一次函数的复习讲义全
一次函数复习讲义

一次函数函数【知识要点】1、平面直角坐标系的基本知识:①直角坐标系的画法;②坐标系内各象限的编号顺序及各象限内点的坐标的符号2、函数的定义,以及用解析法表示函数时要注意考虑自变量的取值必须使解析式有意义3、函数的图象:(1)函数图象上的点的坐标都满足函数解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上.(2)知道函数的解析式,一般用描点法按下列步骤画出函数的图象:列表.在自变量的取值范围内取一些值,算出对应的函数值,列成表.描点.把自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点.连线.按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来.【典型例题】例1、函数自变量的取值范围:(1)函数y=1x-1中自变量x的取值范围是(2)函数y=x+2+5-x中自变量x的取值范围是(3)函数y=x-2(2-x)2-1中自变量x的取值范围是例2、汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A .B .C .D .例3、某音乐厅有20排座位,第一排有18个座位,后面每排比前一排多一个座位,每排座位数m 与这排的排数n 的函数关系是 ,自变量n 的取值范围是例4、父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还。
”如果用纵轴y 表示父亲和学子在行进中离家的距离,横轴t 表示离家的时间,那么下面与上述诗意大致相吻的图象是 ( )例5、如图,四边形EFGH 是△ABC 的内接正方形,BC=a, 试写出正方形的边长y 的与△ABC高AD=x 的函数关系式,并画出函数的图象。
【经典练习】1、函数y x =-3的自变量x 的取值范围是 ( ) A. x ≥3B. x >3C. x ≠3D. x ≤3A2、如图是某人骑自行车的行驶路程s (千米)与行驶时间t (时)的函数图象,下列说法不正确的是 ( )A 、从0时到3时,行驶了30千米B 、从1时到2时匀速前进C 、从1时到2时在原地不动D 、从0时到1时与从2时到3时的行驶速度相同3、某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
北师大版八年级数学上册-第四章一次函数(同步+复习)精品讲义课件

① ② ③ ④ 圆的半径r=2 , 圆的面积S与半径r的关系。 长方形的宽一定时,其长与周长。 王成的年龄与身高。 汽车行驶过程中,路程一定,其速度与时间。
① ② 根据变化过程中变量的实际意义确定。 根据纯代数关系式确定:一看分母不为0;二看 根号内非负(开平方被开方数是非负数); 定义:对于自变量在可取值范围内每一个确定的 值a,函数有唯一确定的对应值,这个对应值称 为“当自变量等于a的函数值“。 函数值与自变量的取值是对应的、相互依赖的。 求法:有表查表;有式代入;有图看图。
2.
函数值:
①
② ③
【例4】做一做
1. 求当x=-2时,函数 y=x2-√x2的函数值. 3x 2. 函数y= —— 中,求自变量 x的取值范围。 √x-2 3. 当x取( 意义。 )时,函数y= ————有
√x -2 4x
五. (补充)函数的图象
1. 定义:把一个函数的自变量的每一个值与对应的函数值分别 做为点的横坐标与纵坐标,在平面直角坐标系中描出所有对 应的点,所有这些点组成的图形叫做该函数的图象。 作法:列表(选值计算画表);描点(对应值为点的坐标); 连线(平滑的直线或曲线)。画出的是近似图象。 作用(学会看图象):
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 一看对应:(变量互求:有关系式用关系式。) 二看趋势:(如何变化) 三看范围:(最大最小局部整体区别看) 四看增减;(上坡下坡) 五看快慢:(陡快缓慢平不变) 六解方程:(组)不等式( 交点-扫描-投影法) 七比大小:(两函数,比大小,找交点,横分段,看变化,求得 解) 八出方案:(寻求生活中最优选择最佳方案) 九取特值:(结合字母常量的几何意义确定常量之间的关系)。 十设坐标:(设横表纵——永远不变的真理)。
一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看
对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。
一次函数专题复习ppt课件

y=kx+b
方程kx+b=0直线 与的y 1k1
x
b1
y k b 交点 x
2
2
2
y=kx+b
y>0时
y<0时
方程 组
y k b 1
x
1
1 的解
y 2
k
2
x
b2
kx+b>0
kx+b<0
已知y=(m-2)x-(m-4)是y关于x的一次函数。 (1)求m的取值范围
(2) 若2<m<4,函数图像经过哪几个象限?
本节课你学会了哪些方法? 学会了哪些知识?
1、(2015•陕西)设正比例函数y=mx的图像经过点A(m, 4),且y随x的增大而减小,则m=() A、2 B、-2 C、4 D、-4 2、(2016•陕西)已知一次函数y=kx+5和y= x+7,假设k>0,
<0,则这两个一次函数图像交点在() A、第一象限 B、第二象限 C、第三象限 D、第四象限
(6) 若此函数图像经过点(2,5),请画出此一次
函数图像,根据图像回答下列问题:
y
① 求出一次函数与两坐标轴的交点;
② 不解方程求出(m-2)x-(m-4)=0时方
程的解;
③ 求不等式(m-2)x-(m-4)>-1的解;
O
x
④ 求出图像与两坐标轴围成的面积。
(7)一次函数y=kx+b与(6)中一次函数交点坐标为(1, y),与y轴交点坐标为(0,4)
5、(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科 技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中, 他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象. 根据下面图象,回答下列问题: (1)求线段AB所表示的函数关系式; (2)已知昨天下午3点时,小明距西安112千米,求他何时到家?
