初中的数学规律题的总结
除数不变,被除数乘或除以几,商也乘或除以几的题目

一、概述在数学中,除法是一个基本的运算方法,而商和余数的关系更是我们在初中阶段就开始学习的知识。
然而,很多学生在解决除法问题时会遇到一些困惑,特别是涉及到被除数乘或除以几,商也乘或除以几的题型。
本文将围绕这一主题进行探讨,帮助读者更好地理解除法运算中的相关概念。
二、被除数乘或除以几,商也乘或除以几的概念1. 被除数乘以几在除法运算中,如果被除数乘以一个数,那么商也要相应地乘以这个数。
这一点可以通过简单的例子加以说明,比如:18 ÷ 3 = 6如果我们把被除数18乘以2,则计算结果变为:36 ÷ 3 = 12可以看到,被除数乘以2之后,商也相应地乘以了2。
这说明被除数乘以几,商就乘以几。
2. 被除数除以几与被除数乘以几的情况类似,如果被除数除以一个数,商也要相应地除以这个数。
举一个简单的例子:24 ÷ 4 = 6如果我们将被除数24除以2,则计算结果变为:12 ÷ 4 = 3可以看到,被除数除以2之后,商也相应地除以了2。
这说明被除数除以几,商就除以几。
三、被除数乘或除以几,商也乘或除以几的应用1. 应用举例考虑以下的数学问题:如果把被除数乘以3,那么商会发生什么变化呢?假设被除数为15,那么15 ÷ 3 = 5。
如果将被除数15乘以3,即变为45,则45 ÷ 3 = 15。
可以看到,被除数乘以3之后,商也乘以了3。
2. 应用场景被除数乘或除以几,商也乘或除以几的概念在实际应用中也具有一定的重要性。
例如在商业运作中,当某种产品的数量或规模发生变化时,与之相关的商务运作也会随之发生变化。
这就需要我们理解被除数和商的变化规律,以便更好地进行运筹帷幄。
四、如何更好地理解被除数乘或除以几,商也乘或除以几的规律1. 举例演练为了更深入地理解被除数乘或除以几,商也乘或除以几的规律,我们可以通过举例进行演练。
这样可以帮助我们从具体的例子中抽象出一般性的规律,从而更好地掌握这一概念。
专题05 棋盘摆米问题-九年级数学专题讲座之剖析经典总结规律(解析版)

※知识精要棋盘摆米问题是用方程思想解决求和问题。
此方法还可以解决循环小数化分数问题。
※要点突破解题的关键是根据题意发现规律,再用方程思想解决求和问题。
※典例精讲例:棋盘摆米:古时候,在某个王国里有一位聪明的大臣,他发明了国家象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求。
大臣说:“就在这个棋盘上放一些米粒吧。
第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到第64格。
”“你真傻!就要这么一点米粒?!”国王哈哈大笑,大臣说:“就怕您的国库里没有这么多米!”你认为国王的国库里有这么多米吗?事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()2363641222221++++=- 粒米,6421- 到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18 446 744 073 709 551 615.※课堂精练1.为了求23201612222+++++的值,可令23201612222S =+++++ ,则23201722222S =++++,因此2017221S S -=-,所以23201620171222221+++++=-,请仿照以上推理计算出23201615555+++++的值是( )A . 201751- B .2017514- C . 2016514- D . 201651-【答案】B【解析】∵设23201615555,S =++++⋯+ 则2320162017555555S =+++⋯++, 2017451S ∴=-,2017514S -∴=, 故选B.2.求的值,可令,则,因此,即,仿照以上推理,计算出的值为______.【答案】3.观察下列运算过程:,运用上面计算方法计算:___________.【答案】【解析】首先根据已知设S=1+5+52+53+…+524+525 ①,再将其两边同乘5得到关系式②,②-①即可求得答案.设S=1+5+52+53+…+52013 ①,则5S=5+52+53+54…+52014②,②-①得:4S=52014-1,所以S=,故答案为:4.阅读材料:计算31+32+33+34+35+36.解:设S=31+32+33+34+35+36,①则3S=32+33+34+35+36+37,②由②-①,得3S-S=37-31,则S=,即31+32+33+34+35+36=.仿照以上解题过程,计算:51+52+53+54+55+ (52018)【答案】5.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n(其中n为正整数).【答案】见解析.【解析】(1)设S=1+2+22+23+24+…+210,两边乘以2后得到新的等式,与已知等式相减,变形即可求出所求式子的值;(2)类比题目中的方法即可得到所求式子的值.(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将下式减去上式得:2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1;(2)设S=1+3+32+33+34+…+3n①,两边乘以3得:3S=3+32+33+34+…+3n+3n+1②,②-①得:3S-S=3n+1 -1,即S=12(3n+1-1),则1+3+32+33+34+…+3n =12(3n+1-1).6.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S-S=610-1,即5S=610-1,所以S=10615-,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),求1+a+a2+a3+a4+…+a2016的值。
完整版)初中数学规律探究题的解题方法

完整版)初中数学规律探究题的解题方法初中数学规律探究题的解法指导在新课标中,要求用代数式表达数量关系及规律,培养学生的抽象思维能力。
规律探究常常要求通过归纳特例,猜想一般规律,并列出通用的代数式。
这种问题在中考或学业水平考试中频繁出现,考生往往感到困难。
然而,只要细心观察,大胆猜想,精心验证,就能解决这类问题。
一、数式规律探究数式规律探究通常给定一些数字、代数式、等式或不等式,要求猜想其中的规律。
