2017年山东省滨州市中考数学试卷及详细答案

合集下载

2017滨州中考数学试题及答案

2017滨州中考数学试题及答案

2017滨州中考数学试题及答案滨州市2017年中考数学试题一、选择题(每题3分,共15分)1. 下列哪个选项是正确的数学表达式?A. 2 + 3 = 5B. 2 × 3 = 6C. 2 ÷ 3 = 0.67D. 2 - 3 = -12. 如果一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 9πB. 18πC. 28πD. 36π3. 下列哪个数是无理数?A. 2.5B. √3C. 0.33333...D. 1/34. 一个等差数列的首项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 85. 下列哪个选项是二次方程x² - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 6二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长度是_________。

7. 如果一个数的平方等于81,那么这个数是_________。

8. 一个数的相反数是-5,那么这个数是_________。

9. 一个数的绝对值是7,这个数可以是_________。

10. 如果一个分数的分子是8,分母是16,那么这个分数化简后的结果是_________。

三、解答题(共75分)11. 计算下列表达式的值:(1)(-2)³(2)√64(3)(-1/2) × (-4/3)12. 解下列方程:(1)3x - 5 = 14(2)2x + 3 = x - 413. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的表面积和体积。

14. 某工厂生产一批零件,合格率为95%,如果生产了2000个零件,求不合格的零件数。

15. 某班级有50名学生,其中男生占60%,女生占40%,求这个班级男生和女生的人数。

四、综合题(共20分)16. 某公司计划在一条直线上建立两个仓库,仓库A和仓库B。

2017年山东省滨州市中考数学试题及答案(清晰版)

2017年山东省滨州市中考数学试题及答案(清晰版)

9.滨州市2017年中考数学试题及答案第I 卷(选择题,共36分)一、选择题(每小题3分,共12小题,合计36分) 1.计算-(-1)+|-1|,结果为A .-2B .2C .0D .-12.一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-43.如图,直线AC ∥BD ,AO ,BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是 A .∠BAO 与∠CAO 相等 B .∠BAC 与∠ABD 互补C .∠BAO 与∠ABO 互余D .∠ABO 与∠DBO 不等4.下列计算:(1)2=2,(22,(3)(-2=12,(41=-,其中结果正确的个数为A .1B .2C .3D .45.若正方形的外接圆半径为2,则其内切圆半径为AB .CD .16.分式方程311(1)(2)x x x x -=--+的解为 A .x =1 B .x =-1 C .无解 D .x =-27.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .2+3B .23C .3+3D .338.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .80°D .25°9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x =16(27-x)10.若点M(-7,m)、N(-8,n)都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m和n的大小关系是A.m>n B.m<n C.m=n D.不能确定11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补.若∠MPN在绕点P旋转的过程中,其两边分别与OA,OB相交于M、N两点,则以下结论:(1)PM=PN恒成立,(2)OM+ON的值不变,(3)四边形PMON 的面积不变,(4)MN的长不变,其中正确的个数为A.4 B.3 C.2 D.112.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A、B,且AC+BC=4,则△OAB的面积为A.23或 3 B+1 1C. 3 D-1第II卷(非选择题,共84分)二、填空题:本大题共6个题,每小题4分,满分24分.13+3)0-|-2-1-cos60°=____________.14.不等式组3(2)4,21152x xx x-->⎧⎪-+⎨⎪⎩≤的解集为___________.PAONBM15.在平面直角坐标系中,点C 、D 的坐标分别为C(2,3)、D(1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为_______.16.如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_________.18.观察下列各式:2111313=-⨯,2112424=-⨯ 2113535=-⨯ ……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.三、解答题:本大题共6个小题,满分60分. 19.(本小题满分8分)(1)计算:(a -b )(a 2+ab +b 2)(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++. 分析:观察到第一个分式的分子出现m 、n 两数的立方差,考虑使用(1)中的立方差公式.20.(本小题满分9分)根据要求,解答下列问题.(1)根据要求,解答下列问题. ①方程x 2-2x +1=0的解为________________________; ②方程x 2-3x +2=0的解为________________________;③方程x 2-4x +3=0的解为________________________;…… ……(2)根据以上方程特征及其解的特征,请猜想: ①方程x 2-9x +8=0的解为________________________;②关于x 的方程________________________的解为x 1=1,x 2=n . (3)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.21.(本小题满分9分)为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm )如下表所示:乙(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐? (2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(本小题满分10分)如图,在□ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ;再分别以点B 、F 为圆心,大于12BF 的相同长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF ,则所得四边形ABEF 是菱形. (1)根据以上尺规作图的过程,求证四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,AE =C 的大小.23.(本小题满分10分)如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点D ;连接BD ,过点D 作直线DM ,使∠BDM =∠DAC .(1)求证:直线DM 是⊙O 的切线;ABEDP(2)求证:DE2=DF·DA.24.(本小题满分14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.参考答案:一、选择题1.B .2.A.3.D.4.D.5.A.6.C.7.A.8.B.9.D 10.B 11. B12. A 11.解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误,故选B.12.解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.二、填空题:13.﹣.14.﹣7≤x<1 .15.(4,6)或(﹣4,﹣6).解:如图,由题意,位似中心是O,位似比为2,∴OC=AC,∵C(2,3),∴A(4,6)或(﹣4,﹣6),故答案为(4,6)或(﹣4,﹣6).16.8 .解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=C△HAE=8.故答案为:8.17.12+15π.解:由几何体的三视图可得:该几何体该几何体的表面是由3个长方形与两个扇形围成,该组合体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.18.解:∵=﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=.故答案是:.三、解答题19.解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.20.解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;21.解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.22.解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.23.解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF•DA,∴DE2=DF•DA.24.解:(1)由题意可得,解得,∴直线解析式为y=x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m,m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),∵A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,整理消去m可得d=x2﹣x+=(x﹣)2+,∴d与x的函数关系式为d=(x﹣)2+,∵>0,∴当x=时,d有最小值,此时y=﹣()2+2×+1=,∴当d取得最小值时P点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,d=×(2﹣)2+=,即CE+EF的最小值为.。