初二数学一次函数期末复习串讲讲义

初二数学一次函数期末复习串讲讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。
一次函数的图象与k,b的关系如下图所示:b<03、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b中含有两个待定系数k、b,根据待定系数法,只要列出方程组即可.4、一次函数的应用:(1)、一次函数与一元一次方程、二元一次方程组的关系。
一元一次方程的解就是一次函数与x轴的交点坐标的横坐标的值。
二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。
(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。
二.经典例题例1:(1)如图:三个正比例函数的图像分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A、a>b>cB、c>b>aC、b>a>cD、b>c>a解:由正比例函数图像的性质可得:答案:C(2)一次函数y=x+1的图象,不经过的象限是()。
(A)第一象限(B)第二象限(C)第三象限(D)第四象限解:由一次函数y=kx+b的图象性质,有以下结论:题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。
答案:D。
例2、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
第四章 一次函数 讲义 2024--2025学年北师大版八年级数学上册

北师大版八年级上册第四单元一次函数讲义知识点清单:知识点一.函数的概念知识点二.函数关系式知识点三.函数自变量的取值范围知识点四.函数的图象知识点五.函数的表示方法知识点六.一次函数的定义知识点七.正比例函数的定义知识点八.一次函数的性质知识点九.一次函数图象与系数的关系知识点十.一次函数图象上点的坐标特征知识点十一.一次函数图象与几何变换知识点十二.待定系数法求一次函数解析式知识点十三.待定系数法求正比例函数解析式知识点十五.根据实际问题列一次函数关系式知识点十四.一次函数与一元一次方程知识点十六.一次函数的应用知识点十七.一次函数综合题知识点一.函数的概念1.下列曲线中表示y是x的函数的是()A .B .C.D.知识点二.函数关系式2.小明一家自驾车到离家500km的某景点旅游,出发前将油箱加满油.下表记录了行驶路程x(km)与油箱余油量y(L)之间的部分数据:行驶路程x(km)050100150200…油箱余油量y(L)4541373329…下列说法不正确的是()A.该车的油箱容量为45LB.该车每行驶100km耗油8LC.油箱余油量y(L)与行驶路程x(km)之间的关系式为y=45﹣8xD.当小明一家到达景点时,油箱中剩余5L油知识点三.函数自变量的取值范围3.在函数y=中,自变量x的取值范围是.4.函数y=中,自变量x的取值范围是.知识点四.函数的图象5.如图是某汽车从A地去B地,再返回A地的过程中汽车离开A地的距离与时间的关系图,下列说法中错误的是()A.A地与B地之间的距离是180千米B.前3小时汽车行驶的速度是40千米/时C.汽车中途共休息了5小时D.汽车返回途中的速度是60千米/时知识点五.函数的表示方法6.某校七年级数学兴趣小组利用同一块长为1米的光滑木板,测量小车从不同高度沿斜放的木板从顶部滑到底部所用的时间,支撑物的高度h(cm)与小车下滑时间t(s)之间的关系如下表所示:支撑物高度h(cm)10203040506070小车下滑时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59根据表格所提供的信息,下列说法中错误的是()A.支撑物的高度为40cm,小车下滑的时间为2.13sB.支撑物的高度h越大,小车下滑时间t越小C.若小车下滑的时间为2s,则支撑物的高度在40cm至50cm之间D.若支撑物的高度每增加10cm,则对应的小车下滑的时间每次至少减少0.5s知识点六.一次函数的定义7.函数①y =5x ;②y =2x ﹣1;③;④;⑤y =x 2﹣2x +1,是一次函数的有()A .1个B .2个C .3个D .4个8.已知y =3x m ﹣1+5是y 关于x 的一次函数,则m 的值为.知识点七.正比例函数的定义9.若函数y =﹣7x +m ﹣2是正比例函数,则m 的值为()A .0B .1C .﹣2D .210.若y 关于x 的函数y =﹣7x +2+m 是正比例函数,则m =.知识点八.一次函数的性质11.若直线y =kx +b 经过第一、二、四象限,则函数y =bx ﹣k 的大致图象是()A .B .C .D .12.若点A (x 1,﹣1),B (x 2,﹣2),C (x 3,3)在一次函数y =﹣2x +m (m 是常数)的图象上,则x 1,x 2,x 3的大小关系是()A .x 1>x 2>x 3B .x 2>x 1>x 3C .x 1>x 3>x 2D .x 3>x 2>x 113.已知函数y =(2m +1)x +m ﹣3(1)若函数图象经过原点,求m 的值;(2)若函数的图象平行直线y =3x ﹣3,求m 的值;(3)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.14.(1)如图所示,∠AOB =α,∠AOB 内有一点P ,在∠AOB 的两边上有两个动点Q 、R (均不同于点O ),现在把△PQR 周长最小时∠QPR 的度数记为β,则α与β应该满足关系是.(2)设一次函数y =mx ﹣3m +4(m ≠0)对于任意两个m 的值m 1、m 2分别对应两个一次函数y 1、y 2,若m 1m 2<0,当x =a 时,取相应y 1、y 2中的较小值P ,则P 的最大值是.知识点九.一次函数图象与系数的关系15.已知一次函数y=(a﹣2)x+1,y随着自变量x的增大而增大,则a的取值范围为.知识点十.一次函数图象上点的坐标特征16.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.217.