这种问题考查了学生的分析、归纳、抽象、概括能力。
一般解法是先写出数式的基本结构,然后通过横比或纵比找出各部分的特征,改写成要求的格式。
数式规律探究是规律探究问题中的主要部分,解决此类问题注意以下三点:1.常用字母n表示正整数,从1开始。
2.在数据中,分清奇偶,记住常用表达式。
正整数…n-1,n,n+1…奇数…2n-3,2n-1,2n+1,2n+3…偶数…2n-2,2n,2n+2…3.熟记常见的规律n(n+1)/2、n(n+1)、1、4、9、16.n、1、3、6、10……2、1+3+5+…+(2n-1)=n²、1+2+3….+n=n(n+1)/2、2+4+6+…+2n=n(n+1)数字规律探究反映了由特殊到一般的数学方法,解决此类问题常用的方法有以下两种:1.观察法例1.观察下列等式:①1×1=1-。
②2×2=2-。
③3×3=3-。
④4×4=4-……猜想第几个等式为(用含n的式子表示)分析:将等式竖排:4545111-2222②2×=2-3333③3×=3-44①1×1④4×=4-n×n+1通过观察相应位置上变化的数字与序列号,易得到结果为:n²-n+1.规律,第①个正多边形需要用4个黑色棋子,第②个需要用8个黑色棋子,第③个需要用12个黑色棋子,依次类推,第n个需要用(4n)个黑色棋子。
)探索图形结构成元素的规律是数学中的一个重要主题。
初中数学规律探究问题题型梳理

初中数学规律探究题型“规律探究类问题”是中考中的一棵常青树,一直受到命题者的青睐。
这类试题要求学生有一定的数感与符号感,学生通过观察、分析、比较、概括、推理、判断等探索活动,得到图形或数式内在规律的一般通式。
不仅有利于促进数学知识和数学方法的巩固和提高,也有利于自主探索,创新精神的培养。
因此规律探究类问题一直成为命题的热点。
题型一、一阶等差规律一阶等差规律意思是第一次做差差为常数。
主要考察对图形变化的规律观察,从图形变化转化为数字变化,从数字变化中去发掘规律。
这部分内容相对简单,可以直接观察图形得出规律,也可以通过套通项公式的方法找出规律,考试中单独考察这部分的概率很小,往往与其它形式一起结合考察。
1、规律分析:问题本质:前后的图形相比较,每一幅图形以恒定不变的速度保持图形增加(减少)的个数。
2、首差法通项公式(通法)(1)将题目的已知转为一组数据,第一个数记为1a 以此第n 个数记为n a (2)对这组数据两两之间做差,差为一个固定常数记为d ,即=d 后项—前项 (3)则该类型的规律为:任意的第n 项满足:d n a a n )1(1-+=(4)若记不住公式,上述数据转化为坐标点),(n a n ,设通项公式为:b kn a n +=,代入前2组数据,通过解一次函数方法,即可得到通项公式;例1、如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要( )枚棋子.【解析】用一阶等差实质进行分析。
根据题意分析可得:第1个图案中棋子的个数5个. 第2个图案中棋子的个数5611+=个.⋯.每个图形都比前一个图形多用6个.∴第30个图案中棋子的个数为5296179+⨯=个.答案:179例2、观察下列数:14,39,516,725,936⋯,它们按一定规律排列,那么这一组数第n 个数是( ) A .221n n - B .221n n + C .221(1)n n ++ D .221(1)n n -+ 【解析】法一:观察分析。
初中数学规律题汇总(全部有解析)

初中数学规律题汇总“有比较才有鉴别”.通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n—1)6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了.(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8。
(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学专题训练——整体代入法综合练习及试题解析

专题03 整体代入法【规律总结】整体代入法,在求代数式值中应用求代数式的值最常用的方法,即把字母所表示的数值直接代入,计算求值。
有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难求出字母的值或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入,求值时方便又快捷,这种整体代入的技法经常用到。
【典例分析】例1、在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD−AB=2时,S2−S1的值为()A. 2aB. 2bC. 2a−2bD. −2b【答案】B【解析】解:S1=(AB−a)⋅a+(CD−b)(AD−a)=(AB−a)⋅a+(AB−b)(AD−a),S2=AB(AD−a)+(a−b)(AB−a),∴S2−S1=AB(AD−a)+(a−b)(AB−a)−(AB−a)⋅a−(AB−b)(AD−a)=(AD−a)(AB−AB+b)+(AB−a)(a−b−a)=b⋅AD−ab−b⋅AB+ab=b(AD−AB)=2b.故选:B.利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.例2、若m是方程2x2−3x−1=0的一个根,则6m2−9m+2015的值为______.【答案】2018【解析】解:由题意可知:2m2−3m−1=0,∴2m2−3m=1∴原式=3(2m2−3m)+2015=2018故答案为:2018根据一元二次方程的解的定义即可求出答案.本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.例3、解下列各题:(1)若n满足(n−2023)(2021−n)=−6,求(n−2023)2+(2021−n)2的值.(2)已知:m2=n+2,n2=m+2(m≠n),求:m3−2mn+n3的值.【答案】解:(1)∵(n−2023)(2021−n)=−6,∴原式=(n−2023+2021−n)2−2(n−2023)(2021−n)=(−2)2−2×(−6)=4+12=16;(2)∵m2=n+2①,n2=m+2(m≠n)②,∴m2−n=2,n2−m=2,∵m≠n,∴m−n≠0,∴①−②得m2−n2=n−m∴(m−n)(m+n)=−(m−n),∵m−n≠0,∴m+n=−1∴原式=m3−mn−mn+n3=m(m2−n)+n(n2−m)=2m +2n =2(m +n) =2×(−1) =−2.