2017滨州中考数学试题及答案

2017滨州中考数学试题及答案

2017滨州中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 如果一个数的平方等于9,那么这个数是:A. 3B. -3C. 3或-3D. 0答案:C3. 一个三角形的两边长分别为3cm和4cm,第三边的长度可能是:A. 1cmB. 2cmC. 5cmD. 7cm答案:C4. 下列哪个选项是等腰三角形?A. 两边长分别为3cm和4cmB. 三边长分别为3cm、3cm和6cmC. 三边长分别为2cm、2cm和5cmD. 三边长分别为4cm、4cm和8cm答案:B5. 一个圆的半径是5cm,那么它的直径是:A. 10cmB. 15cmC. 20cmD. 25cm答案:A6. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C7. 下列哪个选项是不等式?A. 2x + 3 = 7B. 2x - 3 < 7C. 2x + 3 > 7D. 2x = 7答案:B8. 一个数的立方等于8,那么这个数是:A. 2B. -2C. 2或-2D. 0答案:A9. 一个数的倒数是1/3,那么这个数是:A. 3B. -3C. 1/3D. -1/3答案:A10. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:A二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是______。

答案:±512. 一个数的立方是-27,那么这个数是______。

答案:-313. 一个三角形的两边长分别为5cm和12cm,第三边的长度至少是______。

答案:7cm14. 一个圆的直径是10cm,那么它的半径是______。

答案:5cm15. 如果一个数的绝对值是3,那么这个数是______。

答案:±3三、解答题(每题10分,共50分)16. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

2017年山东省滨州市中考数学试卷

2017年山东省滨州市中考数学试卷

2017年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每小题得四个选项中只有一个就是正确得,请把正确得选项选出来,用2B铅笔把答题卡上对应题目得答案标号涂黑,每小题涂对得3分,满分36分)1。

(3分)计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2ﻩB。

2ﻩC.0ﻩD.﹣12。

(3分)一元二次方程x2﹣2x=0根得判别式得值为()A。

4ﻩB。

2 C。

0 D。

﹣43.(3分)如图,直线AC∥BD,AO、BO分别就是∠BAC、∠ABD得平分线,那么下列结论错误得就是()A。

∠BAO与∠CAO相等ﻩB.∠BAC与∠ABD互补C.∠BAO与∠ABO互余ﻩD。

∠ABO与∠DBO不等4。

(3分)下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确得个数为()A。

1ﻩB。

2 C.3 D.45.(3分)若正方形得外接圆半径为2,则其内切圆半径为()A. B.2 C. D。

16。

(3分)分式方程﹣1=得解为()A.x=1ﻩB.x=﹣1ﻩC。

无解ﻩD。

x=﹣27.(3分)如图,在△ABC中,AC⊥BC,∠ABC=30°,点D就是CB延长线上得一点,且BD=BA,则tan∠DAC得值为()A。

2+ﻩB.2ﻩC.3+ﻩD.38。

(3分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B 得大小为()A。

40°B.36°ﻩC。

30°ﻩD.25°9.(3分)某车间有27名工人,生产某种由一个螺栓套两个螺母得产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其她工人生产螺母,恰好使每天生产得螺栓与螺母配套,则下面所列方程中正确得就是( )A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)10.(3分)若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)得图象上,则m与n得大小关系就是()A.m>n B.m<nﻩC.m=n D。

山东省滨州市2017年中考数学真题试题(含答案)

山东省滨州市2017年中考数学真题试题(含答案)