关于x的一次函数y=﹣4x+8的图象,下列说法不正确的是()A.直线不经过第三象限B.直线经过点(1,4)C.直线与x轴交于点(2,0)D.y随x的增大而增大18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM折叠,点B恰好落在x轴上,则点M的坐标为.19.如图,直线y=﹣2x+2与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标.=2S△AOB,求点C的坐标.(2)若点C在x轴上,且S△ABC20.如图,在平面直角坐标系中,点P的坐标为(3,2),若直线y=﹣2x﹣4与x轴、y轴分别交于A、B 两点,连接PA、PB.(1)求点A、点B的坐标;(2)求△PAB的面积.21.如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.22.如图,在平面直角坐标系中,点C(﹣3,0),直线y=﹣分别交x轴、y轴于点A、B.(1)求点A、B的坐标;(2)若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP.设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量t的取值范围.知识点十一.一次函数图象与几何变换23.将直线y=2x+1向右平移2个单位后所得图象对应的函数表达式为()A.y=2x+5B.y=2x+3C.y=2x﹣2D.y=2x﹣324.将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为()A.y=﹣2(x﹣4)B.y=﹣2x+4C.y=﹣2(x+4)D.y=﹣2x﹣425.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为.26.如图,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1平移到直线l2,直线l2与x轴交于点C,点A与点C,点B与点D分别是平移前后的对应点,若线段AB在平移过程中扫过的图形面积为20,求点D的坐标.知识点十二.待定系数法求一次函数解析式27.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为()A.y=x+2B.y=﹣x+2C.y=x+2或y=﹣x+2D.y=﹣x+2或y=x﹣228.如图,若点P(﹣2,4)关于y轴的对称点在一次函数y=x+b的图象上,则b的值()A.﹣2B.2C.﹣6D.629.已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是.30.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y 轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.31.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求点C的坐标.(2)若直线AB上的点C在第一象限,且S△BOC知识点十三.待定系数法求正比例函数解析式32.正比例函数y=kx经过点(1,3),则k=.33.已知y与x成正比例,且当x=3时,y=4.(1)求y与x之间的函数解析式;(2)当x=﹣1时,求y的值.知识点十四.一次函数与一元一次方程34.如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=435.一次函数y=kx+b的图象与x轴交于点A(﹣3,0),则关于x的方程﹣kx+b=0的解为()A.x=3B.x=﹣3C.x=0D.x=236.已知直线y=﹣3x与y=kx+2相交于点P(m,3),则关于x的方程kx+2=﹣3x的解是()A.x=﹣1B.x=1C.x=2D.x=337.如图一次函数y=kx+2的图象分别交y轴,x轴于点A、B,则方程kx+2=0的解为()A.x=0B.x=2C.D.38.如图是一次函数y=ax+b的图象,则关于x的方程ax+b=1的解为()A.0B.2C.4D.639.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,关于x的方程x+5=ax+b的解是.知识点十五.根据实际问题列一次函数关系式40.已知等腰三角形的周长是20cm,底边长y(cm)是腰长x(cm)的函数关系式为,自变量x的取值范围是.知识点十六.一次函数的应用41.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④42.声音在空气中传播的速度(简称声速)v(m/s)与空气温度t(℃)满足一次函数的关系(如表格所示),则下列说法错误的是()A.温度越高,声速越快B.当空气温度为20℃时,声速为342m/sC.声速v(m/s)与温度t(℃)之间的函数关系式为D.当空气温度为40℃时,声速为350m/s43.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘草莓更多44.某中学开展春季越野赛,小明、小颖两名同学同时从起点出发,他们所跑的路程y(千米)与时间x(分)之间的关系如图所示,小刚由图示得出下列信息:①在比赛中小明的速度始终比小颖快,所以小明先到达终点;②比赛开始20分钟时,小明和小颖第一次相遇;③越野赛全程为6千米;④小明最后冲刺速度为0.3千米/分钟.在小刚得出的信息中正确的有(填序号即可).45.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,根据图象可知,下列结论:①两车出发后4小时相遇;②动车的速度是普通列车速度的2倍;③两车相遇后,普通列车还需行驶6小时到达目的地;④C点的坐标是(5,1000),其中正确的有.(填所有正确结论的序号)46.