【解析】本题主要考查的是代数式求值,完全平方公式,运用了整体代入法的有关知识. (1)将给出的代数式进行变形为(n −2023+2021−n)2−2(n −2023)(2021−n),然后整体代入求值即可;(2)先根据m 2=n +2,n 2=m +2(m ≠n),求出m +n =−1,然后将给出的代数式进行变形,最后整体代入求解即可.【好题演练】一、选择题1. 已知a +b =12,则代数式2a +2b −3的值是( )A. 2B. −2C. −4D. −312【答案】B【解析】解:∵2a +2b −3=2(a +b)−3, ∴将a +b =12代入得:2×12−3=−2 故选:B .注意到2a +2b −3只需变形得2(a +b)−3,再将a +b =12,整体代入即可 此题考查代数式求值的整体代入,只需通过因式解进行变形,再整体代入即可.2. 若α、β为方程2x 2−5x −1=0的两个实数根,则2α2+3αβ+5β的值为( )A. −13B. 12C. 14D. 15【答案】B 【解析】 【分析】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−b a,x 1x 2=ca .也考查了一元二次方程解的定义.根据一元二次方程解的定义得到2α2−5α−1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=−12,然后利用整体代入的方法计算. 【解答】解:∵α为2x 2−5x −1=0的实数根, ∴2α2−5α−1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1, ∵α、β为方程2x 2−5x −1=0的两个实数根, ∴α+β=52,αβ=−12,∴2α2+3αβ+5β=5×52+3×(−12)+1=12.故选B .3. 如果a 2+2a −1=0,那么代数式(a −4a ).a 2a−2的值是( )A. −3B. −1C. 1D. 3【答案】C 【解析】 【分析】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.根据分式的减法和乘法可以化简题目中的式子,然后根据a 2+2a −1=0,可以得到a 2+2a =1,从而可以求得所求式子的值. 【解答】解:(a −4a )⋅a 2a−2=a 2−4a⋅a 2a−2=(a+2)(a−2)a⋅a 2a−2=a 2+2a ,由a 2+2a −1=0得a 2+2a =1,故原式=1. 故选C .4.已知1x −1y=3,则代数式2x+3xy−2yx−xy−y的值是()A. −72B. −112C. 92D. 34【答案】D【解析】解:∵1x−1y=3,∴y−xxy=3,∴x−y=−3xy,则原式=2(x−y)+3xy(x−y)−xy=−6xy+3xy−3xy−xy=−3xy−4xy=34,故选:D.由1x −1y=3得出y−xxy=3,即x−y=−3xy,整体代入原式=2(x−y)+3xy(x−y)−xy,计算可得.本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.5.已知x1,x2是方程x2−3x−2=0的两根,则x12+x22的值为()A. 5B. 10C. 11D. 13【答案】D【解析】【分析】本题考查了完全平方公式以及根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca,利用根与系数的关系得到x1+x2=3,x1x2=−2,再利用完全平方公式得到x12+x22=(x1+x2)2−2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=−2,所以x12+x22=(x1+x2)2−2x1x2=32−2×(−2)=13.故选:D.6.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A. 31元B. 30元C. 25元D. 19元【答案】A【解析】【分析】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.设每支玫瑰x元,每支百合y元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10−8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y−4,∴y=x+7,∴5x+3y+10−8x=5x+3(x+7)+10−8x=31.故选A.二、填空题7.已知ab=a+b+1,则(a−1)(b−1)=______.【答案】2【解析】【分析】本题考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用,属于基础题.将ab=a+b+1代入原式=ab−a−b+1,合并即可得.【解答】解:当ab=a+b+1时,原式=ab−a−b+1=a+b+1−a−b+1=2,故答案为:2.8.将抛物线y=ax2+bx−1向上平移3个单位长度后,经过点(−2,5),则8a−4b−11的值是______.【答案】−5【解析】解:将抛物线y=ax2+bx−1向上平移3个单位长度后,表达式为:y=ax2+bx+2,∵经过点(−2,5),代入得:4a−2b=3,则8a−4b−11=2(4a−2b)−11=2×3−11=−5,故答案为:−5.根据二次函数的平移得出平移后的表达式,再将点(−2,5)代入,得到4a−2b=3,最后将8a−4b−11变形求值即可.本题考查了二次函数的平移,二次函数图象上点的坐标特征,解题的关键是得出平移后的表达式.9.若a+b=1,则a2−b2+2b−2=______.【答案】−1【解析】解:∵a+b=1,∴a2−b2+2b−2=(a+b)(a−b)+2b−2=a−b+2b−2=a+b−2=1−2=−1.故答案为:−1.由于a+b=1,将a2−b2+2b−2变形为a+b的形式,整体代入计算即可求解.本题考查了平方差公式,注意整体思想的应用.10.若实数x满足x2−2x−1=0,则2x3−7x2+4x−2017=______.【答案】−2020【解析】【分析】把−7x2分解成−4x2与−3x2相加,然后把所求代数式整理成用x2−2x表示的形式,然后代入数据计算求解即可.