2017年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2 B.2 C.0 D.﹣12.一元二次方程x2﹣2x=0根的判别式的值为( )A.4 B.2 C.0 D.﹣43.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等 B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等4.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为( )A.1 B.2 C.3 D.45.若正方形的外接圆半径为2,则其内切圆半径为( )A.B.2 C.D.16.分式方程﹣1=的解为( )A.x=1 B.x=﹣1 C.无解 D.x=﹣27.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为( )A.2+B.2 C.3+D.38.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )A.40° B.36° C.30° D.25°9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x) 10.若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n 的大小关系是( )A.m>n B.m<n C.m=n D.不能确定11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A.4 B.3 C.2 D.112.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为( )A.2+3或2﹣3 B. +1或﹣1 C.2﹣3 D.﹣1二、填空题:本大题共6个小题,每小题4分,满分24分13.计算: +(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°= .14.不等式组的解集为 .15.在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为 .16.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为 .17.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为 .18.观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为 .三、解答题(共6小题,满分60分)19.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.20.根据要求,解答下列问题:①方程x2﹣2x+1=0的解为 ;②方程x2﹣3x+2=0的解为 ;③方程x2﹣4x+3=0的解为 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为 ;②关于x的方程 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.21.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲 63 66 63 61 64 61乙 63 65 60 63 64 63(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.23.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.24.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.2017年山东省滨州市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.计算﹣(﹣1)+|﹣1|,其结果为( )A.﹣2 B.2 C.0 D.﹣1【考点】19:有理数的加法;15:绝对值.【分析】根据有理数的加法和绝对值可以解答本题.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选B.2.一元二次方程x2﹣2x=0根的判别式的值为( )A.4 B.2 C.0 D.﹣4【考点】AA:根的判别式.【分析】直接利用判别式的定义,计算△=b2﹣4ac即可.【解答】解:△=(﹣2)2﹣4×1×0=4.故选A.3.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等 B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余 D.∠ABO与∠DBO不等【考点】JA:平行线的性质;IL:余角和补角.【分析】根据平行线的想着角平分线的定义即可得到结论.【解答】解:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠BAO与∠CAO相等,∠ABO与∠DBO相等,∴∠BAO与∠ABO互余,故选D.4.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为( )A.1 B.2 C.3 D.4【考点】79:二次根式的混合运算.【分析】根据二次根式的性质对(1)、(2)、(3)进行判断;根据平方差公式对(4)进行判断. 【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.5.若正方形的外接圆半径为2,则其内切圆半径为( )A.B.2 C.D.1【考点】MM:正多边形和圆.【分析】根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故选A.6.分式方程﹣1=的解为( )A.x=1 B.x=﹣1 C.无解 D.x=﹣2【考点】B3:解分式方程.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.7.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为( )A.2+B.2 C.3+D.3【考点】T7:解直角三角形.【分析】通过解直角△ABC得到AC与BC、AB间的数量关系,然后利用锐角三角函数的定义求tan ∠DAC的值.【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )....A40°B36°C30°D25°【考点】KH:等腰三角形的性质.【分析】根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x) 【考点】89:由实际问题抽象出一元一次方程.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选D.10.若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是( )A.m>n B.m<n C.m=n D.不能确定【考点】F8:一次函数图象上点的坐标特征.【分析】根据一次函数的变化趋势即可判断m与n的大小.【解答】解:∵k2+2k+4=(k+1)2+3>0∴﹣(k2+2k+4)<0,∴该函数是y随着x的增大而减少,∵﹣7>﹣8,∴m<n,故选(B)11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A4B3C2D1....【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】如图作PE⊥OA于E,PF⊥OB于F.只要证明△POE≌△POF,△PEM≌△PFN,即可一一判断.【解答】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误,故选B.12.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为( )A.2+3或2﹣3 B. +1或﹣1 C.2﹣3 D.﹣1【考点】G8:反比例函数与一次函数的交点问题.【分析】根据题意表示出AB,BC的长,进而得出等式求出m的值,进而得出答案.【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AB=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.二、填空题:本大题共6个小题,每小题4分,满分24分13.计算: +(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°= ﹣.【考点】79:二次根式的混合运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值进行计算.【解答】解:原式=+1﹣2﹣﹣=﹣.故答案为﹣.14.不等式组的解集为 ﹣7≤x<1 .【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.15.在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为 (4,6)或(﹣4,﹣6) .【考点】SC:位似变换;D5:坐标与图形性质.【分析】根据位似变换的定义,画出图形即可解决问题,注意有两解.【解答】解:如图,由题意,位似中心是O,位似比为2,∴OC=AC,∵C(2,3),∴A(4,6)或(﹣4,﹣6),故答案为(4,6)或(﹣4,﹣6).16.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AD=8,AE=4,则△EBF周长的大小为 8 .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】设AH=a,则DH=AD﹣AH=8﹣a,通过勾股定理即可求出a值,再根据同角的余角互补可得出∠BFE=∠AEH,从而得出△EBF∽△HAE,根据相似三角形的周长比等于对应比即可求出结论.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=C△HAE=8.故答案为:8.17.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为 12+15π .【考点】U3:由三视图判断几何体.【分析】由几何体的三视图得出该几何体是几何体是长方体与三棱柱的组合体,结合图中数据求出组合体的表面积即可.【解答】解:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.18.观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为 .【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.三、解答题(共6小题,满分60分)19.(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【考点】6A:分式的乘除法;4B:多项式乘多项式.【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.20.根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1;②方程x2﹣3x+2=0的解为x1=1,x2=2;③方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;21.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲 63 66 63 61 64 61乙 63 65 60 63 64 63(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【考点】X9:模拟实验;W7:方差;X6:列表法与树状图法.【分析】(1)先计算出平均数,再依据方差公式即可得;(2)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.【解答】解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:63 66 63 61 64 6163 63、63 66、63 63、63 61、63 64、63 61、6365 63、65 66、65 63、65 61、65 64、65 61、6560 63、60 66、60 63、60 61、60 64、60 61、6063 63、63 66、63 63、63 61、63 64、63 61、6364 63、64 66、64 63、64 61、64 64、64 61、6463 63、63 66、63 63、63 61、63 64、63 61、63由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种, ∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.22.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;N2:作图—基本作图.【分析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG 中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD 是平行四边形,∴∠C=∠BAF=60°.23.如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F,交△ABC 的外接圆⊙O 于点D,连接BD,过点D 作直线DM,使∠BDM=∠DAC.(1)求证:直线DM 是⊙O 的切线;(2)求证:DE 2=DF•DA.【考点】S9:相似三角形的判定与性质;M2:垂径定理;M5:圆周角定理;ME:切线的判定与性质;MI:三角形的内切圆与内心.【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM 是⊙O 的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB 2=DF•DA,据此可得DE 2=DF•DA.【解答】解:(1)如图所示,连接OD, ∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE, ∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF•DA,∴DE2=DF•DA.24.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.【考点】HF:二次函数综合题.【分析】(1)由A、B两点的坐标,利用待定系数法可求得直线解析式;(2)过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则可证明△PHQ ∽△BAO,设H(m, m+3),利用相似三角形的性质可得到d与x的函数关系式,再利用二次函数的性质可求得d取得最小值时的P点的坐标;(3)设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,则可知当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,由C点坐标可确定出C′点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE+EF的最小值.【解答】解:(1)由题意可得,解得,∴直线解析式为y=x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m, m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),∵A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,整理消去m可得d=x2﹣x+=(x﹣)2+,∴d与x的函数关系式为d=(x﹣)2+,∵>0,∴当x=时,d有最小值,此时y=﹣()2+2×+1=,∴当d取得最小值时P点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,d=×(2﹣)2+=,即CE+EF的最小值为.。