某工厂的销售部门提供两种薪酬计算方式:薪酬方式一:底薪+提成,其中底薪为3000元,每销售一件商品另外获得15元的提成;薪酬方式二:无底薪,每销售一件商品获得30元的提成.设销售人员一个月的销售量为x (件),方式一的销售人员的月收入为y 1(元),方式二的销售人员的月收入为y 2(元).(1)请分别写出y 1、y 2与x 之间的函数表达式;(2)哪种薪酬计算方式更适合销售人员?47.甲、乙两家体育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定价20元,乒乓球拍每副定价100元.现两家商店都搞促销活动,甲店每买一副球拍赠两盒乒乓球,乙店按八折优惠.某俱乐部需购球拍4副,乒乓球x (x ≥10)盒.(1)若在甲店购买付款y 甲(元),在乙店购买付款y 乙(元),分别写出:y 甲,y 乙与x 的函数关系式.(2)若该俱乐部需要购买乒乓球30盒,在哪家商店购买合算?48.科学调查结果显示:当中学生电子产品日平均使用时间小于30分钟时,近视率较低.使用时长从30分钟到1小时的过程中,近视率会急剧上升,研究发现近视率y 是日平均使用时长x (分钟)的一次函数,当日平均使用时长为30分钟时,近视率为10%,当日平均使用时间为60分钟时,近视率为70%.(1)求y 与x 之间的函数表达式;(2)当日平均使用时间为40分钟时,近视率是多少?49.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD 对应的函数表达式;(3)在轿车行进过程,轿车行驶多少时间,两车相距15千米.知识点十七.一次函数综合题50.如图,直线l1:y=2x+6与过点B(3,0)的直线l2交于点C(﹣1,m),且直线l1与x轴交于点A,与y轴交于点D.(1)求直线l2的解析式;(2)若点M是直线l2上的点,且在y轴左侧,过点M作MN⊥直线x=1于点N,点Q在直线x=1上,要使△MNQ≌△AOD,求所有满足条件的点Q的坐标.51.【阅读理解】已知M,N为平面内不重合的两点.给出以下定义:将M绕N顺时针旋转α(0°<α<360°)的过程记作变换(N,α).例如:在平面直角坐标系xOy中,已知点M(1,0),N(2,0),则M经过变换(N,90°)后所得的点B的坐标为(2,1).【迁移应用】如图,在平面直角坐标系xOy中,直线y=2x+b分别与x轴,y轴交于点A(﹣1,0),B,设A经过变换(B,180°)后得到C.(1)求点C的坐标;(2)过C作CD⊥x轴于D,点E是线段CD上一动点,设E经过变换(B,90°)后得到点F,连接BE,BF.ⅰ)若△ABF的面积为3,求点F的坐标;ⅱ)设点M是y轴上一动点,当以A,B,F,M(四点为顶点的四边形为平行四边形时,求点M的坐标.52.如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).(1)求直线AB的解析式和点B的坐标;(2)求△ABP的面积(用含n的代数式表示);=2时,以PB为边在第一象限作等腰直角三角形BPC,求点C的坐标.(3)当S△ABP53.如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x 轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.54.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.55.如图1,已知函数y=x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.56.(1)认识模型:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)应用模型:①已知直线y=﹣2x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B顺时针旋转90度,得到线段CB,求点C的坐标;②如图3,矩形ABCO,O为坐标原点,B的坐标为(5,4),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣3上的一点,点Q是平面内任意一点.若四边形ADPQ 是正方形,请直接写出所有符合条件的点D的坐标.57.如图,直线l1:y=﹣x+3与x轴相交于点A,直线l2:y=kx+b经过点(3,﹣1),与x轴交于点B(6,0),与y轴交于点C,与直线l1相交于点D.(1)求直线l2的函数关系式;(2)点P是l2上的一点,若△ABP的面积等于△ABD的面积的2倍,求点P的坐标;(3)设点Q的坐标为(m,3),是否存在m的值使得QA+QB最小?若存在,请求出点Q的坐标;若不存在,请说明理由.58.如图,直线y=﹣x+3与x轴、y轴分别交于点A、B,点P在x轴上运动,连接PB,将△OBP沿直线BP折叠,点O的对应点记为O′.(1)若点O′恰好落在直线AB上,求OP的长.(2)若Q是直线AB上的一个动点,当△AOQ的面积为10时,求Q的坐标.(3)在x轴上是否存在点C,使得△ABC为等腰三角形?若存在,直接写出点C的坐标,若不存在,说明理由.(4)若C是y=﹣x+3上的动点,当△ABC是以BC为底的等腰三角形,求出点C的坐标.59.问题提出(1)如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC,P为高AE上的动点,过点P作PH⊥AC于H,则的值为;问题探究(2)如图2,在平面直角坐标系中,直线y=﹣x+2与x轴、y轴分别交于点A、B.若点P是直线AB上一个动点,过点P作PH⊥OB于H,求OP+PH的最小值.问题解决(3)如图3,在平面直角坐标系中,长方形OABC的OA边在x轴上,OC在y轴上,且B(6,8).点D在OA边上,且OD=2,点E在AB边上,将△ADE沿DE翻折,使得点A恰好落在OC边上的点A′处,那么在折痕DE上是否存在点P使得EP+A′P最小,若存在,请求最小值,若不存在,请说明理由.60.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在y轴右侧有一动直线平行于y轴,分别于l1、l2交于点M、N,且点M在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出满足条件的点Q的坐标;若不存在,请说明理由.。
