初中数学总复习教案
初中数学全套复习教案

初中数学全套复习教案一、教学目标:1. 巩固和掌握数与代数、几何、统计与概率等方面的基础知识。
2. 提高学生的数学思维能力、解决问题的能力和创新意识。
3. 培养学生对数学的兴趣和自信心,使学生在数学学习中获得成功体验。
二、教学内容:1. 数与代数:有理数、整式、分式、方程、不等式等。
2. 几何:平面几何、立体几何、几何变换等。
3. 统计与概率:数据的收集、整理、分析、概率等。
三、教学过程:1. 复习导入:通过复习已有知识,激发学生的学习兴趣,建立知识框架。
2. 课堂讲解:针对每个知识点,进行详细的讲解和分析,引导学生理解和掌握。
3. 例题解析:通过典型例题的讲解,让学生学会运用所学知识解决问题。
4. 练习巩固:布置适量练习题,让学生独立完成,巩固所学知识。
5. 总结提升:对本节课的知识进行总结,引导学生发现规律,提高解决问题的能力。
6. 课后作业:布置课后作业,让学生进一步巩固所学知识。
四、教学方法:1. 采用启发式教学,引导学生主动探究、积极思考,培养学生的创新意识。
2. 运用数形结合的方法,直观地展示数学概念和几何图形,帮助学生理解。
3. 通过小组合作、讨论交流,培养学生的团队合作精神和沟通能力。
4. 注重个体差异,针对不同学生给予个性化的指导,使每个学生都能在数学学习中取得进步。
五、教学评价:1. 定期进行课堂测试,了解学生对知识的掌握程度。
2. 关注学生的作业完成情况,及时发现和解决问题。
3. 鼓励学生参加各类数学竞赛和活动,提高学生的综合素质。
4. 注重学生的可持续发展,关注学生在数学学习中的兴趣和自信心。
六、教学资源:1. 教材、教辅、教案、课件等教学资料。
2. 数学模型、几何图形、实物教具等。
3. 计算器、电脑等辅助教学工具。
4. 网络资源、数学杂志、报纸等。
七、教学进度安排:1. 数与代数:4周2. 几何:6周3. 统计与概率:2周4. 总复习:2周八、教学总结:通过本学期的初中数学总复习,学生对初中阶段的数学知识有了系统的掌握和理解,提高了数学思维能力和解决问题的能力。
初中数学中考总复习教案

初中数学中考总复习教案第一章:实数与代数1.1 有理数理解有理数的定义及分类掌握有理数的加减乘除运算规则能够进行有理数的乘方和开方运算1.2 整式与分式理解整式和分式的定义掌握整式和分式的加减乘除运算规则能够进行整式和分式的化简和求值第二章:函数与方程2.1 一次函数和二次函数理解一次函数和二次函数的定义和性质掌握一次函数和二次函数的图像和解析式能够解决一次函数和二次函数的实际问题2.2 一元一次方程和一元二次方程理解一元一次方程和一元二次方程的定义和解法掌握一元一次方程和一元二次方程的解法和应用能够解决一元一次方程和一元二次方程的实际问题第三章:几何与变换3.1 平面几何基本概念理解点、线、面的基本概念和性质掌握线段、射线、直线的性质和运算能够进行线段和角的大小比较3.2 三角形理解三角形的定义和性质掌握三角形的分类和判定方法能够解决三角形的相关问题第四章:统计与概率4.1 统计理解统计的基本概念和方法掌握数据的收集、整理和表示方法能够进行数据的分析和解释4.2 概率理解概率的基本概念和方法掌握事件的分类和概率的计算方法能够解决概率相关问题第五章:综合应用题5.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题5.2 函数与方程的综合应用题能够解决涉及函数与方程的综合应用题5.3 几何与变换的综合应用题能够解决涉及几何与变换的综合应用题5.4 统计与概率的综合应用题能够解决涉及统计与概率的综合应用题第六章:实数与代数的综合应用题6.1 实数与代数的综合应用题能够解决涉及实数与代数的综合应用题,如面积、体积、距离等问题。
6.2 列代数式与求代数式的值能够根据实际问题列出相应的代数式能够求出代数式的值,包括解含绝对值、平方、立方等的代数式。
第七章:函数与方程的综合应用题7.1 一次函数和二次函数的综合应用题能够解决涉及一次函数和二次函数的综合应用题,如实际问题、图像分析等问题。
7.2 一元一次方程和一元二次方程的综合应用题能够解决涉及一元一次方程和一元二次方程的综合应用题,如实际问题、方程组等问题。
人教版数学初中复习教案

人教版数学初中复习教案一、教学目标:1. 知识点复习:对初中阶段的知识点进行系统的复习,包括代数、几何、概率等方面的基础知识。
2. 解题能力培养:通过复习,使学生掌握解题的基本方法,提高解题速度和准确率。
3. 思维能力培养:引导学生运用数学思维方法,提高解决问题的能力。
4. 学习兴趣激发:通过复习,使学生对数学产生浓厚的兴趣,提高自主学习能力。
二、教学内容:1. 代数部分:包括有理数、整式、分式、方程、不等式、函数等知识点。
2. 几何部分:包括平面几何、立体几何、几何变换等知识点。
3. 概率部分:包括概率的基本概念、概率计算等知识点。