2017年山东省滨州市中考数学试卷含答案

2017年山东省滨州市中考数学试卷含答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前山东省滨州市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算1(|1)|--+-,结果为 ( ) A .2- B .2 C .0 D .1-2.一元二次方程220x x -=根的判别式的值为 ( ) A .4 B .2 C .0 D .4-3.如图,直线AC BD ∥,AO ,BO 分别是BAC ∠,ABD ∠的平分线,那么下列结论错误的是 ( )A .BAO ∠与CAO ∠相等B .BAC ∠与ABD ∠互补 C .BAO ∠与ABO ∠互余 D .ABO ∠与DAO ∠不等 4.下列计算:①22=2=;③2(12-=;④1=-. 其中结果正确的个数为( ) A .1 B .2 C .3 D .4 5.若正方形的外接圆半径为2,则其内切圆半径为( ) AB.CD .1 6.分式方程311(1)(2)x x x x -=--+的解为( ) A .1x = B .1x =- C .无解 D .2x =-7.如图,在ABC △中,AC BC ⊥,30ABC ∠=,点D 是CB 延长线上的一点,且BD BA =,则tan DAC ∠的值为 ( ) A.2B.C.3+D.8.如图,在ABC △中,AB AC =,D 为BC 上一点,且DA DC =,BD BA =,则B ∠的大小为 ( ) A .40 B .36 C .80 D .259.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 ( )A .(22162)7x x =-B .(16222)7x x =-C .2162227()x x ⨯=-D .2221627()x x ⨯=- 10.若点,()7M m -,,()8N n -都是函数224()1y k k x +++=-(k 为常数)的图象上,则m 和n 的大小关系是 ( ) A .m n > B .m n < C .m n = D .不能确定11.如图,点P 为定角AOB ∠的平分线上的一个定点,且MPN ∠与AOB ∠互补.若MPN ∠在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M ,N 两点,则以下结论:①PM PN =恒成立;②O M O N +的值不变;③四边形PMON 的面积不变;④MN 的长不变.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)其中正确的个数为( )A .4B .3C .2D .112.在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y x =和双曲线1y x=相交于点A ,B ,且4AC BC +=,则OAB △的面积为( ) A.3或3B11 C.3D1第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题4分,共24分.)13.01)|32cos60----= .14.不等式组3(2)4,21152x x x x --⎧⎪-+⎨⎪⎩>≤的解集为 .15.在平面直角坐标系中,点C ,D 的坐标分别为()2,3C ,()1,0D .现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且2OB =,则点C 的对应点A 的坐标为 .16.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若8AD =,6AB =,4AE =,则EBF △周长的大小为 .17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为 . 18.观察下列各式:2111313=-⨯, 2112424=-⨯, 2113535=-⨯, …请利用你所得结论,化简代数式2222132435(2)n n +++⋅⋅⋅+⨯⨯⨯+(3n ≥且为n 整数),其结果为 .三、解答题(本大题共6小题,共60分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分8分)(1)计算:22()()a b a ab b -++.(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++.20.(本小题满分9分) 根据要求,解答下列问题.(1)解下列方程(直接写出方程的解即可): ①方程2210x x +=-的解为 ; ②方程2320x x +=-的解为 ; ③方程2430x x +=-的解为 ; ……(2)根据以上方程特征及其解的特征,请猜想:①方程2980x x +=-的解为 ;②关于x 的方程 的解为11x =,2x n =. (3)请用配方法解方程2980x x -+=,以验证猜想结论的正确性.21.(本小题满分9分)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(甲乙(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐? (2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(本小题满分10分)如图,在□ABCD 中,以点A 为圆心、AB 长为半径画弧交AD 于点F ;再分别以点B ,F 为圆心、大于12BF 的相同长为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF ,则所得四边形ABEF 是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF 是菱形. (2)若菱形ABEF 的周长为16,AE =求C ∠的大小.23.(本小题满分10分)如图,点E 是ABC △的内心,AE 的延长线交BC 于点F ,交ABC △的外接圆O 于点D ;连接BD ,过点D 作直线DM ,使BDM DAC ∠=∠.(1)求证:直线DM 是O 的切线. (2)求证:2DE DF DA =.24.(本小题满分14分)如图,直线y kx b =+(k ,b 为常数)分别与x 轴、y 轴交于点0()4,A -,()0,3B ,抛物线221y x x =++-与y 轴交于点C . (1)求直线y kx b =+的函数解析式.(2)若点,()P x y 是抛物线221y x x =++-上的任意一点,设点P 到直线AB 的距离为d ,求d 关于x 的函数解析式,并求d 取最小值时点P 的坐标.(3)若点E 在抛物线221y x x =++-的对称轴上移动,点F 在直线AB 上移动,求CE EF +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共18页) 数学试卷 第8页(共18页)【解析】AC BD ∥180,AO 、BO 平分线,BAO ∴∠ABO 与DBO ∠余,故选D .,AB 是小圆的切线,,四边形2,在30,∴3tan30AC BD BA =(2BC =3)2DC ACAC AC==】AB AC =,CD DA =,BA BD =BDA BAD =∠设B α∠=2B A D α=,180B BAD ∠+∠+,22180ααα∴++,36α∴,36B ∴∠=,故选B .数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【提示】根据AB AC =可得B C ∠=∠,CD DA =可得22ADB C B ∠=∠=∠,BA BD =,可得2BDA BAD B ∠=∠=∠,在ABD △中利用三角形内角和定理可求出B ∠. 【考点】等边对等角以及三角形内角和等于180. 9.【答案】D【解析】设分配x 名工人生产螺栓,则(27)x -名生产螺母,一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得22216(27)x x ⨯=-.故选D . 【提示】设分配x 名工人生产螺栓,则(27)x -名生产螺母,根据每天生产的螺栓和螺母按12:配套,可得出方程. 【考点】一元一次方程解决实际问题 10.【答案】B【解析】2224(1)30k k k ++=++>,2(24)0k k ∴-++<,∴该函数是y 随着x 的增大而减少,78->-,m n ∴<,故选B .【提示】根据一次函数的变化趋势即可判断m 与n 的大小. 【考点】一次函数的图象的性质 11.【答案】B【解析】如图作PE OA ⊥于E,PF OB ⊥于F.90PEO PFO ∠=∠=,180EPF AOB ∴∠+∠=,180MPN AOB ∠+∠=,EPF MPN ∴∠=∠,EPM FPN ∴∠=∠,OP 平分AOB ∠,PE OA ⊥于E ,PF OB ⊥于F ,PE PF ∴=,在P O E △和POF △中,OP OPPE PF =⎧⎨=⎩,POE POF ∴△≌△,OE OF ∴=,在PEM △和PFN △中,MPE NPFPE PF PEM PFN ∠=∠⎧⎪=⎨⎪∠=∠⎩,PEM PFN ∴△≌△,EM NF ∴=,PM PN =,故(1)正确,PEM PNF S S ∴=△△,PMON PEOF S S ∴==四边形四边形定值,故(3)正确,2OM ON OE ME OF NF OE +=++-==定值,故(2)正确,MN 的长度是变化的,故(4)错误,故选B .AC BC +(2A +AB ∴2数学试卷 第11页(共18页)【解析】如图,,(2,3)C ,【提示】根据位似变换的定义,画出图形即可解决问题,注意有两解.90,AE ,解得:90BFE ∠+,90,90EAH ∠==,∴△,C ∴△HAE C AE =△【提示】设【解析】21131=⨯112435+⨯⨯2)()()()()m n m nm n m n m n m n m n++=-=++--. )根据多项式乘以多项式法则计算即可得;数学试卷 第13页(共18页) 数学试卷 第14页(共18页))63x +=甲263)2-⨯+63656063x +++=乙21[(636s ∴=甲22s s <乙甲,(2)列表如下:AD BC ∥.AF BE ∥形ABEF 是平行四边形,AB BE =是菱形;)如图,连结于G .菱形43AE =,∴90AGB ∠=,30,60BAE ∴∠∠=.四边形ABCD 是平行四边形,60C BAF ∴∠=∠=.30,那60,再根据平行四边形的对角相等即可求出60.【考点】菱形的判定与性质,平行四边形的性质,作图—基础作图,点BDM∠=BDM DBC∴∠=∠,BC DM∴∥,OD DM∴⊥,∴直线DM是O的切线;,点DBF∠=DB DA,即2DB DF DA=,DE DF DA∴.是O的切线;,即可得出DF DA,据此可得2DE DF DA=.【考点】相似三角形的判定与性质,垂径定理,圆周角定理,切线的判定与性质,三角线交于点Q,90,90∴∠,90AOB=,,(4,0)A-23(4x+--+45>,∴得最小值时(3)如图2,设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E=',(0,1)C,∴的最小值为数学试卷第15页(共18页)数学试卷第16页(共18页)=',则可知(3)设C点关于抛物线对称轴的对称点为C',由对称的性质可得CE C E+最小,由C点坐标可确定出C'当F、E、C'三点一线且C F'与AB垂直时CE EF+的最小点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE EF值.【考点】二次函数综合题数学试卷第17页(共18页)数学试卷第18页(共18页)。