一次函数 复习讲义

一次函数 复习讲义一、知识点1. 常量与变量;函数的概念,表示方法;确定自变量的取值范围2. 一次函数的概念,区分一次函数与正比例函数;3. 待定系数法求解析式;4. 一次函数的图像画法;正比例函数图像过原点;过象限问题;平移问题;平行问题5. 方程与函数的关系,两条直线的交点问题;图像综合问题二、基础题组一.选择题(共13小题) 1.(2014•黄冈)函数y=中,自变量x 的取值范围是( )A . x≠0B .x≥2C .x >2且x≠0 D .x≥2且x≠02. 下列函数(1)y=3πx ;(2)y=8x ﹣6;(3)y=;(4)y=﹣8x ;(5)y=5x 2﹣4x+1中,是一次函数的有( )A . 4个B . 3个C . 2个D . 1个 3.(2014•滦南县一模)甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为40km .他们行进的路程S (km )与乙出发后的时间t (h )之间的函数图象如图.根据图象信息,下列说法正确的是( )4.(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示,则这个瓶子的形状是下列的( )A . 甲的速度是20km/hB . 乙的速度是10 km/hC .乙比甲晚出发1 hD .乙比甲晚到B 地3 h5.(2014•崇明县二模)已知函数y=(k﹣1)x+k﹣2(k为常数),如果y随着x的增大而减小,那么k的取值范围是()A.k>1 B.k<1 C.k>2 D.k<26.(2014•海曙区模拟)一次函数y=kx+b中,k<0,b>0,则下列图象符合条件的是()A.B.C.D.7.(2014•武威模拟)直线y=kx﹣b不经过第三象限,则()A.k<0,b<0 B.k<0,b>0 C.k≤0,b≥0D.k<0,b≤08.(2014•安阳县一模)一次函数y=(m﹣1)x+m2的图象过点(0,4),且过一、二、三象限,则m=()A.﹣2 B.2 C.2或3 D.﹣2或29.(2013•历下区二模)已知直线y=﹣x+4与y=x+2的图象如图,则方程组的解为()9题图10题图11题图A.B.C.D.A.B.C.D.10.(2013•黄浦区二模)如图,一次函数y=kx+b 的图象经过点(2,0)与(0,3),则关于x 的不等式kx+b >0的解集是( ) A . x <2 B . x >2 C . x <3 D . x >3 11.(2014•辽阳)如图,函数y=2x 和y=ax+5的图象交于点A (m ,3),则不等式2x <ax+5的解集是( ) A . x < B . x <3 C . x > D . x >312.(2014•鞍山)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,两车距甲地的距离y 千米与行驶时间x 小时之间的函数图象如图所示,则下列说法中错误的是( )13.(2014•齐齐哈尔)若等腰三角形的周长是80cm ,则能反映这个等腰三角形的腰长ycm 与底边长xcm 的函数关系式的图象是( ) A . B . C . D .二.填空题(共10小题)14.已知函数y=(k ﹣1)x+k 2﹣1,当k _________ 时,它是一次函数,当k= _________ 时,它是正比例函数. 15.(2014•天水)写出一个图象经过点(﹣1,2)的一次函数的解析式 _________ .16.(2014•贺州)已知P 1(1,y 1),P 2(2,y 2)是正比例函数y=x 的图象上的两点,则y 1 _________ y 2(填“>”或“<”或“=”).17.(2014•杨浦区二模)点A (x 1,y 1)、B (x 2,y 2)在一次函数y=﹣2x+b 的图象上,若x 1<x 2,则y 1 __ y 2(填“<”或“>”或“=”).A . 客车比出租车晚4小时到达目的地B . 客车速度为60千米/时,出租车速度为100千米/时C . 两车出发后3.75小时相遇D .两车相遇时客车距乙地还有225千米18.(2014•白云区一模)把直线y=﹣2x+1向下平移2个单位长度,得到的直线是_________.19.(2014•高淳区二模)将一次函数y=﹣2x+4的图象向左平移_________个单位长度,所得图象的函数关系式为y=﹣2x.20.(2014•广安)直线y=3x+2沿y轴向下平移5个单位,则平移后直线与y轴的交点坐标为_________.21.(2014•徐州)函数y=2x与y=x+1的图象的交点坐标为_________.22.(2014•洪山区一模)甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为_________千米.22题图23题图23.(2014•烟台)如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.三.解答题(共6小题)24.已知函数y=(k﹣3)x+k2﹣9.(1)当k取何值时,y是x的一次函数;(2)当k取何值时,y是x的正比例函数.25.已知y﹣2与x成正比例,且x=2时,y=﹣6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.26.已知函数y=2x﹣4.(1)画出它的图象;(2)求当x=时,y的值;(3)求当y=2时,x的值;(4)观察图象,求当x取何值时,y>0,y=0,y<0?27.(2014•乐山市中区模拟)一次函数y=kx+b的图象经过点(1,﹣2)和(3,2).(1)求常数k、b的值;(2)若直线分别交坐标轴于A、B两点,O为坐标原点,求△AOB的面积.28.(2014•钦州)某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是_________元;(2)当x>2时,求y与x之间的函数关系式;(3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?29.