本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.【解答】解:∵x2−2x−1=0,∴x2−2x=1,2x3−7x2+4x−2017=2x3−4x2−3x2+4x−2017,=2x(x2−2x)−3x2+4x−2017,=6x−3x2−2017,=−3(x2−2x)−2017=−3−2017=−2020,故答案为−2020.11.已知|x−y+2|+√x+y−2=0,则x2−y2的值为________.【答案】−4【解析】【分析】本题考查了非负数的性质,解题关键是掌握几个非负数的和等于0,那么这几个非负数都等于0.由非负数的性质得出x、y的值,再代入所求代数式求解即可.【解答】解:∵|x−y+2|+√x+y−2=0,∴x−y+2=0,x+y−2=0,即x−y=−2,x+y=2,∴x 2−y 2=(x +y)(x −y)=2×(−2)=−4, 故答案为−4.12. 已知m +n =3mn ,则1m +1n 的值为______.【答案】3 【解析】 【试题解析】 【分析】本题考查了分式的化简求值,利用通分将原式变形为m+nmn 是解题的关键. 原式通分后可得出m+nmn ,代入m +n =3mn 即可求出结论. 【解答】 解:原式=1m +1n =m+n mn ,又∵m +n =3mn , ∴原式=m+n mn=3.故答案为:3.三、解答题13. 已知x =√2+1,y =√2−1,分别求下列代数式的值;(1)x 2+y 2; (2)yx +xy .【答案】解:(1)∵x =2+1=√2−1,y =2−1=√2+1, ∴x −y =−2,xy =2−1=1,∴x 2+y 2=(x −y)2+2xy =(−2)2+2×1=6;(2)∵x 2+y 2=6,xy =1, ∴原式=x 2+y 2xy=61=6.【解析】本题考查二次根式的化简求值,分母有理化,解题的关键是运用完全平方公式以及整体思想,本题属于基础题型.(1)先将x 、y 进行分母有理化,得到x =√2−1,y =√2+1,再求出x −y 与xy 的值,然后根据完全平方公式得出x 2+y 2=(x −y)2+2xy ,再整体代入即可; (2)将所求式子变形为x 2+y 2xy,再整体代入即可.14. 阅读材料,然后解方程组.材料:解方程组{x −y −1=0, ①4(x −y)−y =5. ②由①得x −y③,把③代入②,得4×1−y =5. 解得y =−1.把y =−1代入③,得x =0. ∴{x =0y =−1这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组{2x −3y −2=0,①2x−3y+57+2y =9.②.【答案】解:由①得:2x −3y =2③, 将③代入②得:1+2y =9,即y =4, 将y =4代入③得:x =7, 则方程组的解为{x =7y =4.【解析】由第一个方程求出2x −3y 的值,代入第二个方程求出y 的值,进而求出x 的值,即可确定出方程组的解.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15. 阅读材料,善于思考的小军在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5即2(2x +5y)+y =5③ 把方程①代入③得2×3+y =5 ∴y =−1把y =−1代入①得x =4 ∴方程组的解为{x =4y =−1 请你解决以下问题:(1)模仿小军的“整体代换”法解方程组{3x −2y =5 ①9x −4y =19②(2)已知x 、y 满足方程组{5x 2−2xy +20y 2=822x 2−xy +8y 2=32,求x 2+4y 2的值; 【答案】解:(1)由②得:3x +6x −4y =19,即3x +2(3x −2y)=19③, 把①代入③得:3x +10=19,即x =3, 把x =3代入①得:y =2, 则方程组的解为{x =3y =2;(2)由5x 2−2xy +20y 2=82得:5(x 2+4y 2)−2xy =82,即x 2+4y 2=82+2xy5,由2x 2−xy +8y 2=32得:2(x 2+4y 2)−xy =32,即2×82+2xy5−xy =32,整理得:xy =4, ∴x 2+4y 2=82+2xy5=82+85=18.【解析】此题考查了解二元一次方程组,弄清阅读材料中的“整体代入”方法是解本题的关键.(1)模仿小军的“整体代换”法,求出方程组的解即可;(2)方程组第一个方程变形表示出x 2+4y 2,第二个方程变形后代入求出xy 的值,进而求出x 2+4y 2的值.16. (1)已知x 3⋅x a ⋅x 2a+1=x 31求a 的值;(2)若n 为正整数,且x 2n =4,求(3x 3n )2−4⋅(x 2)2n 的值。
七年级数学图形中的排列规律重难点题型总结(含解析版)

图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()A.29B.38C.48D.59【变式6-2】(2018春•沙坪坝区校级期中)下列图形都是由同样大小的●和〇按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为()A.91B.112C.123D.160【变式6-3】(2019春•北碚区校级月考)下列图形都是由同样大小的黑色圆点按照一定规律所组成的,其中第①个图形中一共有6个黑色圆点第②个图形中一共有15个黑色圆点,第③个图形中一共有28个黑色圆点,…,按此规律排列下去,第⑦个图形中黑色圆点的个数为()A.66B.91C.120D.135图形中的排列规律重难点题型汇编【举一反三】【考点1 图形中的周期规律】【方法点拨】观察题目中图形的变化特点,找到重合点即为一个周期,利用数形结合思想进行求解.【例1】(2019秋•义乌市校级月考)依次观察如图三个图形,并判断照此规律从左到右第2019个图形是()A.B.C.D.【分析】根据题目中给出的图形,可知每五个一个循环,空白的大三角形按照顺时针旋转,从而可以得到从左到右第2019个图形是选项中的哪个图形,本题得以解决.【答案】解:由图可知,每连续的五个为一组,也就是五个一循环,2019÷5=403…4,故选:A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形的变化特点,利用数形结合的思想解答.