2017年中考真题数学(山东滨州卷)(附解析)

【答案】B.【解析】原式=1+1=2,故选B.【答案】D.【解析】已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.【答案】D.【解析】根据二次根式的性质可得(1)、(2)、(3)正确;根据平方差公式可得(4)正确,故选D.【答案】C.【解析】方程两边同乘以(x-1)(x+2)得,x(x+2)-(x-1)(x+2)=3,解得x=1,经检验,x=1不是原方程的根,原分式方程无解,故选C.【答案】A.【解析】设AC=x ,在Rt △ABC 中,∠ABC=30°,即可得AB=2x ,,所以BD=BA=2x,即可得)x ,在Rt △ACD 中,tan ∠DAC=2CD AC == ,故选A.【答案】B.【答案】D【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D..【答案】A.【解析】因2224(1)30k k k ++=++,所以2(24)0k k -++,即可得y 随x 的增大而减小,又因-7<-8,所以m>n ,故选A. 学#科网【答案】B.【解析】如图,过点P 作PC 垂直AO 于点C ,PD 垂直BO 于点D,根据角平分线的性质可得PC=PD ,因∠AOB 与∠MPN 互补,可得∠MPN=∠CPD,即可得∠MPC=∠DPN ,即可判定△CMP ≌△NDP ,所以PM=PN ,(1)正确;由△CMP ≌△NDP 可得CM=CN ,所以OM+ON=2OC ,(2)正确;四边形PMON 的面积等于四边形PCOD 的面积,(3)正确;连结CD ,因PC=PD ,PM=PN ,∠MPN=∠CPD ,PM>PC ,可得CD ≠MN ,所以(4)错误,故选B.【答案】A.【答案】.【解析】原式11122--=.【答案】-7≤x<1.【解析】解不等式①得,x<1;解不等式②得,x ≥-7,所以原不等式组的解集为-7≤x<1.【答案】8.【答案】12+15π.【解析】这个几何体的表面积为:2×3+2×3+2324π⨯ +2324π⨯+32234π⨯⨯⨯ =12+15π.【答案】2354(1)(2)n nn n +++ .【解析】根据题目中所给的规律可得原式=12222(...2132435(2)n n ++++⨯⨯⨯+ =111111111(1...)23243512n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1)221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++ .。

山东滨州中考《数学》试题及答案-中考.doc

:2017山东滨州中考《数学》试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

山东省滨州市中考数学试卷

2017年山东省滨州市中考数学试卷一、选择题(每小题3分,共12小题,合计36分)1.计算-(-1)+|-1|,结果为A .-2B .2C .0D .-12.一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-43.如图,直线AC∥BD,AO,BO 分别是∠BAC、∠ABD 的平分线,那么下列结论错误的是A.∠BAO 与∠CAO 相等B.∠BAC 与∠ABD 互补C.∠BAO 与∠ABO 互余D.∠ABO 与∠DBO 不等4.下列计算:(1)()2=2,(22,(3)(-2=12,(4)1-=-,其中结果正确的个数为A.1B.2C.3D.45.若正方形的外接圆半径为2,则其内切圆半径为AB .C.D .16.分式方程311(1)(2)x x x x -=--+的解为A .x =1B .x =-1C .无解D .x =-27.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .2B .C .3D .8.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .80°D .25°9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是A CD B A B CDA .22x =16(27-x )B .16x =22(27-x )C .2×16x =22(27-x )D .2×22x =16(27-x )10.若点M (-7,m )、N (-8,n )都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是A .m >nB .m <nC .m =nD .不能确定11.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为A .4B .3C .2D .1P A ONBM12.在平面直角坐标系内,直线AB 垂直于x 轴于点C (点C 在原点的右侧),并分别与直线y =x 和双曲线y =1x相交于点A 、B ,且AC +BC =4,则△OAB 的面积为A .3或3B1-1C .3D-1第II 卷(非选择题,共84分)二、填空题:本大题共6个题,每小题4分,满分24分13.计算:+-3)0-||-2-1-cos 60°=____________.14.不等式组3(2)4,21152x x x x -->⎧⎪-+⎨⎪⎩≤的解集为___________.15.在平面直角坐标系中,点C 、D 的坐标分别为C (2,3)、D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为_______.16.如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.。