(2014•湘西州)如图,一次函数y=﹣x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积.三、提高题组一.选择题(共9小题)1.(2014•恩施州)函数y=+的自变量x的取值范围是()A .﹣4≤x<2 B.x>2 C.x≠2D.x≥﹣4且x≠22.(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()A .4个B.3个C.2个D.1个2题图5题图8题图3.下列函数①y=πx,②y=2x﹣1,③,④y=2﹣1﹣3x,⑤y=x2﹣1 ⑥y=kx(k是常数)中,是一次函数的有()A .4个B.3个C.2个D.1个4.(2014•宁津县模拟)对于函数y=﹣k2x(k是常数,k≠0)的图象,下列说法不正确的是()A .是一条直线B.过点(k1,﹣k)C经过一、三象限或二、四象限D y随着x增大而减小..5.(2014•辽阳)如图,函数y=2x和y=ax+5的图象交于点A(m,3),则不等式2x<ax+5的解集是()A .x<B.x<3 C.x>D.x>36.(2013•黔东南州)直线y=﹣2x+m与直线y=2x﹣1的交点在第四象限,则m的取值范围是()A .m>﹣1 B.m<1 C.﹣1<m<1 D.﹣1≤m≤17.(2014•日照)当k>时,直线kx﹣y=k与直线ky+x=2k的交点在()A .第一象限B.第二象限C.第三象限D.第四象限8.(2014•黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A .①②③B.仅有①②C.仅有①③D.仅有②③9.(2011•江干区模拟)如图,直线l1:y=x+1与直线l2:相交于点P(﹣1,0).直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B n,A n,…则当动点C到达A n处时,运动的总路径的长为()A .n2B.2n﹣1 C.2n﹣1+1 D.2n+1﹣29题图10题图二.填空题(共8小题)10.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟; ④兔子在途中750米处追上乌龟. 其中正确的说法是 _________ .(把你认为正确说法的序号都填上)11.(2014•自贡)一次函数y=kx+b ,当1≤x≤4时,3≤y≤6,则的值是 _________ . 12.(2014•烟台)如图,已知函数y=2x+b 与函数y=kx ﹣3的图象交于点P ,则不等式kx ﹣3>2x+b 的解集是 _________ .12题图 13题图 13. (2014•莆田)如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线y=x 上,则A 2014的坐标是 _________ .14.(2013•田阳县一模)如图,已知直线l :y=x ,过点A (0,1)作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…;按此作法继续下去,则点A 4的坐标为 _________ .14题图 15题图 15.(2014•武义县模拟)如图,直角坐标系中,点P (t ,0)是x 轴上的一个动点,过点P 作y 轴的平行线,分别与直线x y 21,直线y=﹣x 交于A ,B 两点,以AB 为边向右侧作正方形ABCD .(1)当t=2时,正方形ABCD 的周长是 _________ .(2)当点(2,0)在正方形ABCD 内部时,t 的取值范围是 _________ .16题图 17题图16. 如图,已知点F 的坐标为(3,0),点A 、B 分别是某函数图象与x 轴、y 轴的交点,点P 是此图象上的一动点,设点P 的横坐标为x ,PF 的长为d ,且d 与x 之间满足关系:()50535≤≤-=x x y ,则结论:①AF=2;②BF=5;③OA=5;④OB=3,正确结论的序号是_______17. 2002年在北京召开的世界数学大会会标图案是由四个全等的直角三角形围成的一个大正方形,中间的阴影部分 是一个小正方形的“赵爽弦图”.若这四个全等的直角三角形有一个角为30°,顶点B 1、B 2、B 3、…、B n 和C 1、C 2、C 3、…、C n 分别在直线1321++-=x y 和x 轴上,则第n 个阴影正方形的面积为_______.三.解答题(共7小题)18.已知函数y=(k ﹣3)x+k 2﹣9.(1)当k 取何值时,y 是x 的一次函数; (2)当k 取何值时,y 是x 的正比例函数.19.(2014•镇江一模)如图,直线y=﹣x+3与坐标轴分别交于点A ,B ,与直线y=x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连结CQ . (1)求出点C 的坐标;(2)若△OQC 是等腰直角三角形,则t 的值为 _________ ; (3)若CQ 平分△OAC 的面积,求直线CQ 对应的函数关系式.20.(2014•高青县模拟)直线y=x+2与x轴、y轴分别交于A、B两点,D是x轴上一点,坐标为(x,0),△ABD的面积为S.(1)求点A和点B的坐标;(2)求S与x的函数关系式;(3)当S=12时,求点D的坐标.21.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A 型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(2014•大连)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米)、y2(米)与小明出发的时间x(分)的函数关系如图.(1)图中a=_________,b=_________;(2)求小明的爸爸下山所用的时间.23.某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A →D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象;(2)求C,E两点间的路程;(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.24. (2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.。