三、教学过程:1. 复习导入:通过复习导入,使学生回忆起已学过的知识点,为新课的讲解做好铺垫。
2. 知识点讲解:对每个知识点进行详细的讲解,突出重点,突破难点。
3. 例题解析:选择具有代表性的例题进行解析,引导学生掌握解题方法。
4. 练习巩固:布置适量的练习题,让学生在课后进行巩固。
5. 课堂小结:对本节课的内容进行总结,加深学生对知识点的理解。
6. 课后作业:布置作业,让学生在课后对所学内容进行复习和巩固。
四、教学方法:1. 采用讲授法,讲解清晰、简洁,突出重点。
2. 运用举例法,通过具体例题让学生更好地理解知识点。
3. 采用提问法,引导学生思考,提高课堂互动性。
4. 运用小组合作学习法,培养学生的团队协作能力。
5. 运用多媒体辅助教学,提高课堂趣味性。
五、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成绩评价:对学生的练习成果进行评价,了解学生对知识点的掌握情况。
3. 学生自我评价:鼓励学生进行自我评价,培养学生的自我学习能力。
4. 家长反馈:与家长保持沟通,了解学生的学习情况,共同促进学生的进步。
通过本节课的复习,使学生对初中阶段的数学知识有系统的掌握,提高解题能力和思维能力,激发学习兴趣,为高中阶段的数学学习打下坚实的基础。
中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
初中数学复习教案书写

教案标题:初中数学复习教案一、教学目标1. 知识与技能:巩固和掌握初中阶段的重要数学知识点,提高学生的数学素养。
2. 过程与方法:通过自主学习、合作交流、探究发现等方法,提高学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和克服困难的勇气。
二、教学内容1. 数与代数:有理数、整式、分式、方程、不等式等。
2. 空间与图形:平面几何、立体几何、坐标系等。
3. 统计与概率:数据的收集、整理、分析、概率的计算等。
4. 综合与应用:数学故事、数学日记、数学实践等。
三、教学过程1. 自主学习:让学生自主复习数与代数、空间与图形、统计与概率等知识点,通过课本、资料等进行查阅,巩固基础知识。
2. 合作交流:组织学生进行小组讨论,分享自己的复习心得和方法,互相学习和借鉴。
3. 探究发现:引导学生运用所学知识解决实际问题,发现数学的奥秘和乐趣。
4. 教师讲解:针对学生复习中的难点和易错点,进行有针对性的讲解和辅导。
5. 练习巩固:布置适量的练习题,让学生在实践中运用所学知识,巩固复习效果。
6. 总结反馈:对学生的复习情况进行总结和评价,给予鼓励和指导,帮助学生建立良好的学习习惯。
四、教学评价1. 过程评价:关注学生在复习过程中的态度、方法、合作等情况,给予及时的指导和鼓励。
2. 结果评价:通过测试、练习等手段,检查学生的复习效果,及时发现和解决问题。
3. 综合性评价:结合学生的平时表现、考试成绩、学习进步等方面,进行全面评价。
五、教学资源1. 课本、辅导书、练习册等教学资料。
2. 教学课件、视频、网络资源等。
3. 数学故事、数学日记、数学实践等案例。
六、教学时间1. 课时安排:根据具体教学需求,合理安排复习课时。
2. 教学周期:整个初中阶段,持续进行数学复习。
七、教学建议1. 注重基础:重视基础知识的学习,为学生打下扎实的数学基础。
2. 培养兴趣:激发学生的学习兴趣,提高学生学习数学的积极性。
九年级数学《二次函数》总复习教案

教材:初中数学九年级上册复习目标:1.理解二次函数的概念和特征。
2.掌握二次函数的基本性质和图像的特点。
3.熟练运用二次函数解决实际问题。
4.理解抛物线的性质及其与二次函数的关系。
一、概念复习1.二次函数:通过变量的平方项表达的函数。
2.顶点:二次函数图像的最高点或最低点,表示为(a,b)。
3.对称轴:二次函数图像的对称轴,表示为x=a。
4.开口方向:二次函数图像的开口方向,由二次项的系数决定。
二、性质复习1.零点:二次函数与x轴交点的横坐标。
2.判别式:用来判断二次函数的零点个数的式子。
当Δ=b^2-4ac>0时,二次函数有两个不相等的零点。
当Δ=b^2-4ac=0时,二次函数有两个相等的零点。
当Δ=b^2-4ac<0时,二次函数没有实数零点。
3.最大值与最小值:当二次函数开口向上时,最小值是顶点的纵坐标。
当二次函数开口向下时,最大值是顶点的纵坐标。
三、图像特点复习1.开口方向:当a>0时,二次函数开口向上。
当a<0时,二次函数开口向下。
2.对称轴:对称轴与顶点的横坐标相等。
3.零点:零点是二次函数与x轴交点的横坐标。
零点的个数由判别式Δ决定。
四、实际问题复习1.利用二次函数解决实际问题的步骤:(1)明确问题中有关条件。
(2)设出二次函数的表达式。
(3)求出二次函数的最值或零点。
(4)用解出的最值或零点回答问题。