【变式1-1】(2019秋•莒县期中)观察图中正方形四个顶点所标的数字规律,推测数2019应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的右下角D.第505个正方形的左上角【分析】设第n个正方形中标记的最大的数为a n,观察给定图形,可找出规律“a n=4n”,依此规律即可得出结论.【答案】解:设第n个正方形中标记的最大的数为a n.观察给定正方形,可得出:每个正方形有4个数,即a n=4n.∵2019=504×4+3,∴数2019应标在第505个正方形左上角.故选:D.【点睛】本题考查了规律型中的图形的变化类,解题的关键是找出变换规律a n=4n.本题属于基础题,难度不大,需找出2019在第几个正方形上.【变式1-2】(2019春•海安市校级月考)如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2018cm时停下,则它停的位置是()A.点F B.点E C.点A D.点C【分析】观察图形不难发现,每移动8cm为一个循环组依次循环,用2018除以8,根据商和余数的情况确定最后停的位置所在的点即可.【答案】解:∵两个菱形的边长都为1cm,∴从A开始移动8cm后回到点A,∵2018÷8=252余2,∴移动2018cm为第253个循环组的第2cm,在点C处.故选:D.【点睛】本题是对图形变化规律的考查,观察图形得到每移动8cm为一个循环组依次循环是解题的关键.【变式1-3】(2019秋•工业园区期末)如图,物体从A点出发,按照A→B(第一步)→C(第二步)→D →A→E→F→G→A→B……的顺序循环运动,则第2018步到达()A.A点B.C点C.E点D.F点【分析】先求出由A点开始按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B→…的顺序循环运动走一圈所走的步数,在用2018除以此步数即可.【答案】解:∵如图物体从点A出发,按照A→B(第1步)→C(第2步)→D→A→E→F→G→A→B →…的顺序循环运动,此时一个循环为8步,∴2018÷8=252…2.∴当物体走到第252圈后再走2步正好到达C点.故选:B.【点睛】本题考查的是图形的变化类这一知识点,解答此题的关键是根据题意得出物体走一个循环的步数,找出规律即可轻松作答.【考点2 图形中的等差规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,会发现后一项与前一项的差均相等,即为等差规律,应用公式:第n个图形的个数=第一个图形的个数+差数×(n-1). 【例2】(2019春•南岸区校级期中)用黑白两种颜色的正方形纸片,按白色纸片数逐渐加1并按下图的规律拼成一列图案,则第100个图案中黑色正方形纸片的张数是()A.300B.301C.302D.303【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个,根据其中的规律,计算出第100个图案的黑纸片个数即可.【答案】解:第1个图案中有黑色纸片3×1+1=4张,第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片:(3n+1)张,∴第100个图案中有黑纸片301张.故选:B.【点睛】本题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系,难度适中.【变式2-1】(2018秋•南山区校级期中)用棋子按下面的规律摆图形,则摆第2018个图形需要围棋子()枚.A.6053B.6054C.6056D.6060【分析】观察图形可知:第1个图形需要围棋子的枚数=5;第2个图形需要围棋子的枚数=5+3;第3个图形需要围棋子的枚数=5+3×2;第4个图形需要围棋子的枚数=5+3×3,…,则第n个图形需要围棋子的枚数=5+3(n﹣1),然后把n=2018代入计算即可.【答案】解:∵第1个图形需要围棋子的枚数=5,第2个图形需要围棋子的枚数=5+3,第3个图形需要围棋子的枚数=5+3×2,第4个图形需要围棋子的枚数=5+3×3,…,∴第n个图形需要围棋子的枚数=5+3(n﹣1)=3n+2,∴第2018个图形需要围棋子的枚数=3×2018+2=6056,故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出一般的运算规律解决问题.【变式2-2】(2018秋•宁都县期中)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑩个图中黑色正方形纸片的张数为()A.15B.17C.21D.27【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑩个图形中正方形的个数即可.【答案】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑩个图形有3+2×9=21(个),故选:C.【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.【变式2-3】(2018秋•万州区期中)如图,是用棋子摆成的“上”字:如果按照此规律继续摆下去,那么通过观察,可以发现:第10个“上”字需用多少枚棋子()A.36B.38C.42D.50【分析】由图可得,第1个“上”字中的棋子个数是6;第2个“上”字中的棋子个数是10;第3个“上”字中的棋子个数是14;…进一步发现规律:第n个“上”字中的棋子个数是(4n+2);由此求得问题答案.【答案】解:第1个“上”字中的棋子个数是6=4+2;第2个“上”字中的棋子个数是10=4×2+2;第3个“上”字中的棋子个数是14=4×3+2;…第n个“上”字中的棋子个数是(4n+2);所以第10个“上”字需用棋子的数量是4×10+2=42个.故选:C.【点睛】本题主要考查了图形的变化规律,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.【考点3 图形中的乘方规律】【方法点拨】观察题目中图形的特点,出现1,4,9,16,25.....正方形的图阵,即可联想到利用乘方来表示.【例3】(2019春•江岸区校级期中)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【答案】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点睛】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.