一次函数 全面讲义

第六章一次函数【知识梳理】1.一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y= (k,b为常数,k≠0)的形式,则称y是x 的一次函数(x 为自变量,y为因变量);特别地,当b= 时,称y是x的正比例函数.2.函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为步:、、.3.函数的表达方式:、、 .4.一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,),直线与x轴的交点(,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,)即可.5.一次函数y=kx+b(k,b为常数,k≠0)的性质㈠㈡(1)k的正负决定直线的倾斜方向;(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;(4)由于k,b的符号不同,直线所经过的象限也不同;(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们位角,因此,它们是平行的.另外,从平移的角度也可以分析,即:若一次函数y1=k1x+b1 和y2=k2x+b2的图像互相平行,则;若它们相交,则,特别地:若b1= b2,则这两直线 .直线平移:左“+”右“-”,上“+”下 “-”6. 一次函数与一元一次方程的关系:求直线与两坐标轴的交点坐标,可转化为求一元一次方程的解. 【典型例题】㈠ 函数自变量的取值范围:要点:(1)自变量在整式中;(2)自变量在二次根式中;(3)自变量在分母中;(4)综合 例1:求下列函数中自变量x 的取值范围:(1) y =3x -1; (2)21+=x y ; (3)2-=x y .㈡ 一次函数的定义:要点:(1)正比例解析式的特征;(2)一次函数解析式的特征 例1 下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-21x ; (2)y=-x 2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21 (6)y=x(x-4)-x 2. 例2 当m ,n 为何值时,函数y=-(m-2)x 32-m +(n-4)是一次函数?正比例函数呢?针对训练:1、已知函数y=(k -2)x+2k+1,当k _______时,它是正比例函数;当k _______时,它是一次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅导讲义授课时间:2014年 月 日 年 级:八年级 第 次课 学员:辅导科目:数学教师:黄华阳课 题第十四章 《一次函数》的复习教学目标 1、理解函数、自变量和函数值的概念,会列出一些简单的函数关系式2、掌握函数图象的画法。
掌握正比例函数及一次函数解析式的求法,会用其图象和性质解决相关的问题3、理解一次函数与方程、不等式的关系,会应用图形结合方法求方程和不等式的解4、能用一次函数的图象性质解决简单的实际问题 重点、难点 1、正比例函数和一次函数的图象和性质2、利用函数的观点来解方程和不等式3、正比例函数和一次函数与实际问题教 学 容【知识要点】一、变量与函数变量:在一个变化过程中,数值发生变化的量为变量。
常量:在一个变化过程中,数值始终不变的量为常量。
函数:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数。
如果当x= a 时y=b ,那么b 叫做当自变量的值为a 时的函数值。
【典例赏析】1、在地球某地,温度T 与高度d(m)的关系可以近似T=10-150d米表示,其中常量为 ,变量为 。
2、下列:①2y x =;②21y x =+;③22(0)y x x =≥;④(0)y x x =±≥,具有函数关系(自变量为x )的是 .3、下列四个图象中,不表示某一函数图象的是( )A B C D4、在下表中,设x 表示乘公共汽车的站数,y 表示应付的票价(元)根据此表,下列说确的是( )x (站)1 2 3 4 5 6 7 8 9 10 y (元)5、如图,小亮在操场上玩,一段时间沿M-A-B-M 的路径匀速散步,能近似刻画小亮到出发点M 的距离y 与时间x 之间关系的函数图象是( )A B C D6、如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t ,大正方形除去小正方形部分的面积为S (阴影部分),那么S 与t 的大致图象应为( )A B C D二、正比例函数1.定义: 形如y=kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫比例系数. 注:正比例函数都是常数与自变量的乘积的形式. 2.正比例函数的图象与性质:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线,我们通常称之为直线y=kx .[来源: 一般画正比例函数的图象时常选点(0,0)(1,k )。