2.举例:问题:商场的营业额可以用二次函数y=2x^2+3x+4来表示,其中x表示时间(以小时计),y表示营业额(以万元计)。
求该商场的最大营业额,并在什么时间实现。
解答:(1)根据题目,得到二次函数的表达式为y=2x^2+3x+4(2)通过求导数或将二次函数表示为顶点形式,得到该二次函数的顶点为(-3/4,23/8)。
(3)所以,该商场的最大营业额为23/8万元,实现时间为-3/4小时。
五、抛物线的性质复习1. 加入二次函数的f(x)=ax^2+bx+c。
若a>0,抛物线开口向上;若a<0,抛物线开口向下。
中考数学总复习教案七篇

中考数学总复习教案七篇中考数学总复习教案【篇1】【教学目标】1、会判断一个数是正数还是负数,理解负数的意义。
2、会把已知数在数轴上表示,能说出已知点所表示的数。
3、了解数轴的原点、正方向、单位长度,能画出数轴。
4、会比较数轴上数的大小。
【知识讲解】一、本讲主要学习内容1、负数的意义及表示2、零的位置和地位3、有理数的分类4、数轴概念及三要素5、数轴上数与点的对应关系6、数轴上数的比较大小其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。
负数的'意义是难点。
下面概述一下这六点的主要内容1、负数的意义及表示把大于0的数叫正数如5,3,+3等。
在正数前加上“-”号的数叫做负数如-5,-3,-等。
负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。
2、零的位置和地位零既不是正数,也不是负数,但它是自然数。
它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。
中考数学总复习教案【篇2】一、教材分析1.教学目标、重点、难点.教学目标:(1)通过实例,感受引入负数的必要性.(2)了解正数、负数的概念.(3)会区分两种不同意义的量,会用正负数表示具有相反意义的量.重点:理解相反意义的量,理解负数的意义.难点:正确区分两种相反意义的量,并会用正负数表示.2.例、习题的意图通过补充的引例,复习回顾上一学段学习过的数的类型,归纳出我们已经学习了整数和分数,然后通过观察、分析P3的几幅画和图表所列举出的一些实际生活中的具有相反意义的量,让学生感受引入负数的必要性.通过分析正、负数与以前学过的整数和分数的区别与联系,进而归纳出正、负数的概念.例1为P5练习1,设置目的是强化学生对正、负数表示形式的理解.让学生准确的认识和区分正数与负数。
在学生对正、负数的概念与表示形式掌握的基础上,补充例2.例2是明确了哪一种意义的量用正数表示,则与其相反意义的量用负数表示.让学生进一步掌握如何用正、负数表示相反意义的数量.并理解相反意义与数量的含义.进而利用课本P5观察让学生认识正、负数表示实际生活中的数量的意义和必要性。
九年级数学总复习教案

九年级数学总复习教案作为一位无私奉献的老师,常常需要用到教案,教案是教学活动的总的组织纲领和行动方案。
那么问题来了,教案应当怎么写?以下是作者帮大家整理的九年级数学总复习教案,仅供参考,期望能够帮助到大家。
九年级数学总复习教案1九年级数学教案-九年级数学教案设计九年级数学教案设计文桥中学吴园田课题:太阳光与影子课型:新授课教学目标知识目标:1、经历实践、探索的进程,了解平行投影的含义,能够肯定物体在太阳光下影子。
2、通过视察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
3、了解平行投影与物体三种视图之间的关系。
能力目标:1、经历实践,探索的进程,培养学生的实践探索能力。
2、通过视察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向的不同,培养学生的视察能力和想象能力。
情感目标:1、让学生体会影子在生活中的大量存在,使学生能积极参与数学学习活动,激发学生学习数学的动机和爱好。
2、让学生认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造。
教学重点平行投影的含义; 物体在太阳光下影子的肯定; 平行投影与物体三种视图之间的关系。
教学难点让学生经历操作与视察、演示与想象、直观与推理等进程,自己归纳总结得出有关结论。
教学方法和手段视察想象法,实践推理法。
教学设计理念本节的设计遵守学生学习数学的心理规律, 强调学生从已有的生活体会动身, 让学生亲身经历将实际问题抽象成数学模型并进行说明与运用的进程, 进而使学生获得对数学知道的同时, 在思维能力、情感态度与价值观等多方面得到进步与发展。
本节课向学生提供充分从事数学活动的机会, 帮助他们在自主探索和合作交换的进程中真正知道和掌控基本的数学知识与技能、数学思想和方法,获得广泛的数学活动体会。
教学组织情势分组探究,集中教授。