2017年山东省滨州市中考真题数学

2017年山东省滨州市中考真题数学一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.计算-(-1)+|-1|,其结果为( )A.-2B.2C.0D.-1解析:-(-1)+|-1|=1+1=2.答案:B2.一元二次方程x2-2x=0根的判别式的值为( )A.4B.2C.0D.-4解析:△=b2-4ac=(-2)2-4×1×0=4.答案:A3.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等解析:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠BAO与∠CAO相等,∠ABO与∠DBO相等,∴∠BAO与∠ABO互余.答案:D4. 下列计算:)2=2,=,22=12,(4) =-1,其中结果正确的个数为( )A.1B.2C.3D.4解析:)2=2,=,22=12,(4) =2-3=-1.答案:D5.若正方形的外接圆半径为2,则其内切圆半径为( )C.2D.1解析:如图所示,连接OA 、OE ,∵AB 是小圆的切线,∴OE ⊥AB ,∵四边形ABCD 是正方形,∴AE=OE ,∴△AOE 是等腰直角三角形,∴OE=2=. 答案:A6.分式方程()()31112x x x x -=--+的解为( ) A.x=1B.x=-1C.无解D.x=-2解析:去分母得:x(x+2)-(x-1)(x+2)=3,整理得:2x-x+2=3,解得:x=1,检验:把x=1代入(x-1)(x+2)=0,所以分式方程的无解.答案:C7.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )解析:∵在△ABC 中,AC ⊥BC ,∠ABC=30°,∴AB=2AC ,BC= tan 30AC=︒AC.∵BD=BA ,∴,∴tan ∠DAC= (22ACDC AC AC ==+答案:A8.如图,在△ABC 中,AB=AC ,D 为BC 上一点,且DA=DC ,BD=BA ,则∠B 的大小为()A.40°B.36°C.30°D.25°解析:∵AB=AC ,∴∠B=∠C ,∵CD=DA ,∴∠C=∠DAC ,∵BA=BD ,∴∠BDA=∠BAD=2∠C=2∠B ,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°.答案:B9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D.2×22x=16(27-x)解析:设分配x名工人生产螺栓,则(27-x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27-x). 答案:D10.若点M(-7,m)、N(-8,n)都在函数y=-(k2+2k+4)x+1(k为常数)的图象上,则m和n 的大小关系是( )A.m>nB.m<nC.m=nD.不能确定解析:∵k2+2k+4=(k+1)2+3>0∴-(k2+2k+4)<0,∴该函数是y随着x的增大而减少,∵-7>-8,∴m<n.答案:B11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN 在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为( )A.4B.3C.2D.1解析:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,OP OPPE PF=⎧⎨=⎩,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,MPE NPFPE PFPEM PFN∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,∴S△PEM=S△PNF,∴S四边形PMON=S四边形PEOF=定值,故(3)正确,∵OM+ON=OE+ME+OF-NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误.答案:B12.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A、B,且AC+BC=4,则△OAB的面积为()或-3+1-1解析:如图所示:设点C 的坐标为(m ,0),则A(m ,m),B(m ,1m),所以AC=m ,BC=1m. ∵AC+BC=4,∴可列方程m+1m =4,解得:m=2所以,,,)或,),B(2-,,∴.∴△OAB 的面积=(1232⨯=. 答案:A二、填空题:本大题共6个小题,每小题4分,满分24分13.)03+--2-1-cos60°= .解析:原式11122=--=.答案:14.不等式组()32421152x x x x --⎧⎪⎨-+≤⎪⎩>,的解集为 . 解析:解不等式x-3(x-2)>4,得:x <1,解不等式21152x x -+≤,得:x ≥-7,则不等式组的解集为-7≤x <1.答案:-7≤x <115.在平面直角坐标系中,点C 、D 的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD 放大得到线段AB.若点D 的对应点B 在x 轴上且OB=2,则点C 的对应点A 的坐标为 .解析:如图,由题意,位似中心是O ,位似比为2,∴OC=AC ,∵C(2,3),∴A(4,6)或(-4,-6).答案:(4,6)或(-4,-6)16.如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F ,若AD=8,AE=4,则△EBF 周长的大小为 .解析:设AH=a ,则DH=AD-AH=8-a ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=a ,EH=DH=8-a ,∴EH 2=AE 2+AH 2,即(8-a)2=42+a 2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴23EBF HAE C BE AB AE C AH AH -===V V . ∵C △HAE =AE+EH+AH=AE+AD=12,∴C △EBF =23C △HAE =8. 答案:817.如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为 .解析:由几何体的三视图可得:该几何体是长方体、两个扇形和一个矩形的组合体,该组合体的表面积为:S=2×2×3+2270227022360180ππ⨯⨯⨯+×3=12+15π. 答案:12+15π18.观察下列各式:2111313=-⨯;2112424=-⨯;2113535=-⨯;… 请利用你所得结论,化简代数式:()11111324352n n +++⋯+⨯⨯⨯+(n ≥3且n 为整数),其结果为 . 解析:∵2111313=-⨯, 2112424=-⨯,2113535=-⨯, …∴()2111222n n n n =-++(), ∴()11111111111111324352234)2(352n n n n +++⋯+=-+-+-+⋯+-⨯⨯⨯++ ()11134122222n n n ⎛⎫ ⎪⎝=⎭+=+-++. 答案:()3422n n ++三、解答题(共6小题,满分60分)19.(1)计算:(a-b)(a 2+ab+b 2); (2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++. 解析:(1)根据多项式乘以多项式法则计算即可得;(2)利用(1)种结果将原式分子、分母因式分解,再约分即可得. 答案:(1)原式=a 3+a 2b+ab 2-a 2b-ab 2-b 3=a 3-b 3;(2)原式=()()()()()22222m n m mn n m n m mn n m n m n -+++⋅+++- =(m-n)·m n m n +- =m+n.20.根据要求,解答下列问题:①方程x 2-2x+1=0的解为 ;②方程x 2-3x+2=0的解为 ;③方程x 2-4x+3=0的解为 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x+8=0的解为 ;②关于x 的方程 的解为x 1=1,x 2=n.(3)请用配方法解方程x 2-9x+8=0,以验证猜想结论的正确性.解析:(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x 2-9x+8=0的解为1和8;②关于x 的方程的解为x 1=1,x 2=n ,则此一元二次方程的二次项系数为1,则一次项系数为1和n 的和的相反数,常数项为1和n 的积.(3)利用配方法解方程x 2-9x+8=0可判断猜想结论的正确.答案:(1)①(x-1)2=0,解得x 1=x 2=1,即方程x 2-2x+1=0的解为x 1=x 2=1,;②(x-1)(x-2)=0,解得x 1=1,x 2=2,所以方程x 2-3x+2=0的解为x 1=1,x 2=2,; ③(x-1)(x-3)=0,解得x 1=1,x 2=3,方程x 2-4x+3=0的解为x 1=1,x 2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x+8=0的解为x 1=1,x 2=8;②关于x 的方程x 2-(1+n)x+n=0的解为x 1=1,x 2=n.(3)x 2-9x=-8, 281819844x x -+=-+, 294924x ⎛⎫⎪⎭= ⎝-, 9722x -=±, 所以x 1=1,x 2=8;所以猜想正确.21.