【变式3-1】(2019春•南岸区校级期中)如图是一组有规律的图案,第1个图案由5个基础图形组成,第2个图案由8个基础图形组成,……,如果按照以下规律继续下去,那么通过观察,可以发现:第20个图案需要()个基本图形.A.402B.404C.406D.408【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【答案】解:第1个图案由12+4=5个基础图形组成,第2个图案由22+4=8个基础图形组成,……,如果按照以下规律继续下去,可以发现:第20个图案需要202+4=404个基本图形.故选:B.【点睛】本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的规律,难度不大.【变式3-2】(2018秋•亭湖区校级期中)下面是某同学在沙滩上用石子摆成的小房子观察图形的变化规律,则第10个小房子用了____颗石子.()A.119B.121C.140D.142【分析】根据图示,可得:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,据此求出第10个小房子用了多少颗石子即可.【答案】解:第1个小房子用的石子的数量是:1+22,第2个小房子用的石子的数量是:3+32,第3个小房子用的石子的数量是:5+42,…,∴第n个小房子用的石子的数量是:2n﹣1+(n+1)2,∴第10个小房子用的石子的数量是:19+112=19+121=140.故选:C.【点睛】此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.【变式3-3】(2019秋•九龙坡区校级期中)如图,们一个图形都是由一些黑点按一定的规律排列组成的,其中第①个图形中共有6个小黑点,第②个图形中有10个黑点,第③个图形中一共有16个小黑点,…,按此规律,则第⑩个图形中小黑点的个数是()A.112B.114C.116D.118【分析】第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,那么可得第n个图形中有n•n+n+4个黑点.【答案】解:第①个图形中有1×1+1+4=6个黑点;第②个图形中有2×2+2+4=10个黑点;第③个图形中有3×3+3+4=16个黑点,第④个图形中有4×4+4+4=24个黑点,可得第n个图形中有n•n+n+4个黑点.把n=10代入可得:10×10+10+4=114,故选:B.【点睛】本题考查规律型:图形的变化类;根据图形的排列规律正确列式是解决本题的关键.【考点4 图形中的自然数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+2+3+4+...+n=n(n+1)/2求解即可,需注意若首项不为1,需将公式进行适当变形.【例4】(2019秋•青山区校级月考)如图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n行有n个点……则下列说法:①10是三角点阵中前4行的点数和;②300是三角点阵中前24行的点数和;③前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,其中正确的个数是()A.0个B.1个C.2个D.3个【分析】根据题意和题目中点的个数的变化,可以判断各个小题是否正确,从而可以解答本题.【答案】解:当n=4时,三角点阵中的点数之和是:1+2+3+4=10,故①正确,当1+2+…+n=300时,即,得n=24,故②正确,当n=19时,三角点阵中的点数之和为=190,∵190+10=200,∴前n个点数和为200的点,在这个三角点阵中位于第20行第10个点,故③正确;故选:D.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中点的个数的变化规律,利用数形结合的思想解答.【变式4-1】(2019秋•沙坪坝区校级月考)如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(6)个图形中面积为1的正方形的个数为()A.14B.20C.24D.27【分析】根据已知图形得出第n个图形中面积为1的正方形有2+3+4+…+n+1=,据此求解可得.【答案】解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:D.【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【变式4-2】(2019春•北碚区校级期中)如图图形是用同样大小的铜币摆放的四个图案,根据摆放图案的规律,则第8个图案需要铜币的个数为()A.29B.36C.37D.46【分析】找出相邻两个图形铜币的数目的差,从而可发现其中的规律,于是可求得问题的答案.【答案】解:n=1时,铜币个数=1+1=2;当n=2时,铜币个数=1+1+2=4;当n=3时,铜币个数=1+1+2+3=7;当n=4时,铜币个数=1+1+2+3+4=11;…第n个图案,铜币个数=1+1+2+3+4+…+n=n(n+1)+1,当n=8时,×8×9+1=37,故选:C.【点睛】本题主要考查的是图形的变化规律,找出其中的规律是解题的关键.【变式4-3】(2018秋•市南区校级期中)下列是用火柴棒拼成的一组图形,第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第③个图形中有18根火柴棒,…,按此规律排列下去,第⑥个图形中火柴棒的根数是()A.63B.60C.56D.45【分析】由图可知:第①个图形中有3根火柴棒,第②个图形中有9根火柴棒,第②个图形中有18根火柴棒,…依此类推第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;由此代入求得答案即可.【答案】解:∵第①有1个三角形,共有3×1根火柴;第②个有1+2个三角形,共有3×(1+2)根火柴;第③个有1+2+3个三角形,共有3×(1+2+3)根火柴;…∴第n个有1+2+3+…+n个三角形,共有3×(1+2+3+…+n)=n(n+1)根火柴;∴第⑥个图形中火柴棒根数是3×(1+2+3+4+5+6)=63,故选:A.【点睛】此题考查了图形的变化规律,解题的关键是发现三角形个数的规律,从而得到火柴棒的根数.