教学进程创设问题情境,引入新课引入: 太阳光与影子是我们日常生活中的常见现象,大家在其他课程的学习中已经积存了物体在太阳光下形成的影子的有关知识,本节课我们通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 数与代数 第一讲 有理数知识点:有理数、数轴、相反数、绝对值、倒数、有理数运算、运算律。
考点要求:1. 理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。
2. 理解相反数和绝对值的意义,会求有理数的相反数与绝对值。
3. 理解乘方的意义,掌握有理数的加减乘除乘方及简单的混合运算。
4. 理解有理数的运算律,并能运用运算律简化运算。
5. 能用有理数的运算解决简单的问题。
考查重点:1. 有理数、无理数、实数、非负数概念; 2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
知识梳理:有理数的有关概念 (1)有理数的组成(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可), 实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称. (4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a ≠0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数.考查题型:以填空和选择题为主。
一、考查题型:1.-1的相反数的倒数是2.已知|a+3|+b+1 =0,则实数(a+b)的相反数3.数-3.14与-Л的大小关系是4.和数轴上的点成一一对应关系的是5.和数轴上表示数-3的点A距离等于2.5的B所表示的数是6.在实数中Л,-25,0, 3 ,-3.14, 4 无理数有()(A)1 个(B)2个(C)3个(D)4个7.一个数的绝对值等于这个数的相反数,这样的数是()(A)非负数(B)非正数(C)负数(D)正数8.若x<-3,则|x+3|等于()(A)x+3 (B)-x-3 (C)-x+3 (D)x-39.下列说法正确是()(A)有理数都是实数(B)实数都是有理数(B)带根号的数都是无理数(D)无理数都是开方开不尽的数10.实数在数轴上的对应点的位置如图,比较下列每组数的大小:(1) c-b和d-a(2) bc和ad第二讲 实数知识点:无理数、实数、平方根、算术平方根、立方根、整数指数幂、科学计数法、近似数与有效数字、简单的实数四则运算。
考点要求:1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。
2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根。
3.了解整数指数幂的意义和基本性质,会用科学记数法表示数。
4.了解无理数和实数的概念,知道实数与数轴上的点一一对应。
5.能用有理数估计一个无理数的大致范围。
6.能对含有较大数字的信息作出合理的解释和推断。
7.了解近似数与有效数字的概念,在解决实际问题中,能进行近似计算或估算,能按问题的要求对结果取近似值。
考查重点:1. 考查近似数、有效数字、科学计算法; 2. 考查实数的运算; 知识梳理:1.实数的组成:{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 2.实数的运算(1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。
取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;任何数与零相加等于原数。
(2)减法 a-b=a+(-b) (3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即⎪⎩⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab(4)除法)0(1≠⋅=b ba b a(5)乘方个n n a aa a = (6)开方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3=a ,那么x a =3在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.3.实数的运算律 典型题型与习题 一、填空题:1.我国数学家刘徽,是第一个找到计算圆周率π方法的人,他求出π的近似值是3.1416,如果取3.142是精确到 位,它有 个有效数字,分别是 。
2.5972精确到百分位的近似数是 ;我国的国土面积约为9600000平方干米,用科学计数法表示为 平方干米。
3.我国1990年的人口出生数为23784659人。
