本阶中心矩
4.样本的联合分布:
2) 若总体X 是离散型随机变量,其分布律为 p x =P (X=x ) , x=x 1,x 2,… 则样本X 1, X 2, …, X n 的联合分布:
111
12(,
,)()
,,
;(1,2,,)n
n n i i i i P X y X y P X y y x x i n =======∏其中
12n *
12i 1
3)(), ,X , (, ,
)()
n n i X f x X X f x x x f x ==∏若具有概率密度则的
联合概率密度为
1212121
1)(),,,,, ,,
,:
()()
n n n
*
n i i X ~F x X X X F X X X F x , x ,
x F x ==∏若为的一个样本则
的联合分布函数为
例1:X~U (0,θ),X 1, X 2, …, X n 是来自X 的样本,
求(X 1, X 2, …, X n )的联合密度函数。

求样本的联合分布律。

的样本,为来自:例X X X X x p p x X P X n x x ),,,(1
,0,)1()(~2211 =-==-
定理: 设X 1, X 2, …, X n 是
来自总体X 的一个样本, 并设总体二阶矩存在,EX=μ,DX=σ2
,则有
2
22,()(2).
n EX D X n ES n σμσ==
=≥。

相关文档
最新文档