【考点5 图形中的奇数求和规律】【方法点拨】解此类问题的关键在于将图形的规律转化为数字规律,即将图形的个数转化为数字,利用1+3+5+7+9+11+…+2n﹣1=(n+1)2求解即可,需注意若首项不为1,需将公式进行适当变形.【例5】(2018秋•九龙坡区校级期中)如图,将等边三角形按一定规律排列,第①个图形中有1个小等边三角形,第②个图形中有4个小等边三角形,按此规律,则第⑥个图形中有()个小等边三角形.A.36个B.49个C.35个D.48个【分析】根据已知得出第n个图形有1+3+5+…+(2n﹣1)=n2个三角形,据此代入计算可得.【答案】解:第①个图有1=12个三角形,第②个图形有1+3=4=22个三角形,第③个图形有1+3+5=9=32个三角形,…第⑥个图形有62=36个三角形,故选:A.【点睛】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.【变式5-1】(2018秋•三台县期中)如图是由一些黑点组成的图形,按此规律,在第n个图形中,黑点的个数有()A.4n﹣1B.n2﹣1C.n2+2D.2n+1【分析】分析数据可得:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1).据此可以求得答案.【答案】解:第①个图形中点的个数为3;第②个图形中点的个数为3+3;第③个图形中点的个数为3+3+5;第④个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故选:C.【点睛】此题属于图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【变式5-2】(2019•云南模拟)如图用棋子摆成三角形的图案,第(1)个三角形中有4枚棋子,第(2)个三角形中有9枚棋子,第(3)个三形中有16枚棋了,…,按照这样的规律摆下去第()个三角形中有2025枚棋子.A.42B.43C.44D.45【分析】首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【答案】解:第1个三角形图案:1+3=4=22,第2个三角形图案:1+3+5=9=32,第3个三角形图案:1+3+5+7=16=42,第4个三角形图案:1+3+5+7+9=16+9=25=52,第5个三角形图案:1+3+5+7+9+11=25+11=36,则第n个三角形图案:1+3+5+7+9+11+…+2n﹣1=(n+1)2,令(n+1)2=2025,解得:n=44或n=﹣46(舍去)故选:C.【点睛】本题是图形与数字类的变化规律的综合问题,首先要探寻规律,认真观察、仔细思考,善用联想来解决这类问题;本题不仅要从图形中看规律,还要从数字变化看规律,两方面结合得出结论.【变式5-3】(2019•沙坪坝区校级一模)观察下列图形,①中有1个圆,②中有5个圆,③中有13个圆……,若依此规律,则第⑥个图形中圆的个数为()A.25B.61C.41D.65【分析】仔细观察图形,找到图形的变化规律,利用规律解得即可.【答案】解:第一个图形有1个圆,第二个图形有1+3+1=5个圆,第三个图形有1+3+5+3+1=13个圆,第四个图形有1+3+5+7+5+3+1=25个圆,…第六个图形有1+3+5+7+9+11+9+7+5+3+1=61个圆,故选:B.【点睛】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.【考点6 图形中的组合规律】【方法点拨】此类问题是将上述两种规律结合在一起,需将图形进行拆分,找出各个部分的规律进行组合即可.【例6】(2019•长寿区模拟)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10 个图形中●的个数为()A.50B.53C.64D.76【分析】根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1),据此可得.【答案】解:因为图①中点的个数为4=22﹣0,图②中点的个数为8=32﹣1,图③中点的个数为13=42﹣(1+2),图④中点的个数为19=52﹣(1+2+3),……所以图⑨中点的个数为102﹣(1+2+3+…+8)=100﹣36=64,故选:C.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知图形得出图n中点的个数为(n+1)2﹣(1+2+3+…+n﹣1).【变式6-1】(2018秋•九龙坡区校级期中)下列图形都是由同样大小的黑点按一定规律组成的,其中第①个图形中一共有3个黑点,第②个图形中一共有8个黑点,第③个图形中一共有14个黑点,……,则第⑧个图形中黑点的个数是()。
初中数学找规律题附答案

1:2 6 12 20 30 ( ) A.38 B.42 C.48 D.562:20 22 25 30 37 ( ) A.39 B.45 C.48 D.513:2 5 11 20 32 ( ) A.43 B.45 C.47 D.494:1,3,18,216,( )A.1023B.1892C.243D.51845:102,96,108,84,132,( ) ,()6、在数学活动中,小明为了求的值(结果用n表示),设计如图a所示的图形。
(1)请你利用这个几何图形求的值为。
(2)请你利用图b,再设计一个能求的值的几何图形。
7、观察下面的图形(每一个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下边给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式。
8、右图是一回形图,其回形通道的宽与OB的长均为1,回形线与射线OA交于点A1,A2,A3,…。
若从O点到A1点的回形线为第1圈(长为7),从A1点到A2点的回形线为第2圈,……,依此类推。
则第10圈的长为。
9、已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度。
在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4,……。
依此运动规律,则经过第11次运动后,动点P所在位置P11的坐标是。
10、瑞士中学教师巴尔末成功地从光谱数据,,,,……,中得到巴尔末公式,从而打开了光谱奥妙的大门。
请你按这种规律写出第七个数据是。
11、按下列规律排列的一列数对(1,2)(4,5)(7,8),…,第5个数对是。