为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.解析:(1)先计算出平均数,再依据方差公式即可得;(2)列表得出所有等可能结果,由表格得出两株配对小麦株高恰好都等于各自平均株高的结果数,依据概率公式求解可得.答案:(1)∵6366636164616x+++++=甲=63,∴s甲2=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3;∵.x乙=63+65+60+63+64+636=63,∴s乙2=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为61 366=.22.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,C的大小.解析:(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=4,AG=12AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.再根据平行四边形的对角相等即可求出∠C=∠BAF=60°.答案:(1)在△AEB和△AEF中,AB AFBE FEAE AE=⎧⎪=⎨⎪=⎩,,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF. ∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形.(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AB=BE=EF=AF=4,AG=12AE=BAF=2∠BAE ,AE ⊥BF.在直角△ABG 中,∵∠AGB=90°,∴cos ∠BAG=42AG AB ==,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD 是平行四边形,∴∠C=∠BAF=60°.23.如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点D ,连接BD ,过点D 作直线DM ,使∠BDM=∠DAC.(1)求证:直线DM 是⊙O 的切线;(2)求证:DE 2=DF ·DA.解析:(1)根据垂径定理的推论即可得到OD ⊥BC ,再根据∠BDM=∠DBC ,即可判定BC ∥DM ,进而得到OD ⊥DM ,据此可得直线DM 是⊙O 的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD ,即可得出DB=DE ,再判定△DBF ∽△DAB ,即可得到DB 2=DF ·DA ,据此可得DE2=DF-DA.答案:(1)如图所示,连接OD ,∵点E 是△ABC 的内心,∴∠BAD=∠CAD ,∴»»BDCD =,∴OD ⊥BC , 又∵∠BDM=∠DAC ,∠DAC=∠DBC ,∴∠BDM=∠DBC ,∴BC ∥DM ,∴OD ⊥DM ,∴直线DM 是⊙O 的切线;(2)如图所示,连接BE ,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴DF DBDB DA,即DB2=DF·DA,∴DE2=DF·DA.24.如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.解析:(1)由A、B两点的坐标,利用待定系数法可求得直线解析式;(2)过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则可证明△PHQ∽△BAO,设H(m,34m+3),利用相似三角形的性质可得到d与x的函数关系式,再利用二次函数的性质可求得d取得最小值时的P点的坐标;(3)设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,则可知当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,由C点坐标可确定出C′点的坐标,利用(2)中所求函数关系式可求得d的值,即可求得CE+EF的最小值.答案:(1)由题意可得403k bb-+=⎧⎨=⎩,,解得343kb⎧=⎪⎨⎪=⎩,,∴直线解析式为y=34x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴PQ HQ PH OB OA AB==,设H(m,34m+3),则PQ=x-m,HQ=34m+3-(-x2+2x+1),∵A(-4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴()233214345m x xx m d+--++-==,整理消去m可得d=224845103 555880x x x⎛⎫⎪⎝+⎭-+=-,∴d与x的函数关系式为d=245103 5880x⎛⎫+⎪⎝⎭-,∵45>0,∴当x=58时,d有最小值,此时255119218864y=-+⎛⎫⎪⎝⎭⨯+=,∴当d取得最小值时P点坐标为(58,11964);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,24510314258805d⎛⎫⎪⎝⎭=⨯-+=,即CE+EF的最小值为145.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣12.一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣43.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等4.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.45.若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.16.分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣27.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.38.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.112.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=.14.(4分)不等式组的解集为.15.(4分)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为.16.(4分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为.17.(4分)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为.18.(4分)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.三、解答题(共6小题,满分60分)19.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.20.(9分)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为;②方程x2﹣3x+2=0的解为;③方程x2﹣4x+3=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为;②关于x的方程的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.21.(9分)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.22.(10分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.23.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC 的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.24.(14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.参考答案与试题解析一、选择题(本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B铅笔把答题卡上对应题目的答案标号涂黑,每小题涂对得3分,满分36分)1.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣1【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选B.2.一元二次方程x2﹣2x=0根的判别式的值为()A.4 B.2 C.0 D.﹣4【解答】解:△=(﹣2)2﹣4×1×0=4.故选A.3.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【解答】解:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠BAO与∠CAO相等,∠ABO与∠DBO相等,∴∠BAO与∠ABO互余,故选D.4.