当k>0时,直线y=kx 经过第一、三象限,从左向右上升,y 随x•的增大而增大; 当k<0时,直线y=kx 经过第二、四象限,从左向右下降,y 随x•的增大而减小.【典例赏析】1、下列关系中的两个量成正比例的是( ) A .人的体重和身高B .平行四边形的面积一定,它的底和高C .单价一定,总价和数量D .今年订阅《小学生数学报》的份数和人数 2、下列说法中不成立的是( )[来源:学*科*网] A .在y=x-1中y+1与x 成正比例; B .在y=-2x中y 与x 成正比例 C .在y=5(x+1)中y 与x+1成正比例; D .在y=x+8中y 与x 成正比例 3、已知(x 1,y 1)和(x 2,y 2)是直线y=-34x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( ) A .y 1>y 2 B .y 1<y 2 C .y 1=y 2 D .以上都有可能4、①已知y=(k+3)x+9-k 2是正比例函数,求k 的值.②函数y=(k 2-4)x 2+(k+1)x 是正比例函数,且y 随x 的增大而增大.求k 的值.5、根据下列条件求函数的解析式①y-1与x+2成正比例,且x=-3时y=2.并画出此函数的图像; ②如果y 的取值为0≤y ≤5,求x 的取值围。
6、在函数y=-4x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-2,求△POA 的面积(O 为坐标原点).三、一次函数1.定义:一般地,形如y =kx +b(k ,b 是常数,k ≠0)的函数,叫做一次函数。
当b=0时,y =kx +b 即为y =kx ,所以,正比例函数是特殊的一次函数。
2.一次函数的图象与性质:一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k b ,0)即可.A .x <-2B .-2<x <-1C .-2<x <0D .-1<x <05、一次函数y kx b =+的图象与y 轴交于点(0,4),且已知y 随x 的增大而增大,则不等式40kx b +-> 的解集为_______________.6、直线31y x =-与y x k =-的交点在第四象限,则k 的取值围是_________________.7、如图,已知函数y=ax+b 和y=kx 的图象交于点P , 则根据图象可得,关于y ax by kx=+⎧⎨=⎩的二元一次方程组的解是________.8、如图,A 、B 两点的坐标分别为A (4,2)、B (4,7),直线y x b =-+与线段AB 交于点C ,与y 轴交于点D ,若四边形OACD 的面积为22,求线段OD 的长.四、一次函数与实际问题【典例赏析】1、利润问题某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大?(3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大? 注:利润=售价-成本【课后作业】亲爱的同学,付出就有收获,认真地答题给自己一份满意的答卷。
一、认认真真选,沉着应战!1.下列曲线中,表示y 不是x 的函数是( )2.下列函数关系中表示一次函数的有 ( ) ①21yx ②1yx③12x y x ④60s t ⑤10025y xA.1个B.2个C.3个D.4个 3. 在函数y= 13-+x x 中,自变量x 的取值围是A. x ≠1B.x ≥-3C. x>-3且x ≠1D. x ≥-3且x ≠14.若点A (2, 4)在函数y =kx -2的图象上,则下列各点在此函数图象上的是( ) A 、(0,-2) B 、(1.5,0) C 、(8, 20) D 、(0.5,0.5)5.拖拉机开始工作时,油箱中有油40L,如果每小时耗油5L, 那么工作时,油箱中的余油量Q(L)与工作时间t(h)的函数关系用图象可表示为( )6.某航空公司规定,旅客乘机所携带行的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行的最大质量为( ) A. 20kg B. 25kg C. 28kg D. 30kg7.如图,一次函数y kx b 的图像经过A 、B 两点,则0kx b 解集是 ( ) A .0xB .3xC .x >-3D .32x着水,聪明的乌鸦沉思一会后,便衔来一个个小石子(大小不一样)放入瓶中,水位上升后,乌鸦喝到了水。
在这则乌鸦喝水的故事中,从乌鸦看到瓶的那刻起开始计时并设时间为x,瓶中水位的高度为y.下列图象中最符合故事情景的是( )二、仔仔细细填,记录自信!9.写出一个图象过点(1,2),且y随x的增大而增大的一次函数解析式__________y(米)与时间x(天)之间的关系图象.根据图10.如图是某工程队在“村村通”工程中,修筑的公路长度象提供的信息,可知该公路的长度是 _____ 米.第10题第11题11.如图若输入x的值为-5,则输出的结果__________.12.直线y=x+1与y=–2x–k的交点在第四象限则k的取值围是13.已知点A在直线y=-2x+4上,若点A与原点及直线和x轴的交点所围成的三角形的面积为2,则点A 的坐标为14.若直线y=-x+a和直线y=x+b的交点坐标为(m,8),则a+b=________三耐耐心心解,无往不利!15.已知函数y=(2m+1)x+m -3(1)若这个函数的图象经过原点,求m的值(2)若这个函数的图象不经过第二象限,求m的取值围.指距d(cm) 20 21 22 23身高h(cm) 160 169 178 187(1)求出h与d之间的函数关系式(不要求写出自变量d的取值围).(2)某人身高为196cm,一般情况下他的指距应是多少?17. 国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.(1)哪个队先到达终点?乙队何时追上甲队?(2)在比赛过程中,甲、乙两队何时相距最远?18. 某校计划在“十·一”期间组织教师到某地参加旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可给予每位游客7.5折优惠.乙旅行社表示可免去一位游客的旅游费用,其余游客8折优惠.该单位选择哪一家旅行社支付的旅游费用较少?19. 2011年4月28日,世界园艺博览会在隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票得种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/)60 100 150家长签名:___________。