12、一组按规律排列的数:,,,,,…请你推断第9个数是13、把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行……,中间用虚线围的一列,从上至下依次为1、5、13、25、…,则第10个数为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n -2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例: 4,16,36,64,,144,196,…(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤先看增幅是否相等,如相等,用基本方法(一)解题。
如不相等,综合运用技巧(一)、(二)、(三)找规律如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、【典型例题】 例1 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321======== ……用你所发现的规律写出20043的末位数字是__________。
观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。
五、图形找规律小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n 个这样的三角形需要多少根火柴棒 ★注意引导学生概括“探索规律”的一般步骤: ① 寻找数量关系; ② 用代数式表示规律 ③ 验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面五棱柱呢十棱柱呢n 棱柱呢 活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人3张呢n张呢⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系⑵这个关系对其它这样的方框成立吗你能用代数式表示这个关系吗⑶这个关系对任何一个月的日历都成立吗为什么⑷你还能发现这样的方框中9个数之间的其他关系吗用代数式表示。
⑸你还能提出那些问题4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。
……(1)将下表填写完整(2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。
例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为41的矩形等分成两个面积为81示的规律计算:=+++++++25611281641321161814121例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是①② ③例8.观察下列图形并填表。
六、巩固练习题1.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
2.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
……3.观察与分析下面各列数的排列规律,然后填空。
①5,9,13,17, , 。
②4,5,7,11,19, , 。
③10,20,21,42,43, , ,174,175。
④4,9,19,34,54, , ,144。
⑤45,1,43,3,41,5, , ,37,9。
⑥6,1,8,3,10,5,12,7, , 。
⑦0,1,1,2,3,5, , 。
⑧180,155,131,108, , 。
112第三个第一个第二个42==s n 83==s n 124==s n 165==s n⑨5,15,45,135, , 。
⑩60,63,68,75, , 。
4.你能很快算出21995吗为了解决这个问题,我们考察个位上的数为5的自然数的平方,任意一个个位数为5的自然数可写成10•n +5,即求2)510(+n 的值(n 为自然数),你试分析Λ,3,2,1===n n n 这些简单情况,从中控索其规律,并归纳,推测出结论(在下面空格内填上你的控索结果)。
通过计算,控索规律:225152=可写成25)11(1100++⨯ 625252=可写成25)12(2100++⨯ 1225352=可写成25)13(3100++⨯ 2025452=可写成25)14(4100++⨯…………5625752=可写成 7225852=可写成从第(1)的结果,归纳、推测得:=+2)510(n 根据上面的归纳、推测,请算出:=219955.观察下列几个算式,找出规律: 1+2+1=4 1+2+3+2+1=9 1+2+3+4+3+2+1=16 1+2+3+4+5+4+3+2+1=25 ……利用上面规律,请你迅速算出:①1+2+3+…+99+100+99+…+3+2+1= ②据①你会算出1+2+3+…+100是多少吗 ③据上你能推导出1+2+3+…+n 的计算公式吗12.给出下列算式:1881322⨯==-,28163522⨯==-,38245722⨯==-,48327922⨯==-,…,观察上面的一系列等式,你能发现什么规律用代数式表示这个规律是 。
6.研究下列算式,你会发现有什么规律224131==+⨯;239142==+⨯;2416153==+⨯;2525164==+⨯……请将你找出的规律用公式表示出来: 。
7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律填写:a 所表示的数: 。
b 所表示的数: 。
8.因为111113=⨯⨯=,11112=⨯=,9812133=+=+ 93)21(22==+362781321333=++=++ 366)321(22==++10064278143213333=+++=+++ 10010)4321(22==+++那么=++++++333333100994321Λ 。
9.将1,21-,31,41-,51,61-,…按一定规律排成下表:试找出12006-在第 行第 个数10.如下图:(1)1025 2641155114411331121111bba15114113112111110191817161514131211-------217935(2)11.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。