下列计算:(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=﹣1,其中结果正确的个数为()A.1 B.2 C.3 D.4【解答】解::(1)=2,(2)=2,(3)(﹣2)2=12,(4)(+)(﹣)=2﹣3=﹣1.故选D.5.若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.1【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故选A.6.分式方程﹣1=的解为()A.x=1 B.x=﹣1 C.无解D.x=﹣2【解答】解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程的无解.故选C.7.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A.2+B.2 C.3+D.3【解答】解:如图,∵在△ABC中,AC⊥BC,∠ABC=30°,∴AB=2AC,BC==AC.∵BD=BA,∴DC=BD+BC=(2+)AC,∴tan∠DAC===2+.故选:A.8.如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A.40°B.36°C.30°D.25°【解答】解:∵AB=AC,∴∠B=∠C,∵CD=DA,∴∠C=∠DAC,∵BA=BD,∴∠BDA=∠BAD=2∠C=2∠B,又∵∠B+∠BAD+∠BDA=180°,∴5∠B=180°,∴∠B=36°,故选B.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选D.10.若点M(﹣7,m)、N(﹣8,n)都在函数y=﹣(k2+2k+4)x+1(k为常数)的图象上,则m和n的大小关系是()A.m>n B.m<n C.m=n D.不能确定【解答】解:∵k2+2k+4=(k+1)2+3>0∴﹣(k2+2k+4)<0,∴该函数是y随着x的增大而减少,∵﹣7>﹣8,∴m<n,故选(B)11.如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON 的面积不变;(4)MN的长不变,其中正确的个数为()A.4 B.3 C.2 D.1【解答】解:如图作PE⊥OA于E,PF⊥OB于F.∵∠PEO=∠PFO=90°,∴∠EPF+∠AOB=180°,∵∠MPN+∠AOB=180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN,∵OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,∴PE=PF,在△POE和△POF中,,∴△POE≌△POF,∴OE=OF,在△PEM和△PFN中,,∴△PEM≌△PFN,∴EM=NF,PM=PN,故(1)正确,=S△PNF,∴S△PEM=S四边形PEOF=定值,故(3)正确,∴S四边形PMON∵OM+ON=OE+ME+OF﹣NF=2OE=定值,故(2)正确,MN的长度是变化的,故(4)错误,故选B.12.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=相交于点A、B,且AC+BC=4,则△OAB的面积为()A.2+3或2﹣3 B.+1或﹣1 C.2﹣3 D.﹣1【解答】解:如图所示:设点C的坐标为(m,0),则A(m,m),B(m,),所以AC=m,BC=.∵AC+BC=4,∴可列方程m+=4,解得:m=2±.所以A(2+,2+),B(2+,2﹣)或A(2﹣,2﹣),B(2﹣,2+),∴AB=2.∴△OAB的面积=×2×(2±)=2±3.故选:A.二、填空题:本大题共6个小题,每小题4分,满分24分13.(4分)计算:+(﹣3)0﹣|﹣|﹣2﹣1﹣cos60°=﹣.【解答】解:原式=+1﹣2﹣﹣=﹣.故答案为﹣.14.(4分)不等式组的解集为﹣7≤x<1.【解答】解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.15.(4分)在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0),现以原点为位似中心,将线段CD放大得到线段AB.若点D的对应点B在x轴上且OB=2,则点C的对应点A的坐标为(4,6)或(﹣4,﹣6).【解答】解:如图,由题意,位似中心是O,位似比为2,∴OC=AC,∵C(2,3),∴A(4,6)或(﹣4,﹣6),故答案为(4,6)或(﹣4,﹣6).16.(4分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F,若AB=6,AD=8,AE=4,则△EBF周长的大小为8.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.=AE+EH+AH=AE+AD=12,∵C△HAE∴C=C△HAE=8.△EBF故答案为:8.17.(4分)如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为12+15π.【解答】解:由几何体的三视图可得:该几何体该几何体的表面是由3个长方形与两个扇形围成,该组合体的表面积为:S=2×2×3+×2+×3=12+15π,故答案为:12+15π.18.(4分)观察下列各式:=﹣;=﹣;=﹣;…请利用你所得结论,化简代数式:+++…+(n≥3且n为整数),其结果为.【解答】解:∵=﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=.故答案是:.三、解答题(共6小题,满分60分)19.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式÷.【解答】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=•=(m﹣n)•=m+n.20.(9分)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1;②方程x2﹣3x+2=0的解为x1=1,x2=2;③方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;21.(9分)为了考察甲、乙两种成熟期小麦的株高长势情况,现从中随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对情况,请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【解答】解:(1)∵==63,∴s甲2=×[(63﹣63)2×2+(66﹣63)2+2×(61﹣63)2+(64﹣63)2]=3;∵==63,∴s乙2=×[(63﹣63)2×3+(65﹣63)2+(60﹣63)2+(64﹣63)2]=,∵s乙2<s甲2,∴乙种小麦的株高长势比较整齐;(2)列表如下:由表格可知,共有36种等可能结果,其中两株配对小麦株高恰好都等于各自平均株高的有6种,∴所抽取的两株配对小麦株高恰好都等于各自平均株高的概率为=.22.(10分)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=4,求∠C的大小.【解答】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)如图,连结BF,交AE于G.∵菱形ABEF的周长为16,AE=4,∴AB=BE=EF=AF=4,AG=AE=2,∠BAF=2∠BAE,AE⊥BF.在直角△ABG中,∵∠AGB=90°,∴cos∠BAG===,∴∠BAG=30°,∴∠BAF=2∠BAE=60°.∵四边形ABCD是平行四边形,∴∠C=∠BAF=60°.23.(10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC 的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF•DA.【解答】解:(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF•DA,∴DE2=DF•DA.24.(14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(1)求直线y=kx+b的函数解析式;(2)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.【解答】解:(1)由题意可得,解得,∴直线解析式为y=x+3;(2)如图1,过P作PH⊥AB于点H,过H作HQ⊥x轴,过P作PQ⊥y轴,两垂线交于点Q,则∠AHQ=∠ABO,且∠AHP=90°,∴∠PHQ+∠AHQ=∠BAO+∠ABO=90°,∴∠PHQ=∠BAO,且∠AOB=∠PQH=90°,∴△PQH∽△BOA,∴==,设H(m ,m+3),则PQ=x﹣m,HQ=m+3﹣(﹣x2+2x+1),∵A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,且PH=d,∴==,整理消去m可得d=x2﹣x +=(x ﹣)2+,∴d与x的函数关系式为d=(x﹣)2+,∵>0,∴当x=时,d有最小值,此时y=﹣()2+2×+1=,∴当d取得最小值时P 点坐标为(,);(3)如图2,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,∵C(0,1),∴C′(2,1),由(2)可知当x=2时,d=×(2﹣)2+=,即CE+EF 的最小值为.第21页(共21页)。

相关文档
最新文档