保留三个有效数字的近似值是 人。
4.由四舍五入法得到的近似数 3.10×104,它精确到 位。
这个近似值的有效数字是 。
5.2的相反数与倒数的和的绝对值等于 。
6.若n 为自然数时(-1)2n+1+(-1)2n = .7.已知2a -b =4, 2(b -2a)2-3(b -2a)+1=8.已知:|x|=4,y 2=149且x>0,y<0,则x -y = 。
二、选择题1. 下列命题中:(1)几个有理数相乘,如果负因数个数是奇数,则积必为负; (2)两数之积为1,那么这两数都是1或都是-1;(3)两个实数之和为正数,积为负数,则两数异号,且正数的绝对值大;(4)一个实数的偶次幂是正数,那么这个实数一定不等于零,其中错误的命题的个数是( ) (A )1 个 (B )2 个 (C )3个 (D )4个 2.近似数1.30所表示的准确数A 的范围是( )(A )1.25≤A <1.35 (B )1.20<A <1.30 (C )1.295≤A <1.305 (D )1.300≤A <1.305 3.设a 为实数,则|a+|a||运算的结果( )(A ) 可能是负数(B )不可能是负数(C )一定是负数(D )可能是正数。
4.已知|a|=8,|b|=2,|a -b|=b -a,则a+b 的值是( ) (A ) 10 (B )-6 (C )-6或-10 (D )-10 5.绝对值小于8的所有整数的和是( )(A)0 (B)28 (C)-28 (D)以上都不是 6.由四舍五入法得到的近似数4.9万精确到( )(A)万位 (B)千位 (C)十分位 (D)千分位7.计算下列各题:(1) 32÷(-3)2+|-16|×(- 6)+49 ;(2)-0.252÷(-12)4+(112+238-3.75)×24;第3讲整式知识点:代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂、因式分解、提公因式法、公式法。
考点要求:1.了解代数式的概念,会列简单的代数式。
理解代数式的值的概念,能正确地求出代数式的值;2.理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3.掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4.能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab 进行运算;5.掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。
6.会用提公因式法、公式法进行因式分解。
知识梳理:1.代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2.整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。
(2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,给出一个多项式,要会根据要求对它进行降幂排列或升幂排列.(4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.要会判断给出的项是否同类项,知道同类项可以合并.即x b a bx ax )(+=+ 其中的X 可以代表单项式中的字母部分,代表其他式子。
3.整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.(ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.(2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:),,0(),(是整数是整数n m a aa a n m a a a nm nmn m n m ≠=÷=⋅-+多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.遇到特殊形式的多项式乘法,还可以直接算:.))((,2)(,))((,)())((332222222b a b ab a b a b ab a b a b a b a b a ab x b a x b x a x ±=+±+±=±-=-++++=++(3)整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。
单项式的乘方要用到幂的乘方性质与积的乘方性质:)()(),,()(是整数是整数n b a ab n m a a nnnmn n m ==多项式的乘方只涉及.222)(,2)(2222222ca bc ab c b a c b a b ab a b a +++++=+++±=±4.因式分解:把一个多项式化为几个整式的积的形式。